Hylke Salverda

22 Chapter 1 support. Arch Dis Child Fetal Neonatal Ed 2017;102(1):F37-F43. 37. Lal M, Tin W, Sinha S. Automated control of inspired oxygen in ventilated preterm infants: crossover physiological study. Acta Paediatr 2015;104(11):1084-9. 38. van Kaam AH, Hummler HD, Wilinska M, et al. Automated versus Manual Oxygen Control with Different Saturation Targets and Modes of Respiratory Support in Preterm Infants. J Pediatr 2015;167(3):545-50 e1-2. 39. Urschitz MS, Horn W, Seyfang A, et al. Automatic control of the inspired oxygen fraction in preterm infants: a randomized crossover trial. Am J Respir Crit Care Med 2004;170(10):1095-100. 40. Hallenberger A, Poets CF, Horn W, et al. Closed-loop automatic oxygen control (CLAC) in preterm infants: a randomized controlled trial. Pediatrics 2014;133(2):e379-85. 41. Waitz M, Schmid MB, Fuchs H, et al. Effects of automated adjustment of the inspired oxygen on fluctuations of arterial and regional cerebral tissue oxygenation in preterm infants with frequent desaturations. J Pediatr 2015;166(2):240-4 e1. 42. Claure N, Bancalari E, D’Ugard C, et al. Multicenter crossover study of automated control of inspired oxygen in ventilated preterm infants. Pediatrics 2011;127(1):e76-83. 43. Zapata J, Gomez JJ, Araque Campo R, et al. A randomised controlled trial of an automated oxygen delivery algorithm for preterm neonates receiving supplemental oxygen without mechanical ventilation. Acta Paediatr 2014;103(9):928-33. 44. Van Zanten HA, Kuypers K, Stenson BJ, et al. The effect of implementing an automated oxygen control on oxygen saturation in preterm infants. Arch Dis Child Fetal Neonatal Ed 2017;102(5):F395-F99.

RkJQdWJsaXNoZXIy MTk4NDMw