Hylke Salverda

21 1 General introduction and outline of this thesis the NICHD Neonatal Research Network. Pediatrics 2010;126(3):443-56. 20. Stenson BJ. Oxygen Saturation Targets for Extremely Preterm Infants after the NeOProM Trials. Neonatology 2016;109(4):352-8. 21. Al Hazzani F, Khadawardi E. Effects of Targeting Higher VS Lower Arterial Oxygen Saturations on Death or Disability in Extremely Preterm Infants: The Canadian Oxygen Trial. J Clin Neonatol 2013;2(2):70-2. 22. Tarnow-Mordi W, Stenson B, Kirby A, et al. BOOST-II Australia and United Kingdom Collaborative Groups. Outcomes of Two Trials of Oxygen-Saturation Targets in Preterm Infants. N Engl J Med 2016;374(8):749-60. 23. Carlo WA, Finer NN, Walsh MC, et al. SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 2010;362(21):1959-69. 24. Hagadorn JI, Furey AM, Nghiem TH, et al. Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks’ gestation: the AVIOx study. Pediatrics 2006;118(4):1574-82. 25. Laptook AR, Salhab W, Allen J, et al. Pulse oximetry in very low birth weight infants: can oxygen saturation be maintained in the desired range? J Perinatol 2006;26(6):337-41. 26. LimK, Wheeler KI, Gale TJ, et al. Oxygen saturation targeting in preterm infants receiving continuous positive airway pressure. The Journal of pediatrics 2014;164(4):730-36.e1. 27. Schmidt B, Whyte RK, Asztalos EV, et al. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. Jama 2013;309(20):2111-20. 28. Stenson BJ, Tarnow-Mordi WO, Darlow BA, et al. Boost II United Kingdom, Australia, New Zealand Collaborative Group. Oxygen saturation and outcomes in preterm infants. N Engl J Med 2013;368(22):2094-104. 29. Clarke A, Yeomans E, Elsayed K, et al. A randomised crossover trial of clinical algorithm for oxygen saturation targeting in preterm infants with frequent desaturation episodes. Neonatology 2015;107(2):130-6. 30. Sadeghi Fathabadi O, Gale TJ, LimK, et al. Characterisation of the Oxygenation Response to Inspired Oxygen Adjustments in Preterm Infants. Neonatology 2016;109(1):37-43. 31. Claure N, Gerhardt T, Everett R, et al. Closed-loop controlled inspired oxygen concentration for mechanically ventilated very low birth weight infants with frequent episodes of hypoxemia. Pediatrics 2001;107(5):1120-4. 32. van ZantenHA, TanRN, ThioM, et al. The risk for hyperoxaemia after apnoea, bradycardia and hypoxaemia in preterm infants. Arch Dis Child Fetal Neonatal Ed 2014;99(4):F26973. 33. van Zanten HA, Tan RNGB, van den Hoogen A, et al. Compliance in oxygen saturation targeting in preterm infants: a systematic review. 2015;174(12):1561-72. 34. Bancalari E, Claure N. Control of oxygenation during mechanical ventilation in the premature infant. Clinics in perinatology 2012;39(3):563-72. 35. Claure N, D’Ugard C, Bancalari E. Automated adjustment of inspired oxygen in preterm infants with frequent fluctuations in oxygenation: a pilot clinical trial. J Pediatr 2009;155(5):640-5 e1-2. 36. Plottier GK, Wheeler KI, Ali SK, et al. Clinical evaluation of a novel adaptive algorithm for automated control of oxygen therapy in preterm infants on non-invasive respiratory

RkJQdWJsaXNoZXIy MTk4NDMw