Chapter 2 —— 28 —— 2021; 2, 609650. Corrigendum: Front. Genome Ed. 2021, 3, 682171. 16. Odak, A.; Yuan, H.; Feucht, J.; et al. Novel extragenic genomic safe harbors for precise therapeutic T-cell engineering. Blood 2023, 141, 2698–2712. 17. Lieber, M.R.; Ma, Y.; Pannicke, U.; Schwarz, K.. Mechanism and regulation of human non-homologous DNA end-joining. Nat. Rev. Mol. Cell Biol. 2003, 4, 712–720. 18. Xue, C.; Greene, E.C.. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends Genet. 2021, 37(7), 639–656. 19. Chen, X.; Tasca, F.; Wang, Q.; et al. Expanding the editable genome and CRISPRCas9 versatility using DNA cutting-free gene targeting based on in trans paired nicking. Nucleic Acids Res. 2020, 48, 974–995. 20. Frock, R.L.; Hu, J.; Meyers, R.M.; Ho, Y.J.; Kii, E.; Alt, F.W.. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 2015, 33, 179–186. 21. Kosicki, M.; Tomberg, K.; Bradley, A.. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 2018, 36, 765–771. 22. Turchiano, G.; Andrieux, G.; Klermund, J.; et al. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST- Seq. Cell Stem Cell 2021, 28, 1136–1147. 23. Leibowitz, M.L.; Papathanasiou, S.; Doerfler, P.A.; et al. Chromothripsis as an ontarget consequence of CRISPR-Cas9 genome editing. Nat. Genet. 2021, 53, 895–905. 24. Amendola, M.; Brusson, M.; Miccio, A.. CRISPRthripsis: the risk of CRISPR/ Cas9induced chromothripsis in gene therapy. Stem Cells Transl Med. 2022, 11, 1003–1009. 25. Nahmad, A.D.; Reuveni, E.; Goldschmidt, E.; et al. Frequent aneuploidy in primary human T cells after CRISPR-Cas9 cleavage. Nat Biotechnol. 2022, 40, 1807–1813. 26. Tsuchida, C.A.; Brandes, N.; Bueno, R.; et al. Mitigation of chromosome loss in clinical CRISPR-Cas9-engineered T cells. bioRxiv 2023, 36993359. 27. Ihry, R.J.; Worringer, K.A.; Salick, M.R.; et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 2018, 24, 939–946. 28. Haapaniemi, E.; Botla, S.; Persson, J.; Schmierer, B.; Taipale, J.. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 2018, 24, 927–930. 29. Merkle, F.T.; Ghosh, S.; Kamitaki, N.; et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 2017, 545, 229–233. 30. Sinha, S.; Barbosa, K.; Cheng, K.; et al. A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing. Nat. Commun.
RkJQdWJsaXNoZXIy MTk4NDMw