Chapter 2 │ Page 59 References 1. Ettinger, A. and T. Wittmann, Chapter 5 - Fluorescence live cell imaging, in Methods in Cell Biology, J.C. Waters and T. Wittman, Editors. 2014, Academic Press. p. 77-94. 2. Martinez, N.J., et al., High-throughput fluorescence imaging approaches for drug discovery using in vitro and in vivo three-dimensional models. Expert Opin Drug Discov, 2015. 10(12): p. 1347-61. 3. Schneider, A.F.L. and C.P.R. Hackenberger, Fluorescent labelling in living cells. Curr Opin Biotechnol, 2017. 48: p. 61-68. 4. Toseland, C.P., Fluorescent labeling and modification of proteins. Journal of chemical biology, 2013. 6(3): p. 85-95. 5. Galas, L., et al., “Probe, Sample, and Instrument (PSI)”: The Hat-Trick for Fluorescence Live Cell Imaging. Chemosensors, 2018. 6(3): p. 40. 6. Chudakov, D.M., et al., Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues. Physiological Reviews, 2010. 90(3): p. 1103-1163. 7. Dean, K.M. and A.E. Palmer, Advances in fluorescence labeling strategies for dynamic cellular imaging. Nature Chemical Biology, 2014. 10(7): p. 512-523. 8. Dixit, R. and R. Cyr, Cell damage and reactive oxygen species production induced by fluorescence microscopy: e ect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J, 2003. 36(2): p. 280-90. 9. Icha, J., et al., Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays, 2017. 39(8). 10. Kiepas, A., et al., Optimizing live-cell fluorescence imaging conditions to minimize phototoxicity. J Cell Sci, 2020. 133(4). 11. Laissue, P.P., et al., Assessing phototoxicity in live fluorescence imaging. Nature Methods, 2017. 14(7): p. 657-661. 12. Alghamdi, R.A., et al., Assessing Phototoxicity in a Mammalian Cell Line: How Low Levels of Blue Light A ect Motility in PC3 Cells. Frontiers in cell and developmental biology, 2021. 9: p. 738786. 13. Van Loenhout, J., et al., Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells. Cancers, 2019. 11(10): p. 1597. 14. Van Loenhout, J., et al., Auranofin and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma. Cells, 2021. 10(11): p. 2936. 15. Trzeciak, E.R., et al., Oxidative Stress Di erentially Influences the Survival and Metabolism of Cells in the Melanoma Microenvironment. Cells, 2022. 11(6): p. 930. 16. Kupke, L.S., et al., Cold Atmospheric Plasma Promotes the Immunoreactivity of Granulocytes In Vitro. Biomolecules, 2021. 11(6): p. 902. 17. Lin, A., et al., Non-Thermal Plasma as a Unique Delivery System of Short-Lived Reactive Oxygen and Nitrogen Species for Immunogenic Cell Death in Melanoma Cells. Advanced Science, 2019. 6(6): p. 1802062. 18. Yan, D., J.H. Sherman, and M. Keidar, Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget, 2016. 8(9): p. 15977-15995.
RkJQdWJsaXNoZXIy MTk4NDMw