Hanne Verswyvel

Chapter 4 │ Page 153 58. Debiec, K.T., et al., Evaluating the strength of salt bridges: a comparison of current biomolecular force fields. The Journal of Physical Chemistry B, 2014. 118(24): p. 65616569. 59. Shaw, P., et al., Cold atmospheric plasma increases temozolomide sensitivity of threedimensional glioblastoma spheroids via oxidative stress-mediated DNA damage. Cancers, 2021. 13(8): p. 1780. 60. Živanić, M., et al., Injectable Plasma-Treated Alginate Hydrogel for Oxidative Stress Delivery to Induce Immunogenic Cell Death in Osteosarcoma. Advanced Functional Materials, 2024. 34(14): p. 2312005. 61. Ziegler, A.E., et al., The co-inhibitory receptor TIGIT regulates NK cell function and is upregulated in human intrahepatic CD56(bright) NK cells. Front Immunol, 2023. 14: p. 1117320. 62. Xing, S. and L. Ferrari de Andrade, NKG2D and MICA/B shedding: a 'tag game' between NK cells and malignant cells. Clin Transl Immunology, 2020. 9(12): p. e1230. 63. Borst, L., et al., The NKG2A–HLA-E Axis as a Novel Checkpoint in the Tumor Microenvironment. Clinical Cancer Research, 2020. 26(21): p. 5549-5556. 64. Lupo, K.B., et al., synNotch-programmed iPSC-derived NK cells usurp TIGIT and CD73 activities for glioblastoma therapy. Nature Communications, 2024. 15(1): p. 1909. 65. Ge, Z., et al., TIGIT, the Next Step Towards Successful Combination Immune Checkpoint Therapy in Cancer. Front Immunol, 2021. 12: p. 699895. 66. Goulding, J., et al., A chimeric antigen receptor uniquely recognizing MICA/B stress proteins provides an e ective approach to target solid tumors. Med, 2023. 4(7): p. 457477.e8. 67. Clemen, R., et al., Oxidized Proteins Di erentially A ect Maturation and Activation of Human Monocyte-Derived Cells. Cells, 2022. 11(22). 68. Gkantaras, A., et al., Multi-Cohort Transcriptomic Profiling of Medical Gas PlasmaTreated Cancers Reveals the Role of Immunogenic Cell Death. Cancers, 2024. 16(12): p. 2186. 69. Lin, L., et al., Non - thermal plasma inhibits tumor growth and proliferation and enhances the sensitivity to radiation in vitro and in vivo. Oncol Rep, 2018. 40(6): p. 3405-3415. 70. Prašnikar, E., A. Perdih, and J. Borišek, All-atom simulations reveal a key interaction network in the HLA-E/NKG2A/CD94 immune complex fine-tuned by the nonameric peptide. Journal of Chemical Information and Modeling, 2021. 61(7): p. 3593-3603. 71. Sullivan, L.C., et al., The heterodimeric assembly of the CD94-NKG2 receptor family and implications for human leukocyte antigen-E recognition. Immunity, 2007. 27(6): p. 900-911. 72. Ghasemitarei, M., et al., E ect of cysteine oxidation in SARS-CoV-2 receptor-binding domain on its interaction with two cell receptors: Insights from atomistic simulations. Journal of chemical information and modeling, 2021. 62(1): p. 129-141. 73. Chang, J.W., et al., Non-thermal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: Involvement of DNA-damage-triggering sub-G1 arrest via the ATM/p53 pathway. Archives of Biochemistry and Biophysics, 2014. 545: p. 133-140.

RkJQdWJsaXNoZXIy MTk4NDMw