Hanne Verswyvel

Chapter 4 │ Page 151 18. Lin, A., et al., The e ect of local non - thermal plasma therapy on the cancer - immunity cycle in a melanoma mouse model. Bioengineering & Translational Medicine, 2022. 7(3): p. e10314. 19. Vivier, E., J. Di Santo, and A. Moretta, Natural killer cells. Vol. 395. 2016: Springer. 20. Chester, C., K. Fritsch, and H.E. Kohrt, Natural killer cell immunomodulation: targeting activating, inhibitory, and co-stimulatory receptor signaling for cancer immunotherapy. Frontiers in immunology, 2015. 6: p. 601. 21. Miller, V., A. Lin, and A. Fridman, Why target immune cells for plasma treatment of cancer. Plasma Chemistry and Plasma Processing, 2016. 36(1): p. 259-268. 22. Clemen, R., et al., Physical plasma-treated skin cancer cells amplify tumor cytotoxicity of human natural killer (NK) cells. Cancers, 2020. 12(12): p. 3575. 23. Vivier, E., et al., Targeting natural killer cells and natural killer T cells in cancer. Nature Reviews Immunology, 2012. 12(4): p. 239-252. 24. Pegram, H.J., et al., Activating and inhibitory receptors of natural killer cells. Immunology and cell biology, 2011. 89(2): p. 216-224. 25. Vivier, E., et al., Innate or adaptive immunity? The example of natural killer cells. science, 2011. 331(6013): p. 44-49. 26. Waldhauer, I. and A. Steinle, NK cells and cancer immunosurveillance. Oncogene, 2008. 27(45): p. 5932-5943. 27. Moritz, J., H.-R. Metelmann, and S. Bekeschus, Physical plasma treatment of eight human cancer cell lines demarcates upregulation of CD112 as a common immunomodulatory response element. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019. 4(3): p. 343-349. 28. Wenske, S., et al., Reactive species driven oxidative modifications of peptides— Tracing physical plasma liquid chemistry. Journal of Applied Physics, 2021. 129(19). 29. Yusupov, M., et al., Impact of plasma oxidation on structural features of human epidermal growth factor. Plasma Processes and Polymers, 2018. 15(8): p. 1800022. 30. Ghasemitarei, M., et al., E ects of Nitro-Oxidative Stress on Biomolecules: Part 1— Non-Reactive Molecular Dynamics Simulations. Biomolecules, 2023. 13(9): p. 1371. 31. Yusupov, M., et al., Oxidative damage to hyaluronan–CD44 interactions as an underlying mechanism of action of oxidative stress-inducing cancer therapy. Redox biology, 2021. 43: p. 101968. 32. Lin, A., et al., Oxidation of innate immune checkpoint CD47 on cancer cells with nonthermal plasma. Cancers, 2021. 13(3): p. 579. 33. Ghasemitarei, M., et al., E ect of oxidative stress on cystine transportation by xC‾ antiporter. Archives of biochemistry and biophysics, 2019. 674: p. 108114. 34. Yusupov, M., et al., Transport of reactive oxygen and nitrogen species across aquaporin: A molecular level picture. Oxidative medicine and cellular longevity, 2019. 2019. 35. Mandal, R., et al., The head and neck cancer immune landscape and its immunotherapeutic implications. JCI insight, 2016. 1(17). 36. Murphy, K. and C. Weaver, Janeway's immunobiology. 2016: Garland science. 37. Paech, C., et al., HLA - E diversity unfolded: Identification and characterization of 170 novel HLA - E alleles. Hla, 2021. 97(5): p. 389-398. 38. Parham, P., MHC class I molecules and KIRs in human history, health and survival. Nature reviews immunology, 2005. 5(3): p. 201-214.

RkJQdWJsaXNoZXIy MTk4NDMw