144 Chapter 5 References 1. Goodall, R., et al., Trends in Decubitus Ulcer Disease Burden in European Union 15+ Countries, from 1990 to 2017. Plast Reconstr Surg Glob Open, 2020. 8(11): p. e3252. 2. Chung, M.L., et al., Risk Factors for Pressure Injuries in Adult Patients: A Narrative Synthesis. Int J Environ Res Public Health, 2022. 19(2). 3. Coleman, S., et al., Patient risk factors for pressure ulcer development: systematic review. Int J Nurs Stud, 2013. 50(7): p. 974-1003. 4. Nieto-García, L., et al., Are there differences between COVID-19 and non-COVID-19 inpatient pressure injuries? Experiences in Internal Medicine Units. PLoS One, 2022. 17(2): p. e0263900. 5. Shi, C., et al., Beds, overlays and mattresses for preventing and treating pressure ulcers: an overview of Cochrane Reviews and network meta-analysis. Cochrane Database Syst Rev, 2021. 8(8): p. CD013761. 6. The Waterlow Score. 2005; Available from: http://www.judy-waterlow.co.uk/the-waterlow-scorecard.htm. 7. Charalambous, C., et al., Evaluation of the Validity and Reliability of the Waterlow Pressure Ulcer Risk Assessment Scale. Med Arch, 2018. 72(2): p. 141-144. 8. Bergstrom, N., et al., The Braden Scale for Predicting Pressure Sore Risk. Nurs Res, 1987. 36(4): p. 205-10. 9. Huang, C., et al., Predictive validity of the braden scale for pressure injury risk assessment in adults: A systematic review and meta-analysis. Nurs Open, 2021. 8(5): p. 2194-2207. 10. Gould, D., et al., Examining the validity of pressure ulcer risk assessment scales: a replication study. Int J Nurs Stud, 2004. 41(3): p. 331-9. 11. Pancorbo-Hidalgo, P.L., et al., Risk assessment scales for pressure ulcer prevention: a systematic review. J Adv Nurs, 2006. 54(1): p. 94-110. 12. Kottner, J., T. Dassen, and A. Tannen, Inter- and intrarater reliability of the Waterlow pressure sore risk scale: a systematic review. Int J Nurs Stud, 2009. 46(3): p. 369-79. 13. European Pressure Ulcer Advisory Panel, National Pressure Injury Advisory Panel, and Pan Pacific Pressure Injury Alliance, Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline. The International Guideline., E. Haesler, Editor. 2019, EPUAP/NPIAP/PPPIA. 14. Zegers, M., et al., Perceived Burden Due to Registrations for Quality Monitoring and Improvement in Hospitals: A Mixed Methods Study. Int J Health Policy Manag, 2022. 11(2): p. 183-196. 15. Jiang, M., et al., Using Machine Learning Technologies in Pressure Injury Management: Systematic Review. JMIR Med Inform, 2021. 9(3): p. e25704. 16. Hu, Y.-H., et al., Constructing Inpatient Pressure Injury Prediction Models Using Machine Learning Techniques. CIN: Computers, Informatics, Nursing, 2020. 38(8): p. 415-423. 17. Anderson, C., et al., Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. BMC Med Inform Decis Mak, 2021. 21(1): p. 253. 18. Pei, J., et al., Machine learning-based prediction models for pressure injury: A systematic review and meta-analysis. International Wound Journal, 2023. 20(10): p. 4328-4339. 19. Wang, I., et al., Risk factors predicting hospital-acquired pressure injury in adult patients: An overview of reviews. International Journal of Nursing Studies, 2023: p. 104642. 20. Nestor Maslej, et al., Artificial Intelligence Index Report 2024, AI Index Steering Committee, Editor. 2024, Institute for Human-Centered AI, Stanford University: Stanford, CA. 21. Van de Sande, D., et al., Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit. Intensive Care Med, 2021. 47(7): p. 750-760. 22. Finkelstein, J., et al., Identifying Facilitators and Barriers to Implementation of AI-Assisted Clinical Decision Support in an Electronic Health Record System. J Med Syst, 2024. 48(1): p. 89. 23. Gama, F., et al., Implementation Frameworks for Artificial Intelligence Translation Into Health Care Practice: Scoping Review. J Med Internet Res, 2022. 24(1): p. e32215.
RkJQdWJsaXNoZXIy MTk4NDMw