Caitlin Vink

160 Chapter 7 17. Bradley, A. J. et al. Tree automated quantitative cardiac magnetic resonance perfusion analyses versus invasive fractional fow reserve in swine. JACC Cardiovasc. Imaging. 14(9), 1871–1873 (2021). 18. Costa, M. A. et al. Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional fow reserve. J. Am. Coll. Cardiol. 50(6), 514–522 (2007). 19 Hsu, L. Y. et al. Diagnostic performance of fully automated pixel-wise quantitative myocardial perfusion imaging by cardiovascular magnetic resonance. JACC Cardiovasc. Imaging. 11(5), 697–707 (2018). 20. Hsu, L. Y. et al. Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced frst-pass MRI technique in humans. J. Magn. Reson. Imaging. 23(3), 315–322 (2006). 21. Kellman, P. et al. Myocardial perfusion cardiovascular magnetic resonance: Optimized dual sequence and reconstruction for quantifcation. J. Cardiovasc. Magn. Reson. 19(1), 43 (2017). 22. Knott, K. D. et al. Te prognostic signifcance of quantitative myocardial perfusion: An artifcial intelligence-based approach using perfusion mapping. Circulation. 141(16), 1282–1291 (2020). 23. Kotecha, T. et al. Assessment of multivessel coronary artery disease using cardiovascular magnetic resonance pixelwise quantitative perfusion mapping. JACC Cardiovasc. Imaging. 13(12), 2546– 2557 (2020). 24. Kotecha, T. et al. Automated pixel-wise quantitative myocardial perfusion mapping by CMR to detect obstructive coronary artery disease and coronary microvascular dysfunction: Validation against invasive coronary physiology. JACC Cardiovasc. Imaging. 12(10), 1958–1969 (2019). 25. Zorach, B. et al. Quantitative cardiovascular magnetic resonance perfusion imaging identifes reduced fow reserve in microvascular coronary artery disease. J. Cardiovasc. Magn. Reson. 20(1), 14 (2018). 26. Benovoy, M. et al. Robust universal nonrigid motion correction framework for frst-pass cardiac MR perfusion imaging. J. Magn. Reson. Imaging. 46(4), 1060–1072 (2017). 27. Jacobs, M. et al. Automated segmental analysis of fully quantitative myocardial blood fow maps by frst-pass perfusion cardiovascular magnetic resonance. IEEE Access. 9, 52796–52811 (2021). 28. Jacobs, M., Benovoy, M., Chang, L. C., Arai, A. E. & Hsu, L. Y. Evaluation of an automated method for arterial input function detection for frst-pass myocardial perfusion cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 18, 17 (2016). 29. Hsu, L. Y., Rhoads, K. L., Aletras, A. H. & Arai, A. E. Surface coil intensity correction and non-linear intensity normalization improve pixel resolution parametric maps of myocardial MRI perfusion. In Medical Image Computing and Computer-Assisted Intervention—MICCAI Lecture notes in Computer Science (Eds Ellis, R. E.) 975–976 (Springer, 2003). 30. Zierler, K. Indicator dilution methods for measuring blood fow, volume, and other properties of biological systems: A brief history and memoir. Ann. Biomed. Eng. 28(8), 836–848 (2000). 31. Rahman, H. et al. High-resolution cardiac magnetic resonance imaging techniques for the identifcation of coronary microvascular dysfunction. JACC Cardiovasc. Imaging. 14(5), 978–986 (2021). 32. Villa, A. D. M. et al. Importance of operator training and rest perfusion on the diagnostic accuracy of stress perfusion cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 20(1), 74 (2018).

RkJQdWJsaXNoZXIy MTk4NDMw