254 Chapter 7 References 1. Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018). 2. Vertex. Vertex and CRISPR Therapeutics Announce US FDA Approval of CASGEVYTM (exagamglogene autotemcel) for the Treatment of Sickle Cell Disease. Vertex News & Events https://investors.vrtx.com/news-releases/news-release- details/vertex-and-crispr-therapeutics-announce-us-fda-approval. 3. Kolata, G. F.D.A. Approves Sickle Cell Treatments, Including One That Uses CRISPR. New York Times https://www.nytimes.com/2023/12/08/health/fda-sickle-cell-crispr. html (2023). 4. Gallego Murillo, J. S. Upstream Process Development for Cultured Red Blood Cell Production. (Delft University of Technology, Delft, 2023). 5. Neal, M. D. & Hunt, B. J. Precision in Transfusion Medicine. JAMA 330, 1847 (2023). 6. Dumbill, R. et al. Impaired O2 unloading from stored blood results in diffusion-limited O2 release at tissues: evidence from human kidneys. Blood 143, 721–733 (2024). 7. Nerella, S. et al. Transformers and large language models in healthcare: A review. Artif. Intell. Med. 154, 102900 (2024). 8. Cunha, C. B. C. D. et al. Predicting the Need for Blood Transfusions in Cardiac Surgery: A Comparison between Machine Learning Algorithms and Established Risk Scores in the Brazilian Population. Braz. J. Cardiovasc. Surg. 39, (2024). 9. Levi, R. et al. Artificial intelligence-based prediction of transfusion in the intensive care unit in patients with gastrointestinal bleeding. BMJ Health Care Inform. 28, e100245 (2021). 10. Aklilu, J. G. et al. Artificial Intelligence Identifies Factors Associated with Blood Loss and Surgical Experience in Cholecystectomy. NEJM AI 1, (2024). 11. Meier, J. M. & Tschoellitsch, T. Artificial Intelligence and Machine Learning in Patient Blood Management: A Scoping Review. Anesth. Analg. 135, 524–531 (2022). 12. Hurley, N. C., Schroeder, K. M. & Hess, A. S. Would doctors dream of electric blood bankers? Large language model-based artificial intelligence performs well in many aspects of transfusion medicine. Transfusion (Paris) 63, 1833–1840 (2023). 13. Vinkenoog, M., Van Leeuwen, M. & Janssen, M. P. Explainable haemoglobin deferral predictions using machine learning models: Interpretation and consequences for the blood supply. Vox Sang. 117, 1262–1270 (2022). 14. Meulenbeld, A. et al. Predicting haemoglobin deferral using machine learning models: Can we use the same prediction model across countries? Vox Sang. vox.13643 (2024) doi:10.1111/vox.13643. 15. Rudokaite, J., Ertugrul, I. O., Ong, S., Janssen, M. P. & Huis In ‘T Veld, E. Predicting Vasovagal Reactions to Needles from Facial Action Units. J. Clin. Med. 12, 1644 (2023).
RkJQdWJsaXNoZXIy MTk4NDMw