217 Summary and general discussion 9 References 1. Taylor, M. W. Introduction: A Short History of Virology. in 1–22 (Springer International Publishing, Cham, 2014). doi:10.1007/978-3-319-07758-1_1. 2. Paget, J., Marquet, R., Meijer, A. & Velden, K. van der. Influenza activity in Europe during eight seasons (19992007): an evaluation of the indicators used to measure activity and an assessment of the timing, length and course of peak activity (spread) across Europe. BMC Infectious Diseases 7, 141 (2007). 3. Msemburi, W. et al. The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature 613, 130–137 (2023). 4. Simonsen, L., Gog, J. R., Olson, D. & Viboud, C. Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally Relevant Systems. Journal of Infectious Diseases 214, S380–S385 (2016). 5. Pelat, C. et al. Optimizing the precision of case fatality ratio estimates under the surveillance pyramid approach. American Journal of Epidemiology 180, 1036–1046 (2014). 6. Disease Prevention, E. C. for & Contro. Severe Acute Respiratory Infections (SARI) Reporting Protocol Version 3.8. https://www.ecdc.europa.eu/sites/default/files/documents/SARIsurv-ReportingProtocol_381.pdf (2022). 7. World Health Organization. WHO COVID-19 Dashboard. (2020). 8. Kain, T. & Fowler, R. Preparing intensive care for the next pandemic influenza. Critical Care 23, 337 (2019). 9. Wagner, M. M., Gresham, L. S. & Dato, V. Case Detection, Outbreak Detection, and Outbreak Characterization. in 27–50 (Elsevier, 2006). doi:10.1016/B978-012369378-5/50005-3. 10. Feng, R., Hu, Q. & Jiang, Y. Unknown disease outbreaks detection: A pilot study on featurebased knowledge representation and reasoning model. Frontiers in Public Health 9, 683855 (2021). 11. Stoto, M. A., Schonlau, M. & Mariano, L. T. Syndromic Surveillance: Is it Worth the Effort? CHANCE 17, 19–24 (2004). 12. Dato, V., Wagner, M. M. & Fapohunda, A. How outbreaks of infectious disease are detected: a review of surveillance systems and outbreaks. Public Health Reports (Washington, D.C.: 1974) 119, 464– 471 (2004). 13. Gilbert, G. L., Degeling, C. & Johnson, J. Communicable Disease Surveillance Ethics in the Age of Big Data and New Technology. Asian Bioethics Review 11, 173–187 (2019). 14. Ricoca Peixoto, V., Nunes, C. & Abrantes, A. Epidemic Surveillance of Covid-19: Considering Uncertainty and Under-Ascertainment. Portuguese Journal of Public Health 38, 23–29 (2020). 15. Murray, J. & Cohen, A. L. Infectious Disease Surveillance. in 222–229 (Elsevier, 2017). doi:10.1016/B978-0-12-803678-5.00517-8. 16. Bansal, S., Chowell, G., Simonsen, L., Vespignani, A. & Viboud, C. Big Data for Infectious Disease Surveillance and Modeling. Journal of Infectious Diseases 214, S375–S379 (2016). 17. Wang, R., Jiang, Y., Michael, E. & Zhao, G. How to select a proper early warning threshold to detect infectious disease outbreaks based on the China infectious disease automated alert and response system (CIDARS). BMC Public Health 17, 570 (2017). 18. Cho, A. AI systems aim to sniff out coronavirus outbreaks. Science 368, 810–811 (2020). 19. Kaul, V., Enslin, S. & Gross, S. A. History of artificial intelligence in medicine. Gastrointestinal Endoscopy 92, 807–812 (2020). 20. Cheng, K. et al. Potential Use of Artificial Intelligence in Infectious Disease: Take ChatGPT as an Example. Annals of Biomedical Engineering 51, 1130–1135 (2023). 21. MacIntyre, C. R. et al. Artificial intelligence in public health: the potential of epidemic early warning systems. Journal of International Medical Research 51, 030006052311593 (2023). 22. Brownstein, J. S., Rader, B., Astley, C. M. & Tian, H. Advances in Artificial Intelligence for Infectious-Disease Surveillance. New England Journal of Medicine 388, 1597–1607 (2023). 23. Zeng, D., Cao, Z. & Neill, D. B. Artificial intelligenceenabled public health surveillancefrom local detection to global epidemic monitoring and control. in 437–453 (Elsevier, 2021). doi:10.1016/B978-0-12821259-2.00022-3. 24. Zou, J. & Schiebinger, L. AI can be sexist and racist it’s time to make it fair. Nature 559, 324– 326 (2018).
RkJQdWJsaXNoZXIy MTk4NDMw