Lisanne de Koster

590 Appendices 668. Goffredo P, Roman SA, Sosa JA. Hurthle cell carcinoma: a population-level analysis of 3311 patients. Cancer. 2013;119:504-511. https://doi.org/10.1002/cncr.27770. 669. Thodou E, Canberk S, Schmitt F. Challenges in Cytology Specimens With Hurthle Cells. Frontiers in endocrinology. 2021;12:701877. https://doi.org/10.3389/fendo.2021.701877. 670. Grant CS, Barr D, Goellner JR, Hay ID. Benign Hurthle cell tumors of the thyroid: a diagnosis to be trusted? World journal of surgery. 1988;12:488-495. https://doi.org/10.1007/BF01655429. 671. Boronat M, Cabrera JJ, Perera C, Isla C, Novoa FJ. Late bone metastasis from an apparently benign oncocytic follicular thyroid tumor. Endocrinol Diabetes Metab Case Rep. 2013;2013:130051. https://doi.org/10.1530/EDM-13-0051. 672. Asa SL, Mete O. Oncocytic Change in Thyroid Pathology. Frontiers in endocrinology. 2021;12:678119. https://doi. org/10.3389/fendo.2021.678119. 673. Wada N, Duh QY, Miura D, Brunaud L, Wong MG, Clark OH. Chromosomal aberrations by comparative genomic hybridization in hurthle cell thyroid carcinomas are associated with tumor recurrence. The Journal of clinical endocrinology and metabolism. 2002;87:4595-4601. https://doi.org/10.1210/jc.2002-020339. 674. Ganly I, Makarov V, Deraje S, Dong Y, Reznik E, Seshan V, et al. Integrated Genomic Analysis of Hurthle Cell Cancer Reveals Oncogenic Drivers, Recurrent Mitochondrial Mutations, and Unique Chromosomal Landscapes. Cancer Cell. 2018;34:256-270 e255. https://doi.org/10.1016/j.ccell.2018.07.002. 675. Corver WE, van Wezel T, Molenaar K, Schrumpf M, van den Akker B, van Eijk R, et al. Near-haploidization significantly associates with oncocytic adrenocortical, thyroid, and parathyroid tumors but not with mitochondrial DNA mutations. Genes Chromosomes Cancer. 2014;53:833-844. https://doi.org/10.1002/gcc.22194. 676. Jalaly JB, Baloch ZW. Hurthle-cell neoplasms of the thyroid: An algorithmic approach to pathologic diagnosis in light of molecular advances. Semin Diagn Pathol. 2020;37:234-242. https://doi.org/10.1053/j.semdp.2020.03.004. 677. Boot A, Oosting J, de Miranda NF, Zhang Y, Corver WE, van de Water B, et al. Imprinted survival genes preclude loss of heterozygosity of chromosome 7 in cancer cells. J Pathol. 2016;240:72-83. https://doi.org/10.1002/path.4756. 678. Stankov K, Pastore A, Toschi L, McKay J, Lesueur F, Kraimps JL, et al. Allelic loss on chromosomes 2q21 and 19p 13.2 in oxyphilic thyroid tumors. International journal of cancer. 2004;111:463-467. https://doi.org/10.1002/ijc.20259. 679. Tallini G, Hsueh A, Liu S, Garcia-Rostan G, Speicher MR, Ward DC. Frequent chromosomal DNA unbalance in thyroid oncocytic (Hurthle cell) neoplasms detected by comparative genomic hybridization. Lab Invest. 1999;79:547-555. 680. Santana NO, Lerario AM, Schmerling CK, Marui S, Alves VAF, Hoff AO, et al. Molecular profile of Hurthle cell carcinomas: recurrent mutations in the Wnt/beta-catenin pathway. European journal of endocrinology / European Federation of Endocrine Societies. 2020;183:647-656. https://doi.org/10.1530/EJE-20-0597. 681. Kumari S, Adewale R, Klubo-Gwiezdzinska J. The Molecular Landscape of Hurthle Cell Thyroid Cancer Is Associated with Altered Mitochondrial Function-A Comprehensive Review. Cells. 2020;9. https://doi.org/10.3390/cells9071570. 682. Corver WE, Middeldorp A, ter Haar NT, Jordanova ES, van Puijenbroek M, van Eijk R, et al. Genome-wide allelic state analysis on flow-sorted tumor fractions provides an accurate measure of chromosomal aberrations. Cancer Res. 2008;68:10333-10340. https://doi.org/10.1158/0008-5472.CAN-08-2665. 683. Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana-Santos L, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer. 2018;124:1682-1690. https:// doi.org/10.1002/cncr.31245. 684. Cohen D, Hondelink LM, Solleveld-Westerink N, Uljee SM, Ruano D, Cleton-Jansen AM, et al. Optimizing Mutation and Fusion Detection in NSCLC by Sequential DNA and RNA Sequencing. J Thorac Oncol. 2020;15:1000-1014. https:// doi.org/10.1016/j.jtho.2020.01.019. 685. van der Tuin K, de Kock L, Kamping EJ, Hannema SE, Pouwels MM, Niedziela M, et al. Clinical and Molecular Characteristics May Alter Treatment Strategies of Thyroid Malignancies in DICER1 Syndrome. The Journal of clinical endocrinology and metabolism. 2019;104:277-284. https://doi.org/10.1210/jc.2018-00774. 686. van der Tuin K, Ventayol Garcia M, Corver WE, Khalifa MN, Ruano Neto D, Corssmit EPM, et al. Targetable gene fusions identified in radioactive iodine refractory advanced thyroid carcinoma. European journal of endocrinology. 2019;180:235-241. https://doi.org/10.1530/EJE-18-0653. 687. Plon SE, Eccles DM, Easton D, Foulkes WD, Genuardi M, Greenblatt MS, et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat. 2008;29:1282-1291. https://doi.org/10.1002/humu.20880. 688. Corver WE, Ter Haar NT, Dreef EJ, Miranda NF, Prins FA, Jordanova ES, et al. High-resolution multi-parameter DNA flow cytometry enables detection of tumour and stromal cell subpopulations in paraffin-embedded tissues. J Pathol. 2005;206:233-241. https://doi.org/10.1002/path.1765. 689. Corver WE, Ter Haar NT, Fleuren GJ, Oosting J. Cervical carcinoma-associated fibroblasts are DNA diploid and do not show evidence for somatic genetic alterations. Cell Oncol (Dordr). 2011;34:553-563. https://doi.org/10.1007/s13402011-0061-5.

RkJQdWJsaXNoZXIy MTk4NDMw