References 587 & 605. Nolte S, Liegl G, Petersen MA, Aaronson NK, Costantini A, Fayers PM, et al. General population normative data for the EORTC QLQ-C30 health-related quality of life questionnaire based on 15,386 persons across 13 European countries, Canada and the Unites States. Eur J Cancer. 2019;107:153-163. https://doi.org/10.1016/j.ejca.2018.11.024. 606. Norman GR, Sloan JA, Wyrwich KW. Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation. Med Care. 2003;41:582-592. https://doi.org/10.1097/01.MLR.0000062554.74615.4C. 607. Smith VA, Coffman CJ, Hudgens MG. Interpreting the Results of Intention-to-Treat, Per-Protocol, and As-Treated Analyses of Clinical Trials. JAMA. 2021;326:433-434. https://doi.org/10.1001/jama.2021.2825. 608. Bell BA, Morgan GB, Schoeneberger JA, Kromrey JD, Ferron JM. How Low Can You Go?: An Investigation of the Influence of Sample Size and Model Complexity on Point and Interval Estimates in Two-Level Linear Models. Methodology. 2014;10:1-11. https://doi.org/10.1027/1614-2241/a000062. 609. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41:211-218. https://doi.org/10.1016/j.tibs.2015.12.001. 610. Piccardo A, Puntoni M, Bertagna F, Treglia G, Foppiani L, Arecco F, et al. 18F-FDG uptake as a prognostic variable in primary differentiated thyroid cancer incidentally detected by PET/CT: a multicentre study. Eur J Nucl Med Mol Imaging. 2014;41:1482-1491. https://doi.org/10.1007/s00259-014-2774-y. 611. Santhanam P, Khthir R, Solnes LB, Ladenson PW. The relationship of BRAF(V600e) mutation status to FDG PET/CT avidity in thyroid cancer: a review and meta-analysis. Endocrine practice. 2018;24:21-26. https://doi.org/10.4158/ EP-2017-0080. 612. van Berkel A, Rao JU, Kusters B, Demir T, Visser E, Mensenkamp AR, et al. Correlation between in vivo 18F-FDG PET and immunohistochemical markers of glucose uptake and metabolism in pheochromocytoma and paraganglioma. Journal of nuclear medicine. 2014;55:1253-1259. https://doi.org/10.2967/jnumed.114.137034. 613. Meyer HJ, Wienke A, Surov A. Associations between GLUT expression and SUV values derived from FDG-PET in different tumors-A systematic review and meta analysis. PloS one. 2019;14:e0217781. https://doi.org/10.1371/ journal.pone.0217781. 614. de Geus-Oei LF, van Krieken JH, Aliredjo RP, Krabbe PF, Frielink C, Verhagen AF, et al. Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer. 2007;55:79-87. https://doi.org/10.1016/j.lungcan.2006.08.018. 615. Kim MH, Ko SH, Bae JS, Lee SH, Jung CK, Lim DJ, et al. Non-FDG-avid primary papillary thyroid carcinoma may not differ from FDG-avid papillary thyroid carcinoma. Thyroid. 2013;23:1452-1460. https://doi.org/10.1089/thy.2013.0051. 616. Dierckx RA, Van de Wiele C. FDG uptake, a surrogate of tumour hypoxia? Eur J Nucl Med Mol Imaging. 2008;35:15441549. https://doi.org/10.1007/s00259-008-0758-5. 617. Busk M, Horsman MR, Jakobsen S, Bussink J, van der Kogel A, Overgaard J. Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. Eur J Nucl Med Mol Imaging. 2008;35:2294-2303. https://doi. org/10.1007/s00259-008-0888-9. 618. Schuurbiers OC, Meijer TW, Kaanders JH, Looijen-Salamon MG, de Geus-Oei LF, van der Drift MA, et al. Glucose metabolism in NSCLC is histology-specific and diverges the prognostic potential of 18FDG-PET for adenocarcinoma and squamous cell carcinoma. J Thorac Oncol. 2014;9:1485-1493. https://doi.org/10.1097/JTO.0000000000000286. 619. Klaus A, Fathi O, Tatjana TW, Bruno N, Oskar K. Expression of hypoxia-associated protein HIF-1alpha in follicular thyroid cancer is associated with distant metastasis. Pathol Oncol Res. 2018;24:289-296. https://doi.org/10.1007/ s12253-017-0232-4. 620. Nahm JH, Kim HM, Koo JS. Glycolysis-related protein expression in thyroid cancer. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2017;39:1-10. https://doi. org/10.1177/1010428317695922. 621. Kim HM, Koo JS. Differential expression of glycolysis-related proteins in follicular neoplasms versus hurthle cell neoplasms: a retrospective analysis. Dis Markers. 2017;2017:6230294. https://doi.org/10.1155/2017/6230294. 622. Meijer TW, Schuurbiers OC, Kaanders JH, Looijen-Salamon MG, de Geus-Oei LF, Verhagen AF, et al. Differences in metabolism between adeno- and squamous cell non-small cell lung carcinomas: spatial distribution and prognostic value of GLUT1 and MCT4. Lung Cancer. 2012;76:316-323. https://doi.org/10.1016/j.lungcan.2011.11.006. 623. Kaida H, Kawahara A, Hayakawa M, Hattori S, Kurata S, Fujimoto K, et al. The difference in relationship between 18F-FDG uptake and clinicopathological factors on thyroid, esophageal, and lung cancers. Nuclear medicine communications. 2014;35:36-43. https://doi.org/10.1097/MNM.0000000000000019. 624. Grabellus F, Nagarajah J, Bockisch A, Schmid KW, Sheu SY. Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma. Clinical nuclear medicine. 2012;37:121-127. https://doi.org/10.1097/RLU.0b013e3182393599. 625. Kjellman P, Wallin G, Hoog A, Auer G, Larsson C, Zedenius J. MIB-1 index in thyroid tumors: a predictor of the clinical course in papillary thyroid carcinoma. Thyroid. 2003;13:371-380. https://doi.org/10.1089/105072503321669866.
RkJQdWJsaXNoZXIy MTk4NDMw