582 Appendices 499. Choi JW, Yoon YH, Yoon YH, Kim SM, Koo BS. Characteristics of primary papillary thyroid carcinoma with false-negative findings on initial (18)F-FDG PET/CT. Annals of surgical oncology. 2011;18:1306-1311. https://doi.org/10.1245/ s10434-010-1469-2. 500. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda System for Reporting Thyroid Cytopathology: a meta-analysis. Acta cytologica. 2012;56:333–339. https://doi.org/10.1159/000339959. 501. de Koster EJ, de Geus-Oei LF, Brouwers AH, van Dam E, Dijkhorst-Oei LT, van Engen-van Grunsven ACH, et al. [(18)F]FDG-PET/CT to prevent futile surgery in indeterminate thyroid nodules: a blinded, randomised controlled multicentre trial. Eur J Nucl Med Mol Imaging. 2022;49:1970-1984. https://doi.org/10.1007/s00259-021-05627-2. 502. Nguyen TT, Lange NGE, Nielsen AL, Thomassen A, Dossing H, Godballe C, et al. PET/CT and prediction of thyroid cancer in patients with follicular neoplasm or atypia. European archives of oto-rhino-laryngology. 2018;275:21092117. https://doi.org/10.1007/s00405-018-5030-4. 503. Wong KS, Angell TE, Barletta JA, Krane JF. Hurthle cell lesions of the thyroid: Progress made and challenges remaining. Cancer cytopathology. 2021;129:347-362. https://doi.org/10.1002/cncy.22375. 504. Zhou X, Zheng Z, Chen C, Zhao B, Cao H, Li T, et al. Clinical characteristics and prognostic factors of Hurthle cell carcinoma: a population based study. BMC cancer. 2020;20:407. https://doi.org/10.1186/s12885-020-06915-0. 505. Limkin EJ, Sun R, Dercle L, Zacharaki EI, Robert C, Reuze S, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol. 2017;28:1191-1206. https://doi.org/10.1093/ annonc/mdx034. 506. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016;278:563577. https://doi.org/10.1148/radiol.2015151169. 507. Sollini M, Cozzi L, Pepe G, Antunovic L, Lania A, Di Tommaso L, et al. [(18)F]FDG-PET/CT texture analysis in thyroid incidentalomas: preliminary results. Eur J Hybrid Imaging. 2017;1:3. https://doi.org/10.1186/s41824-017-0009-8. 508. Aksu A, Karahan Sen NP, Acar E, Capa Kaya G. Evaluating Focal (18)F-FDG Uptake in Thyroid Gland with Radiomics. Nuclear medicine and molecular imaging. 2020;54:241-248. https://doi.org/10.1007/s13139-020-00659-2. 509. Kim SJ, Chang S. Predictive value of intratumoral heterogeneity of F-18 FDG uptake for characterization of thyroid nodules according to Bethesda categories of fine needle aspiration biopsy results. Endocrine. 2015;50:681-688. https://doi.org/10.1007/s12020-015-0620-z. 510. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. Journal of nuclear medicine. 2009;50 Suppl 1:122S-150S. https://doi.org/10.2967/ jnumed.108.057307. 511. Frings V, van Velden FH, Velasquez LM, Hayes W, van de Ven PM, Hoekstra OS, et al. Repeatability of metabolically active tumor volume measurements with FDG PET/CT in advanced gastrointestinal malignancies: a multicenter study. Radiology. 2014;273:539-548. https://doi.org/10.1148/radiol.14132807. 512. Kikinis R, Pieper SD, Vosburgh KG. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. In: Jolesz F, editor. Intraoperative Imaging and Image-Guided Therapy. New York, NY, USA: Springer; 2014. p. 277-289. 513. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017;77:e104-e107. https://doi.org/10.1158/0008-5472.CAN-170339. 514. Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. arXiv. 2019;1612.07003. 515. Peeters CFW, Übelhör C, Mes SW, Martens RM, Koopman T, Graaf Pd, et al. Stable prediction with radiomics data. ArXiv. 2019;abs/1903.11696. 516. Bouckaert RR, Frank E. Evaluating the Replicability of Significance Tests for Comparing Learning Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004. p. 3-12. 517. Orlhac F, Nioche C, Klyuzhin I, Rahmim A, Buvat I. Radiomics in PET Imaging:: A Practical Guide for Newcomers. PET Clin. 2021;16:597-612. https://doi.org/10.1016/j.cpet.2021.06.007. 518. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594. https://doi.org/10.1136/bmj.g7594. 519. Slowinska-Klencka D, Wysocka-Konieczna K, Klencki M, Popowicz B. Usability of EU-TIRADS in the Diagnostics of Hurthle Cell Thyroid Nodules with Equivocal Cytology. J Clin Med. 2020;9. https://doi.org/10.3390/jcm9113410. 520. Pathak KA, Goertzen AL, Nason RW, Klonisch T, Leslie WD. A prospective cohort study to assess the role of FDGPET in differentiating benign and malignant follicular neoplasms. Ann Med Surg (Lond). 2016;12:27-31. https://doi. org/10.1016/j.amsu.2016.10.008. 521. Nie F, Xu D, Tsang IW, Zhang C. Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. IEEE Trans Image Process. 2010;19:1921-1932. https://doi.org/10.1109/TIP.2010.2044958.
RkJQdWJsaXNoZXIy MTk4NDMw