References 581 & 479. Kahan BC, Morris TP. Reporting and analysis of trials using stratified randomisation in leading medical journals: review and reanalysis. Bmj. 2012;345:e5840. https://doi.org/10.1136/bmj.e5840. 480. Pathak KA, Klonisch T, Nason RW, Leslie WD. FDG-PET characteristics of Hurthle cell and follicular adenomas. Annals of nuclear medicine. 2016;30:506-509. https://doi.org/10.1007/s12149-016-1087-6. 481. Ceriani L, Milan L, Virili C, Cascione L, Paone G, Trimboli P, et al. Radiomics Analysis of [(18)F]-FluorodeoxyglucoseAvid Thyroid Incidentalomas Improves Risk Stratification and Selection for Clinical Assessment. Thyroid. 2021;31:8895. https://doi.org/10.1089/thy.2020.0224. 482. Giovanella L, Milan L, Piccardo A, Bottoni G, Cuzzocrea M, Paone G, et al. Radiomics analysis improves (18)FDG PET/ CT-based risk stratification of cytologically indeterminate thyroid nodules. Endocrine. 2021. https://doi.org/10.1007/ s12020-021-02856-1. 483. Gopal RK, Kubler K, Calvo SE, Polak P, Livitz D, Rosebrock D, et al. Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hurthle Cell Carcinoma. Cancer Cell. 2018;34:242–255. https:// doi.org/10.1016/j.ccell.2018.06.013. 484. Doerfler WR, Nikitski AV, Morariu EM, Ohori NP, Chiosea SI, Landau MS, et al. Molecular alterations in Hurthle cell nodules and preoperative cancer risk. Endocrine-related cancer. 2021;28:301-309. https://doi.org/10.1530/ERC-200435. 485. Rosario PW, Rocha TG, Calsolari MR. Fluorine-18-fluorodeoxyglucose positron emission tomography in thyroid nodules with indeterminate cytology: a prospective study. Nuclear medicine communications. 2019;40:185–187. https://doi.org/10.1097/MNM.0000000000000946. 486. Qichang W, Jinming S, Lu L, Bin J, Renjie W, Xiuying Z. Comparison of 18F-FDG-PET and 18F-FDG-PET/CT for the diagnostic performance in thyroid nodules with indeterminate cytology: A meta-analysis. Medicine. 2020;99:1–9. https://doi.org/10.1097/MD.0000000000020446. 487. Kaida H, Hiromatsu Y, Kurata S, Kawahara A, Hattori S, Taira T, et al. Relationship between clinicopathological factors and fluorine-18-fluorodeoxyglucose uptake in patients with papillary thyroid cancer. Nuclear medicine communications. 2011;32:690-698. https://doi.org/10.1097/MNM.0b013e32834754f1. 488. Staibano P, Forner D, Noel CW, Zhang H, Gupta M, Monteiro E, et al. Ultrasonography and Fine-Needle Aspiration in Indeterminate Thyroid Nodules: A Systematic Review of Diagnostic Test Accuracy. The Laryngoscope. 2021. https:// doi.org/10.1002/lary.29778. 489. Yip L, Sosa JA. Molecular-Directed Treatment of Differentiated Thyroid Cancer: Advances in Diagnosis and Treatment. JAMA Surg. 2016;151:663–670. https://doi.org/10.1001/jamasurg.2016.0825. 490. Steward DL, Carty SE, Sippel RS, Yang SP, Sosa JA, Sipos JA, et al. Performance of a Multigene Genomic Classifier in Thyroid Nodules With Indeterminate Cytology: A Prospective Blinded Multicenter Study. JAMA Oncol. 2019;5:204212. https://doi.org/10.1001/jamaoncol.2018.4616. 491. Angell TE, Heller HT, Cibas ES, Barletta JA, Kim MI, Krane JF, et al. Independent Comparison of the Afirma Genomic Sequencing Classifier and Gene Expression Classifier for Cytologically Indeterminate Thyroid Nodules. Thyroid. 2019;29:650–656. https://doi.org/10.1089/thy.2018.0726. 492. Eszlinger M, Bohme K, Ullmann M, Gorke F, Siebolts U, Neumann A, et al. Evaluation of a Two-Year Routine Application of Molecular Testing of Thyroid Fine-Needle Aspirations Using a Seven-Gene Panel in a Primary Referral Setting in Germany. Thyroid. 2017;27:402-411. https://doi.org/10.1089/thy.2016.0445. 493. Bardet S, Goardon N, Lequesne J, Vaur D, Ciappuccini R, Leconte A, et al. Diagnostic and prognostic value of a 7-panel mutation testing in thyroid nodules with indeterminate cytology: the SWEETMAC study. Endocrine. 2021;71:407-417. https://doi.org/10.1007/s12020-020-02411-4. 494. Paschke R, Cantara S, Crescenzi A, Jarzab B, Musholt TJ, Sobrinho Simoes M. European Thyroid Association Guidelines regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. Eur Thyroid J. 2017;6:115-129. https://doi.org/10.1159/000468519. 495. Balentine CJ, Vanness DJ, Schneider DF. Cost-effectiveness of lobectomy versus genetic testing (Afirma(R)) for indeterminate thyroid nodules: Considering the costs of surveillance. Surgery. 2018;163:88-96. https://doi. org/10.1016/j.surg.2017.10.004. 496. Nicholson KJ, Roberts MS, McCoy KL, Carty SE, Yip L. Molecular Testing Versus Diagnostic Lobectomy in Bethesda III/IV Thyroid Nodules: A Cost-Effectiveness Analysis. Thyroid. 2019;29:1237-1243. https://doi.org/10.1089/ thy.2018.0779. 497. Endo M, Porter K, Long C, Azaryan I, Phay JE, Ringel MD, et al. Features of Cytologically Indeterminate Molecularly Benign Nodules Treated With Surgery. The Journal of clinical endocrinology and metabolism. 2020;105:e3971–3980. https://doi.org/10.1210/clinem/dgaa506. 498. Wang H, Dai H, Li Q, Shen G, Shi L, Tian R. Investigating (18)F-FDG PET/CT Parameters as Prognostic Markers for Differentiated Thyroid Cancer: A Systematic Review. Front Oncol. 2021;11:648658. https://doi.org/10.3389/ fonc.2021.648658.
RkJQdWJsaXNoZXIy MTk4NDMw