References 577 & 396. Shin JH, Baek JH, Chung J, Ha EJ, Kim JH, Lee YH, et al. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean journal of radiology. 2016;17:370-395. https://doi.org/10.3348/kjr.2016.17.3.370. 397. Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, Hegedus L, et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules - 2016 Update Appendix. Endocr Pract. 2016;22:1-60. https:// doi.org/https://doi.org/10.4158/EP161208.GL. 398. Hoang JK, Asadollahi S, Durante C, Hegedüs L, Papini E, Tessler FN. An International Survey on Utilization of Five Thyroid Nodule Risk Stratification Systems: A Needs Assessment with Future Implications. Thyroid. 2022;32:675-681. https://doi.org/10.1089/thy.2021.0558. 399. Grani G, Lamartina L, Ascoli V, Bosco D, Biffoni M, Giacomelli L, et al. Reducing the Number of Unnecessary Thyroid Biopsies While Improving Diagnostic Accuracy: Toward the “Right” TIRADS. The Journal of clinical endocrinology and metabolism. 2019;104:95-102. https://doi.org/10.1210/jc.2018-01674. 400. Larcher de Almeida AM, Delfim RLC, Vidal APA, Chaves M, Santiago ACL, Gianotti MF, et al. Combining the American Thyroid Association’s Ultrasound Classification with Cytological Subcategorization Improves the Assessment of Malignancy Risk in Indeterminate Thyroid Nodules. Thyroid. 2021;31:922-932. https://doi.org/10.1089/ thy.2019.0575. 401. Staibano P, Forner D, Noel CW, Zhang H, Gupta M, Monteiro E, et al. Ultrasonography and Fine-Needle Aspiration in Indeterminate Thyroid Nodules: A Systematic Review of Diagnostic Test Accuracy. Laryngoscope. 2022;132:242-251. https://doi.org/10.1002/lary.29778. 402. Słowińska-Klencka D, Wysocka-Konieczna K, Klencki M, Popowicz B. Usability of EU-TIRADS in the Diagnostics of Hürthle Cell Thyroid Nodules with Equivocal Cytology. Journal of clinical medicine. 2020;9. https://doi.org/10.3390/ jcm9113410. 403. Barbosa TLM, Junior COM, Graf H, Cavalvanti T, Trippia MA, da Silveira Ugino RT, et al. ACR TI-RADS and ATA US scores are helpful for the management of thyroid nodules with indeterminate cytology. BMC Endocr Disord. 2019;19:112. https://doi.org/10.1186/s12902-019-0429-5. 404. Wildman-Tobriner B, Buda M, Hoang JK, Middleton WD, Thayer D, Short RG, et al. Using Artificial Intelligence to Revise ACR TI-RADS Risk Stratification of Thyroid Nodules: Diagnostic Accuracy and Utility. Radiology. 2019;292:112119. https://doi.org/10.1148/radiol.2019182128. 405. Yoon J, Lee E, Kang SW, Han K, Park VY, Kwak JY. Implications of US radiomics signature for predicting malignancy in thyroid nodules with indeterminate cytology. Eur Radiol. 2021;31:5059-5067. https://doi.org/10.1007/s00330-020-07670-3. 406. Wallis D, Buvat I. Clever Hans effect found in a widely used brain tumour MRI dataset. Med Image Anal. 2022;77:102368. https://doi.org/10.1016/j.media.2022.102368. 407. Cleere EF, Davey MG, O’Neill S, Corbett M, O’Donnell JP, Hacking S, et al. Radiomic Detection of Malignancy within Thyroid Nodules Using Ultrasonography—A Systematic Review and Meta-Analysis. 2022;12:794. 408. Duron L, Savatovsky J, Fournier L, Lecler A. Can we use radiomics in ultrasound imaging? Impact of preprocessing on feature repeatability. Diagn Interv Imaging. 2021;102:659-667. https://doi.org/https://doi.org/10.1016/j. diii.2021.10.004. 409. Dighe MK. Elastography of Thyroid Masses. Ultrasound Clin. 2014;9:13-24. https://doi.org/10.1016/j.cult.2013.08.001. 410. Bhatia KS, Tong CS, Cho CC, Yuen EH, Lee YY, Ahuja AT. Shear wave elastography of thyroid nodules in routine clinical practice: preliminary observations and utility for detecting malignancy. Eur Radiol. 2012;22:2397-2406. https://doi. org/10.1007/s00330-012-2495-1. 411. Qiu Y, Xing Z, Liu J, Peng Y, Zhu J, Su A. Diagnostic reliability of elastography in thyroid nodules reported as indeterminate at prior fine-needle aspiration cytology (FNAC): a systematic review and Bayesian meta-analysis. European radiology. 2020;30:6624-6634. https://doi.org/10.1007/s00330-020-07023-0. 412. Padovani RP, Kasamatsu TS, Nakabashi CC, Camacho CP, Andreoni DM, Malouf EZ, et al. One month is sufficient for urinary iodine to return to its baseline value after the use of water-soluble iodinated contrast agents in postthyroidectomy patients requiring radioiodine therapy. Thyroid. 2012;22:926-930. https://doi.org/10.1089/ thy.2012.0099. 413. Lee C, Chalmers B, Treister D, Adhya S, Godwin B, Ji L, et al. Thyroid Lesions Visualized on CT: Sonographic and Pathologic Correlation. Acad Radiol. 2015;22:203-209. https://doi.org/https://doi.org/10.1016/j.acra.2014.08.007. 414. Kim DW. Computed Tomography Features of Papillary Thyroid Carcinomas. 2014;38:936-940. https://doi. org/10.1097/rct.0000000000000149. 415. Peng W, Liu C, Xia S, Shao D, Chen Y, Liu R, et al. Thyroid nodule recognition in computed tomography using first order statistics. Biomed Eng Online. 2017;16:67. https://doi.org/10.1186/s12938-017-0367-2. 416. Li W, Cheng S, Qian K, Yue K, Liu H. Automatic Recognition and Classification System of Thyroid Nodules in CT Images Based on CNN. Comput Intell Neurosci. 2021;2021:5540186. https://doi.org/10.1155/2021/5540186.
RkJQdWJsaXNoZXIy MTk4NDMw