Lisanne de Koster

References 575 & 353. Unluturk U, Erdogan MF, Demir O, Gullu S, Baskal N. Ultrasound elastography is not superior to grayscale ultrasound in predicting malignancy in thyroid nodules. Thyroid. 2012;22:1031-1038. https://doi.org/10.1089/thy.2011.0502. 354. Kim SK, Lee JH, Woo JW, Park I, Choe JH, Kim JH, et al. Prediction Table and Nomogram as Tools for Diagnosis of Papillary Thyroid Carcinoma: Combined Analysis of Ultrasonography, Fine-Needle Aspiration Biopsy, and BRAF V600E Mutation. Medicine. 2015;94:e760. https://doi.org/10.1097/md.0000000000000760. 355. Cochand-Priollet B, Dahan H, Laloi-Michelin M, Polivka M, Saada M, Herman P, et al. Immunocytochemistry with cytokeratin 19 and anti-human mesothelial cell antibody (HBME1) increases the diagnostic accuracy of thyroid fineneedle aspirations: preliminary report of 150 liquid-based fine-needle aspirations with histological control. Thyroid. 2011;21:1067-1073. https://doi.org/10.1089/thy.2011.0014. 356. De Nicola H, Szejnfeld J, Logullo AF, Wolosker AM, Souza LR, Chiferi V, Jr. Flow pattern and vascular resistive index as predictors of malignancy risk in thyroid follicular neoplasms. Journal of ultrasound in medicine. 2005;24:897-904. 357. Sippel RS, Elaraj DM, Khanafshar E, Kebebew E, Duh QY, Clark OH. Does the presence of additional thyroid nodules on ultrasound alter the risk of malignancy in patients with a follicular neoplasm of the thyroid? Surgery. 2007;142:851857; discussion 857.e851-852. https://doi.org/10.1016/j.surg.2007.08.011. 358. De Napoli L, Bakkar S, Ambrosini CE, Materazzi G, Proietti A, Macerola E, et al. Indeterminate Single Thyroid Nodule: Synergistic Impact of Mutational Markers and Sonographic Features in Triaging Patients to Appropriate Surgery. Thyroid. 2016. https://doi.org/10.1089/thy.2015.0311. 359. Ragazzoni F, Deandrea M, Mormile A, Ramunni MJ, Garino F, Magliona G, et al. High diagnostic accuracy and interobserver reliability of real-time elastography in the evaluation of thyroid nodules. Ultrasound in medicine & biology. 2012;38:1154-1162. https://doi.org/10.1016/j.ultrasmedbio.2012.02.025. 360. Trimboli P, Nasrollah N, Guidobaldi L, Taccogna S, Cicciarella Modica DD, Amendola S, et al. The use of core needle biopsy as first-line in diagnosis of thyroid nodules reduces false negative and inconclusive data reported by fineneedle aspiration. World J Surg Oncol. 2014;12:61. https://doi.org/10.1186/1477-7819-12-61. 361. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep. 2015;5:13087. https://doi.org/10.1038/srep13087. 362. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016;278:563577. https://doi.org/10.1148/radiol.2015151169. 363. Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328-354. 364. Sieren JP, Newell JD, Jr., Barr RG, Bleecker ER, Burnette N, Carretta EE, et al. SPIROMICS Protocol for Multicenter Quantitative Computed Tomography to Phenotype the Lungs. Am J Respir Crit Care Med. 2016;194:794-806. https:// doi.org/10.1164/rccm.201506-1208PP. 365. Pierpaoli C. Quantitative brain MRI. Topics in magnetic resonance imaging. 2010;21:63-63. https://doi.org/10.1097/ RMR.0b013e31821e56f8. 366. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92. https:// doi.org/10.1186/1532-429X-15-92. 367. Oelze ML, Mamou J. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2016;63:336-351. https://doi.org/10.1109/TUFFC.2015.2513958. 368. McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, et al. Deep Learning in Radiology. Acad Radiol. 2018;25:1472-1480. https://doi.org/10.1016/j.acra.2018.02.018. 369. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500-510. https://doi.org/10.1038/s41568-018-0016-5. 370. Bini F, Pica A, Azzimonti L, Giusti A, Ruinelli L, Marinozzi F, et al. Artificial Intelligence in Thyroid Field-A Comprehensive Review. Cancers (Basel). 2021;13. https://doi.org/10.3390/cancers13194740. 371. Peng S, Liu Y, Lv W, Liu L, Zhou Q, Yang H, et al. Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study. Lancet Digit Health. 2021;3:e250-e259. https:// doi.org/10.1016/s2589-7500(21)00041-8. 372. Li LR, Du B, Liu HQ, Chen C. Artificial Intelligence for Personalized Medicine in Thyroid Cancer: Current Status and Future Perspectives. Front Oncol. 2020;10:604051. https://doi.org/10.3389/fonc.2020.604051. 373. Sollini M, Cozzi L, Chiti A, Kirienko M. Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: Where do we stand? European journal of radiology. 2018;99:1-8. https:// doi.org/10.1016/j.ejrad.2017.12.004.

RkJQdWJsaXNoZXIy MTk4NDMw