Lisanne de Koster

References 567 & 185. Nikiforova MN, Nikiforov YE. Molecular diagnostics and predictors in thyroid cancer. Thyroid. 2009;19:1351-1361. https://doi.org/10.1089/thy.2009.0240. 186. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. The Journal of clinical endocrinology and metabolism. 2008;93:16001608. https://doi.org/10.1210/jc.2007-2696. 187. Agretti P, Ferrarini E, Rago T, Candelieri A, De Marco G, Dimida A, et al. MicroRNA expression profile helps to distinguish benign nodules from papillary thyroid carcinomas starting from cells of fine-needle aspiration. European journal of endocrinology. 2012;167:393-400. https://doi.org/10.1530/eje-12-0400. 188. Aragon Han P, Weng CH, Khawaja HT, Nagarajan N, Schneider EB, Umbricht CB, et al. MicroRNA Expression and Association with Clinicopathologic Features in Papillary Thyroid Cancer: A Systematic Review. Thyroid. 2015;25:13221329. https://doi.org/10.1089/thy.2015.0193. 189. Li X, Abdel-Mageed AB, Mondal D, Kandil E. MicroRNA expression profiles in differentiated thyroid cancer, a review. International journal of clinical and experimental medicine. 2013;6:74-80. 190. Dettmer M, Perren A, Moch H, Komminoth P, Nikiforov YE, Nikiforova MN. Comprehensive MicroRNA expression profiling identifies novel markers in follicular variant of papillary thyroid carcinoma. Thyroid. 2013;23:1383-1389. https://doi.org/10.1089/thy.2012.0632. 191. Dettmer M, Vogetseder A, Durso MB, Moch H, Komminoth P, Perren A, et al. MicroRNA expression array identifies novel diagnostic markers for conventional and oncocytic follicular thyroid carcinomas. The Journal of clinical endocrinology and metabolism. 2013;98:E1-7. https://doi.org/10.1210/jc.2012-2694. 192. Shen R, Liyanarachchi S, Li W, Wakely PE, Jr., Saji M, Huang J, et al. MicroRNA signature in thyroid fine needle aspiration cytology applied to “atypia of undetermined significance” cases. Thyroid. 2012;22:9-16. https://doi. org/10.1089/thy.2011.0081. 193. Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. The Journal of clinical endocrinology and metabolism. 2006;91:3584-3591. https://doi.org/10.1210/jc.2006-0693. 194. Stokowy T, Wojtas B, Fujarewicz K, Jarzab B, Eszlinger M, Paschke R. miRNAs with the potential to distinguish follicular thyroid carcinomas from benign follicular thyroid tumors: results of a meta-analysis. Hormone and metabolic research. 2014;46:171-180. https://doi.org/10.1055/s-0033-1363264. 195. Zhang Y, Zhong Q, Chen X, Fang J, Huang Z. Diagnostic value of microRNAs in discriminating malignant thyroid nodules from benign ones on fine-needle aspiration samples. Tumour biology. 2014;35:9343-9353. https://doi. org/10.1007/s13277-014-2209-1. 196. Wei WJ, Shen CT, Song HJ, Qiu ZL, Luo QY. MicroRNAs as a potential tool in the differential diagnosis of thyroid cancer: a systematic review and meta-analysis. Clinical endocrinology. 2016;84:127-133. https://doi.org/10.1111/cen.12696. 197. Keutgen XM, Filicori F, Crowley MJ, Wang Y, Scognamiglio T, Hoda R, et al. A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration. Clinical cancer research. 2012;18:20322038. https://doi.org/10.1158/1078-0432.ccr-11-2487. 198. Vriens MR, Weng J, Suh I, Huynh N, Guerrero MA, Shen WT, et al. MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer. 2012;118:3426-3432. https://doi.org/10.1002/cncr.26587. 199. Rossi ED, Bizzarro T, Martini M, Capodimonti S, Sarti D, Cenci T, et al. The evaluation of miRNAs on thyroid FNAC: the promising role of miR-375 in follicular neoplasms. Endocrine. 2016. https://doi.org/10.1007/s12020-016-0866-0. 200. Igci YZ, Ozkaya M, Korkmaz H, Bozgeyik E, Bayraktar R, Ulasli M, et al. Expression Levels of miR-30a-5p in Papillary Thyroid Carcinoma: A Comparison Between Serum and Fine Needle Aspiration Biopsy Samples. Genetic testing and molecular biomarkers. 2015. 201. de Matos LL, Del Giglio AB, Matsubayashi CO, de Lima Farah M, Del Giglio A, da Silva Pinhal MA. Expression of CK19, galectin-3 and HBME-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagnostic pathology. 2012;7:97. https://doi.org/10.1186/1746-1596-7-97. 202. Bartolazzi A, Orlandi F, Saggiorato E, Volante M, Arecco F, Rossetto R, et al. Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study. The lancet oncology. 2008;9:543-549. https://doi.org/10.1016/s1470-2045(08)70132-3. 203. Zhang L, Krausz T, DeMay RM. A Pilot Study of Galectin-3, HBME-1, and p27 Triple Immunostaining Pattern for Diagnosis of Indeterminate Thyroid Nodules in Cytology With Correlation to Histology. Applied immunohistochemistry & molecular morphology. 2015;23:481-490. https://doi.org/10.1097/pai.0000000000000106. 204. Collet JF, Hurbain I, Prengel C, Utzmann O, Scetbon F, Bernaudin JF, et al. Galectin-3 immunodetection in follicular thyroid neoplasms: a prospective study on fine-needle aspiration samples. British journal of cancer. 2005;93:11751181. https://doi.org/10.1038/sj.bjc.6602822. 205. Coli A, Bigotti G, Parente P, Federico F, Castri F, Massi G. Atypical thyroid nodules express both HBME-1 and Galectin-3, two phenotypic markers of papillary thyroid carcinoma. Journal of experimental & clinical cancer research : CR. 2007;26:221-227.

RkJQdWJsaXNoZXIy MTk4NDMw