References 565 & 143. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW, 2nd, Tallini G, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. The Journal of clinical endocrinology and metabolism. 2003;88:2318-2326. https://doi.org/10.1210/ jc.2002-021907. 144. Jeong SH, Hong HS, Kwak JJ, Lee EH. Analysis of RAS mutation and PAX8/PPARgamma rearrangements in follicularderived thyroid neoplasms in a Korean population: frequency and ultrasound findings. Journal of endocrinological investigation. 2015;38:849-857. https://doi.org/10.1007/s40618-015-0311-x. 145. Armstrong MJ, Yang H, Yip L, Ohori NP, McCoy KL, Stang MT, et al. PAX8/PPARgamma rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma. Thyroid. 2014;24:1369-1374. https://doi.org/10.1089/thy.2014.0067. 146. French CA, Alexander EK, Cibas ES, Nose V, Laguette J, Faquin W, et al. Genetic and biological subgroups of low-stage follicular thyroid cancer. The American journal of pathology. 2003;162:1053-1060. https://doi.org/10.1016/S00029440(10)63902-8. 147. French CA, Fletcher JA, Cibas ES, Caulfield C, Allard P, Kroll TG. Molecular detection of PPAR gamma rearrangements and thyroid carcinoma in preoperative fine-needle aspiration biopsies. Endocrine pathology. 2008;19:166-174. https://doi.org/10.1007/s12022-008-9036-0. 148. Collins K, Mitchell JR. Telomerase in the human organism. Oncogene. 2002;21:564-579. https://doi.org/10.1038/ sj.onc.1205083. 149. Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. The Journal of clinical endocrinology and metabolism. 2014;99:E754-765. https://doi.org/10.1210/jc.2013-3734. 150. Umbricht CB, Conrad GT, Clark DP, Westra WH, Smith DC, Zahurak M, et al. Human telomerase reverse transcriptase gene expression and the surgical management of suspicious thyroid tumors. Clinical cancer research. 2004;10:57625768. https://doi.org/10.1158/1078-0432.ccr-03-0389. 151. Liou MJ, Chan EC, Lin JD, Liu FH, Chao TC. Human telomerase reverse transcriptase (hTERT) gene expression in FNA samples from thyroid neoplasms. Cancer letters. 2003;191:223-227. 152. Greco A, Miranda C, Pierotti MA. Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol Cell Endocrinol. 2010;321:44-49. https://doi.org/10.1016/j.mce.2009.10.009. 153. Berlingieri MT, Pierantoni GM, Giancotti V, Santoro M, Fusco A. Thyroid cell transformation requires the expression of the HMGA1 proteins. Oncogene. 2002;21:2971-2980. https://doi.org/10.1038/sj.onc.1205368. 154. Lappinga PJ, Kip NS, Jin L, Lloyd RV, Henry MR, Zhang J, et al. HMGA2 gene expression analysis performed on cytologic smears to distinguish benign from malignant thyroid nodules. Cancer cytopathology. 2010;118:287-297. https://doi.org/10.1002/cncy.20095. 155. Bartolazzi A, Gasbarri A, Papotti M, Bussolati G, Lucante T, Khan A, et al. Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. Lancet. 2001;357:1644-1650. 156. Maruta J, Hashimoto H, Yamashita H, Yamashita H, Noguchi S. Immunostaining of galectin-3 and CD44v6 using fineneedle aspiration for distinguishing follicular carcinoma from adenoma. Diagnostic cytopathology. 2004;31:392396. https://doi.org/10.1002/dc.20156. 157. Matesa N, Samija I, Kusic Z. Accuracy of fine needle aspiration biopsy with and without the use of tumor markers in cytologically indeterminate thyroid lesions. Collegium antropologicum. 2010;34:53-57. 158. Yip L, Farris C, Kabaker AS, Hodak SP, Nikiforova MN, McCoy KL, et al. Cost impact of molecular testing for indeterminate thyroid nodule fine-needle aspiration biopsies. The Journal of clinical endocrinology and metabolism. 2012;97:1905-1912. https://doi.org/10.1210/jc.2011-3048. 159. Lee L, How J, Tabah RJ, Mitmaker EJ. Cost-effectiveness of molecular testing for thyroid nodules with atypia of undetermined significance cytology. The Journal of clinical endocrinology and metabolism. 2014;99:2674-2682. https://doi.org/10.1210/jc.2014-1219. 160. Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. The Journal of clinical endocrinology and metabolism. 2013;98:E18521860. https://doi.org/10.1210/jc.2013-2292. 161. Nishino M. Molecular cytopathology for thyroid nodules: A review of methodology and test performance. Cancer cytopathology. 2016;124:14-27. https://doi.org/10.1002/cncy.21612. 162. ThermoFisher Scientific. Ion AmpliSeq™ Cancer Hotspot Panel v2. 2107. https://www.thermofisher.com/order/ catalog/product/4475346. Accessed 25-03-2017. 163. Chudova D, Wilde JI, Wang ET, Wang H, Rabbee N, Egidio CM, et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. The Journal of clinical endocrinology and metabolism. 2010;95:5296-5304. https://doi.org/10.1210/jc.2010-1087.
RkJQdWJsaXNoZXIy MTk4NDMw