Lisanne de Koster

564 Appendices 121. Park HJ, Moon JH, Yom CK, Kim KH, Choi JY, Choi SI, et al. Thyroid “atypia of undetermined significance” with nuclear atypia has high rates of malignancy and BRAF mutation. Cancer cytopathology. 2014;122:512-520. https://doi. org/10.1002/cncy.21411. 122. Lee ST, Kim SW, Ki CS, Jang JH, Shin JH, Oh YL, et al. Clinical implication of highly sensitive detection of the BRAF V600E mutation in fine-needle aspirations of thyroid nodules: a comparative analysis of three molecular assays in 4585 consecutive cases in a BRAF V600E mutation-prevalent area. The Journal of clinical endocrinology and metabolism. 2012;97:2299-2306. https://doi.org/10.1210/jc.2011-3135. 123. Ohori NP, Singhal R, Nikiforova MN, Yip L, Schoedel KE, Coyne C, et al. BRAF mutation detection in indeterminate thyroid cytology specimens: underlying cytologic, molecular, and pathologic characteristics of papillary thyroid carcinoma. Cancer cytopathology. 2013;121:197-205. https://doi.org/10.1002/cncy.21229. 124. Afkhami M, Karunamurthy A, Chiosea S, Nikiforova MN, Seethala R, Nikiforov YE, et al. Histopathologic and Clinical Characterization of Thyroid Tumors Carrying the BRAF(K601E) Mutation. Thyroid. 2016;26:242-247. https://doi. org/10.1089/thy.2015.0227. 125. Trimboli P, Treglia G, Condorelli E, Romanelli F, Crescenzi A, Bongiovanni M, et al. BRAF-mutated carcinomas among thyroid nodules with prior indeterminate FNA report: a systematic review and meta-analysis. Clinical endocrinology. 2016;84:315-320. https://doi.org/10.1111/cen.12806. 126. Lee WS, Palmer BJ, Garcia A, Chong VE, Liu TH. BRAF mutation in papillary thyroid cancer: A cost-utility analysis of preoperative testing. Surgery. 2014;156:1569-1577; discussion 1577-1568. https://doi.org/10.1016/j.surg.2014.08.051. 127. An JH, Song KH, Kim SK, Park KS, Yoo YB, Yang JH, et al. RAS mutations in indeterminate thyroid nodules are predictive of the follicular variant of papillary thyroid carcinoma. Clinical endocrinology. 2015;82:760-766. https:// doi.org/10.1111/cen.12579. 128. Yoon JH, Kwon HJ, Lee HS, Kim EK, Moon HJ, Kwak JY. RAS Mutations in AUS/FLUS Cytology: Does it Have an Additional Role in BRAFV600E Mutation-Negative Nodules? Medicine. 2015;94:e1084. https://doi.org/10.1097/ md.0000000000001084. 129. Marshall CJ, Hall A, Weiss RA. A transforming gene present in human sarcoma cell lines. Nature. 1982;299:171-173. 130. Shimizu K, Goldfarb M, Perucho M, Wigler M. Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. Proc Natl Acad Sci U S A. 1983;80:383-387. 131. Radkay LA, Chiosea SI, Seethala RR, Hodak SP, LeBeau SO, Yip L, et al. Thyroid nodules with KRAS mutations are different from nodules with NRAS and HRAS mutations with regard to cytopathologic and histopathologic outcome characteristics. Cancer cytopathology. 2014;122:873-882. https://doi.org/10.1002/cncy.21474. 132. Kunavisarut T. Diagnostic biomarkers of differentiated thyroid cancer. Endocrine. 2013;44:616-622. https://doi. org/10.1007/s12020-013-9974-2. 133. Mitsutake N, Miyagishi M, Mitsutake S, Akeno N, Mesa C, Jr., Knauf JA, et al. BRAF mediates RET/PTC-induced mitogenactivated protein kinase activation in thyroid cells: functional support for requirement of the RET/PTC-RAS-BRAF pathway in papillary thyroid carcinogenesis. Endocrinology. 2006;147:1014-1019. https://doi.org/10.1210/en.2005-0280. 134. Guerra A, Sapio MR, Marotta V, Campanile E, Moretti MI, Deandrea M, et al. Prevalence of RET/PTC rearrangement in benign and malignant thyroid nodules and its clinical application. Endocrine journal. 2011;58:31-38. 135. Elisei R, Romei C, Vorontsova T, Cosci B, Veremeychik V, Kuchinskaya E, et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. The Journal of clinical endocrinology and metabolism. 2001;86:3211-3216. https://doi.org/10.1210/jcem.86.7.7678. 136. Su X, Li Z, He C, Chen W, Fu X, Yang A. Radiation exposure, young age, and female gender are associated with high prevalence of RET/PTC1 and RET/PTC3 in papillary thyroid cancer: a meta-analysis. Oncotarget. 2016;7:16716-16730. https://doi.org/10.18632/oncotarget.7574. 137. de Groot JW, Links TP, Plukker JT, Lips CJ, Hofstra RM. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev. 2006;27:535-560. https://doi.org/10.1210/er.2006-0017. 138. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science. 2000;289:1357-1360. 139. Zhang Y, Yu J, Lee C, Xu B, Sartor MA, Koenig RJ. Genomic binding and regulation of gene expression by the thyroid carcinomaassociated PAX8-PPARG fusion protein. Oncotarget. 2015;6:40418-40432. https://doi.org/10.18632/oncotarget.6340. 140. Pasca di Magliano M, Di Lauro R, Zannini M. Pax8 has a key role in thyroid cell differentiation. Proc Natl Acad Sci U S A. 2000;97:13144-13149. https://doi.org/10.1073/pnas.240336397. 141. Raman P, Koenig RJ. Pax-8-PPAR-gamma fusion protein in thyroid carcinoma. Nature reviews Endocrinology. 2014;10:616-623. https://doi.org/10.1038/nrendo.2014.115. 142. Castro P, Rebocho AP, Soares RJ, Magalhaes J, Roque L, Trovisco V, et al. PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. The Journal of clinical endocrinology and metabolism. 2006;91:213-220. https://doi.org/10.1210/jc.2005-1336.

RkJQdWJsaXNoZXIy MTk4NDMw