Lisanne de Koster

References 561 & 63. Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 2006;30:216-222. 64. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459-465. https://doi. org/10.1038/nrc1097. 65. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949-954. https://doi.org/10.1038/nature00766. 66. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28:742-762. https://doi.org/10.1210/er.2007-0007. 67. Rossi M, Buratto M, Tagliati F, Rossi R, Lupo S, Trasforini G, et al. Relevance of BRAF(V600E) mutation testing versus RAS point mutations and RET/PTC rearrangements evaluation in the diagnosis of thyroid cancer. Thyroid. 2015;25:221-228. https://doi.org/10.1089/thy.2014.0338. 68. Carr R, Ustun B, Chhieng D, Schofield K, Theoharis C, Hammers L, et al. Radiologic and clinical predictors of malignancy in the follicular lesion of undetermined significance of the thyroid. Endocrine pathology. 2013;24:62-68. https://doi.org/10.1007/s12022-013-9240-4. 69. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. The Journal of clinical endocrinology and metabolism. 2011;96:3390-3397. https://doi.org/10.1210/jc.2011-1469. 70. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. The Journal of clinical endocrinology and metabolism. 2003;88:5399-5404. https://doi.org/10.1210/ jc.2003-030838. 71. Xing M. BRAF mutation in thyroid cancer. Endocrine-related cancer. 2005;12:245-262. https://doi.org/10.1677/ erc.1.0978. 72. Kim SK, Hwang TS, Yoo YB, Han HS, Kim DL, Song KH, et al. Surgical results of thyroid nodules according to a management guideline based on the BRAF(V600E) mutation status. The Journal of clinical endocrinology and metabolism. 2011;96:658-664. https://doi.org/10.1210/jc.2010-1082. 73. Rossi M, Buratto M, Bruni S, Filieri C, Tagliati F, Trasforini G, et al. Role of ultrasonographic/clinical profile, cytology, and BRAF V600E mutation evaluation in thyroid nodule screening for malignancy: a prospective study. The Journal of clinical endocrinology and metabolism. 2012;97:2354-2361. https://doi.org/10.1210/jc.2011-3494. 74. Adeniran AJ, Hui P, Chhieng DC, Prasad ML, Schofield K, Theoharis C. BRAF mutation testing of thyroid fine-needle aspiration specimens enhances the predictability of malignancy in thyroid follicular lesions of undetermined significance. Acta cytologica. 2011;55:570-575. https://doi.org/10.1159/000333274. 75. Ohori NP, Wolfe J, Hodak SP, LeBeau SO, Yip L, Carty SE, et al. “Colloid-rich” follicular neoplasm/suspicious for follicular neoplasm thyroid fine-needle aspiration specimens: cytologic, histologic, and molecular basis for considering an alternate view. Cancer cytopathology. 2013;121:718-728. https://doi.org/10.1002/cncy.21333. 76. Eszlinger M, Piana S, Moll A, Bosenberg E, Bisagni A, Ciarrocchi A, et al. Molecular testing of thyroid fine-needle aspirations improves presurgical diagnosis and supports the histologic identification of minimally invasive follicular thyroid carcinomas. Thyroid. 2015;25:401-409. https://doi.org/10.1089/thy.2014.0362. 77. Hwang TS, Kim WY, Han HS, Lim SD, Kim WS, Yoo YB, et al. Preoperative RAS mutational analysis is of great value in predicting follicular variant of papillary thyroid carcinoma. BioMed research international. 2015;2015:697068. https://doi.org/10.1155/2015/697068. 78. Zhang Q, Liu SZ, Zhang Q, Guan YX, Chen QJ, Zhu QY. Meta-Analyses of Association Between BRAF(V600E) Mutation and Clinicopathological Features of Papillary Thyroid Carcinoma. Cellular physiology and biochemistry. 2016;38:763776. https://doi.org/10.1159/000443032. 79. Yeo MK, Liang ZL, Oh T, Moon Y, An S, Kim MK, et al. Pyrosequencing cut-off value identifying BRAFV600E mutation in fine needle aspiration samples of thyroid nodules. Clinical endocrinology. 2011;75:555-560. https://doi.org/10.1111/ j.1365-2265.2011.04115.x. 80. Pelizzo MR, Boschin IM, Barollo S, Pennelli G, Toniato A, Zambonin L, et al. BRAF analysis by fine needle aspiration biopsy of thyroid nodules improves preoperative identification of papillary thyroid carcinoma and represents a prognostic factor. A mono-institutional experience. Clinical chemistry and laboratory medicine. 2011;49:325-329. https://doi.org/10.1515/cclm.2011.031. 81. Xing M, Tufano RP, Tufaro AP, Basaria S, Ewertz M, Rosenbaum E, et al. Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. The Journal of clinical endocrinology and metabolism. 2004;89:2867-2872. https://doi.org/10.1210/jc.2003-032050. 82. Sapio MR, Guerra A, Posca D, Limone PP, Deandrea M, Motta M, et al. Combined analysis of galectin-3 and BRAFV600E improves the accuracy of fine-needle aspiration biopsy with cytological findings suspicious for papillary thyroid carcinoma. Endocrine-related cancer. 2007;14:1089-1097. https://doi.org/10.1677/erc-07-0147.

RkJQdWJsaXNoZXIy MTk4NDMw