Ann-Sophie Page

Chapter 7 146 MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part III 23; 2020: Springer. p. 343-52. 205. Czempiel T, Paschali M, Ostler D, Kim ST, Busam B, Navab N. Opera: Attention-regularized transformers for surgical phase recognition. Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27– October 1, 2021, Proceedings, Part IV 24; 2021: Springer. p. 604-14. 206. Gao X, Jin Y, Long Y, Dou Q, Heng P-A. Trans-svnet: Accurate phase recognition from surgical videos via hybrid embedding aggregation transformer. Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part IV 24; 2021: Springer. p. 593-603. 207. Lu Y, Li Y, Velipasalar S. Efficient human activity classification from egocentric videos incorporating actor-critic reinforcement learning. 2019 IEEE International Conference on Image Processing (ICIP); 2019: IEEE. p. 564-8. 208. Nikpour B, Armanfard N. Joint Selection using Deep Reinforcement Learning for Skeletonbased Activity Recognition. 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Melbourne, Australia: IEEE Press; 2021:1056–61. 209. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9:1735-80. 210. Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature 2015;518:529-33. 211. Kingma DP. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 2014. 212. Ward JA, Lukowicz P, Gellersen HW. Performance metrics for activity recognition. ACM Transactions on Intelligent Systems and Technology (TIST) 2011;2:1-23. 213. Holt E. US FDA rules manufacturers to stop selling mesh devices. Lancet 2019;393:1686. 214. Shahid U, Chen Z, Maher C. Sacrocolpopexy: The Way I Do It. International Urogynecology Journal 2024:1-17. 215. Maher C, Yeung E, Haya N, et al. Surgery for women with apical vaginal prolapse. Cochrane Database Syst Rev 2023;7:Cd012376. 216. Cardozo L, Rovner, E, Wagg, A, Wein, A, Abrams, P. Cardozo, L, Rovner, E, Wagg, A, Wein, A, Abrams, P. . (Eds) Incontinence 7th Edition (2023). ICI-ICS. International Continence Society, Bristol UK, ISBN: 978-0-9569607-4-0. 2023. 217. van Zanten F, Koops SES, Pasker-De Jong PCM, Lenters E, Schreuder HWR. Learning curve of robot-assisted laparoscopic sacrocolpo(recto)pexy: a cumulative sum analysis. Am J Obstet Gynecol 2019;221. 218. Linder BJ, Anand M, Weaver AL, et al. Assessing the learning curve of robotic sacrocolpopexy. Int Urogynecol J 2016;27:239-46. 219. Shugaba A, Lambert JE, Bampouras TM, Nuttall HE, Gaffney CJ, Subar DA. Should all minimal access surgery be robot-assisted? A systematic review into the musculoskeletal and cognitive demands of laparoscopic and robot-assisted laparoscopic surgery. J Gastrointest Surg 2022;26:1520-30. 220. Zhang Y, Bano S, Page A-S, Deprest J, Stoyanov D, Vasconcelos F. Large-scale surgical workflow segmentation for laparoscopic sacrocolpopexy. Int J Comput Assist Radiol Surg 2022;17:467-77. 221. Zhang Y, Bano S, Page A-S, Deprest J, Stoyanov D, Vasconcelos F. Retrieval of surgical phase transitions using reinforcement learning. International conference on medical image computing and computer-assisted intervention; 2022: Springer. p. 497-506.

RkJQdWJsaXNoZXIy MTk4NDMw