Ann-Sophie Page

References 145 181. Digesu GA, Khullar V, Cardozo L, Robinson D, Salvatore S. P-QOL: a validated questionnaire to assess the symptoms and quality of life of women with urogenital prolapse. Int Urogynecol J Pelvic Floor Dysfunct 2005;16:176-81; discussion 81. 182. Utomo E, Blok BF, Steensma AB, Korfage IJ. Validation of the Pelvic Floor Distress Inventory (PFDI-20) and Pelvic Floor Impact Questionnaire (PFIQ-7) in a Dutch population. Int Urogynecol J 2014;25:531-44. 183. t Hoen LA, Utomo E, Steensma AB, Blok BF, Korfage IJ. The Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ-12): validation of the Dutch version. Int Urogynecol J 2015;26:1293-303. 184. Claerhout F, Moons P, Ghesquiere S, Verguts J, De Ridder D, Deprest J. Validity, reliability and responsiveness of a Dutch version of the prolapse quality-of-life (P-QoL) questionnaire. Int Urogynecol J 2010;21:569-78. 185. de Goede B, Klitsie PJ, van Kempen BJ, et al. Meta-analysis of glue versus sutured mesh fixation for Lichtenstein inguinal hernia repair. Br J Surg 2013;100:735-42. 186.Willecocq C, Pizzoferrato AC, Fauconnier A, Bader G. [Use of glue in laparoscopic sacrocolpopexy. A comparative study about 32 cases]. Gynecol Obstet Fertil 2014;42:822-6. 187. Estrade JP, Gurriet B. Laparoscopic sacrocolpopexy with a vaginal prosthetic adhesive. J Minim Invasive Gynecol 2015;22:S67. 188. Estrade JP. Laparoscopic Sacrocolpopexy with Vaginal Prosthetic Adhesive: Multicenter Prospective Study of 45 Patients. J Minim Invasive Gynecol 2019;26:S87-S8. 189. Panel P, Soffray F, Roussillon E, Devins C, Brouziyne M, Abramowicz S. Glue mesh fixation: Feasibility, tolerance and complication assessment. Results 24months after laparoscopic sacrocolpopexy. J Gynecol Obstet Hum Reprod 2017;46:333-8. 190. Lamblin G, Dubernard G, de Saint Hilaire P, et al. Assessment of Synthetic Glue for Mesh Attachment in Laparoscopic Sacrocolpopexy: A Prospective Multicenter Pilot Study. J Minim Invasive Gynecol 2017;24:41-7. 191. Lamblin G, Chene G, Warembourg S, Jacquot F, Moret S, Golfier F. Glue mesh fixation in laparoscopic sacrocolpopexy: results at 3 years' follow-up. Int Urogynecol J 2021. 192. Silveira RK, Domingie S, Kirzin S, de Melo Filho DA, Portier G. Comparative study of safety and efficacy of synthetic surgical glue for mesh fixation in ventral rectopexy. Surg Endosc 2017;31:4016-24. 193. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care programmes: Oxford university press; 2015. 194. D'Hoore A, Penninckx F. Laparoscopic ventral recto(colpo)pexy for rectal prolapse: surgical technique and outcome for 109 patients. Surg Endosc 2006;20:1919-23. 195. De Ryck D TW, Vanden Boer G, Veris A, Michiels D. Analysis of the financial flow of Belgian general hospitals according to case-mix. . Journal d’Economie Medicale 2008;26:16-27. 196. Goodman ED, Patel KK, Zhang Y, et al. A real-time spatiotemporal AI model analyzes skill in open surgical videos. arXiv preprint arXiv:211207219 2021. 197. Kawka M, Gall TM, Fang C, Liu R, Jiao LR. Intraoperative video analysis and machine learning models will change the future of surgical training. Intelligent Surgery 2022;1:13-5. 198. Rojas-Muñoz E, Couperus K, Wachs J. DAISI: database for AI surgical instruction. arXiv preprint arXiv:200402809 2020. 199. DiPietro R, Lea C, Malpani A, et al. Recognizing surgical activities with recurrent neural networks. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part I 19; 2016: Springer. p. 551-8. 200. Park J, Park CH. Recognition and prediction of surgical actions based on online robotic tool detection. IEEE Robotics and Automation Letters 2021;6:2365-72. 201. Sarikaya D, Jannin P. Towards generalizable surgical activity recognition using spatial temporal graph convolutional networks. arXiv preprint arXiv:200103728 2020. 202. Jin Y, Dou Q, Chen H, et al. SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network. IEEE Trans Med Imaging 2017;37:1114-26. 203. Twinanda AP, Shehata S, Mutter D, Marescaux J, De Mathelin M, Padoy N. Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging 2016;36:86-97. 204. Czempiel T, Paschali M, Keicher M, et al. Tecno: Surgical phase recognition with multi-stage temporal convolutional networks. Medical Image Computing and Computer Assisted Intervention–

RkJQdWJsaXNoZXIy MTk4NDMw