Maider Junkal Echeveste Medrano

288 References Woodcroft, B. J., Aroney, S. T. N., Zhao, R., Cunningham, M., Mitchell, J. A. M., Blackall, L., & Tyson, G. W. (2024). SingleM and Sandpiper: Robust microbial taxonomic profiles from metagenomic data. bioRxiv. https://doi.org/10.1101/2024.01.30.578060 Wu, B., Liu, F., Fang, W., Yang, T., Chen, G.-H., He, Z., & Wang, S. (2021). Microbial sulfur metabolism and environmental implications. Science of The Total Environment, 778, 146085. https://doi.org/10.1016/j.scitotenv.2021.146085 Wu, Y. W., Simmons, B. A., & Singer, S. W. (2016). MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics, 32(4), 605-607. https://doi.org/10.1093/bioinformatics/btv638 Xiao, K.-Q., Beulig, F., Røy, H., Jørgensen, B., & Risgaard-Petersen, N. (2018). Methylotrophic methanogenesis fuels cryptic methane cycling in marine surface sediment. Limnology and Oceanography, 63. https://doi.org/10.1002/lno.10788 Yakimov, M. M., Timmis, K. N., & Golyshin, P. N. (2007). Obligate oil-degrading marine bacteria. Current Opinion in Biotechnology, 18(3), 257-266. https://doi.org/10.1016/j. copbio.2007.04.006 Yan, Z., & Ferry, J. G. (2018). Electron Bifurcation and Confurcation in Methanogenesis and Reverse Methanogenesis [Review]. Frontiers in Microbiology, 9, Article 1322. https://doi. org/10.3389/fmicb.2018.01322 Yao, W., & Millero, F. J. (1996). Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater. Marine Chemistry, 52(1), 1-16. https://doi.org/10.1016/0304-4203(95)00072-0 Yu, H., Skennerton, C. T., Chadwick, G. L., Leu, A. O., Aoki, M., Tyson, G. W., & Orphan, V. J. (2021). Sulfate differentially stimulates but is not respired by diverse anaerobic methanotrophic archaea. The ISME Journal, 16(1), 168-177, Article 2917. https://doi.org/10.1038/ s41396-021-01047-0 Yu, H., Susanti, D., McGlynn, S. E., Skennerton, C. T., Chourey, K., Iyer, R., Scheller, S., Tavormina, P. L., Hettich, R. L., Mukhopadhyay, B., & Orphan, V. J. (2018). Comparative Genomics and Proteomic Analysis of Assimilatory Sulfate Reduction Pathways in Anaerobic Methanotrophic Archaea. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02917 Zaretsky, M., Roine, E., & Eichler, J. (2018). Sialic Acid-Like Sugars in Archaea: Legionaminic Acid Biosynthesis in the Halophile Halorubrum sp. PV6. Frontiers in Microbiology, 9, Article 2133. https://doi.org/10.3389/fmicb.2018.02133 Zhang, D., Liu, F., Al, M. A., Yang, Y., Yu, H., Li, M., Wu, K., Niu, M., Wang, C., He, Z., & Yan, Q. (2024). Nitrogen and sulfur cycling and their coupling mechanisms in eutrophic lake sediment microbiomes. Science of The Total Environment, 928, 172518. https://doi.org/10.1016/j. scitotenv.2024.172518 Zhang, X., Joyce, G. H., Leu, A. O., Zhao, J., Rabiee, H., Virdis, B., Tyson, G. W., Yuan, Z., McIlroy, S. J., & Hu, S. (2023). Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’. Nature Communications, 14(1), 6118. https://doi.org/10.1038/s41467-023-41847-w

RkJQdWJsaXNoZXIy MTk4NDMw