287 References Vikram, A., Lipus, D., & Bibby, K. (2016). Metatranscriptome analysis of active microbial communities in produced water samples from the Marcellus Shale. Microbial Ecology, 72(3), 571-581. https://doi.org/10.1007/s00248-016-0811-z Wallenius, A. J., Dalcin Martins, P., Slomp, C. P., & Jetten, M. S. M. (2021). Anthropogenic and Environmental Constraints on the Microbial Methane Cycle in Coastal Sediments. Frontiers in Microbiology, 12, Article 631621. https://doi.org/10.3389/fmicb.2021.631621 Wang, D., Wang, Y., Liu, Y., Ngo, H. H., Lian, Y., Zhao, J., Chen, F., Yang, Q., Zeng, G., & Li, X. (2017). Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? Bioresource Technology, 234, 456-465. https://doi.org/10.1016/j.biortech.2017.02.059 Wang, F. P., Zhang, Y., Chen, Y., He, Y., Qi, J., Hinrichs, K. U., Zhang, X. X., Xiao, X., & Boon, N. (2014). Methanotrophic archaea possessing diverging methane-oxidizing and electrontransporting pathways. The ISME Journal, 8(5), 1069-1078. https://doi.org/10.1038/ismej.2013.212 Wang, W., Yu, M., Zhao, L., Zhang, J., Shao, B., Xing, D.-F., Ma, J., Lee, D.-J., Ren, N.-Q., & Chen, C. (2024). Novel sulfide-driven denitrification methane oxidation (SDMO) system based on SBR-MBfR and EGSB-MBfR. Chemical Engineering Journal, 499, Article 155948. https://doi. org/10.1016/j.cej.2024.155948 Wang, W., Zhao, L., Yu, M., Yin, T.-M., Xu, X.-J., Lee, D.-J., Ren, N.-Q., & Chen, C. (2023). Effect of feeding gas type and nitrogen: Sulfur ratio on a novel sulfide-driven denitrification methane oxidation (SDMO) system. Chemical Engineering Journal, 451, Article 138869. https:// doi.org/10.1016/j.cej.2022.138869 Wedzicha, B. L. (1992). Chemistry of sulphiting agents in food. Food Additives & Contaminants, 9(5), 449-459. https://doi.org/10.1080/02652039209374097 Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E., & Boetius, A. (2015). Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature, 526(7574), 587-590. https://doi.org/10.1038/nature15733 Wells, N. S., Chen, J.-J., Maher, D. T., Huang, P., Erler, D. V., Hipsey, M., & Eyre, B. D. (2020). Changing sediment and surface water processes increase CH4 emissions from humanimpacted estuaries. Geochimica et Cosmochimica Acta, 280, 130-147. https://doi.org/10.1016/j. gca.2020.04.020 Welte, C. U., Rasigraf, O., Vaksmaa, A., Versantvoort, W., Arshad, A., Op den Camp, H. J. M., Jetten, M. S. M., Lüke, C., & Reimann, J. (2016). Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environmental Microbiology Reports, 8(6), 941-955. https://doi. org/10.1111/1758-2229.12487 Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. Wilson, M. E., Maksaev, G., & Haswell, E. S. (2013). MscS-like Mechanosensitive Channels in Plants and Microbes. Biochemistry, 52(34), 5708-5722. https://doi.org/10.1021/bi400804z Wissink, M., Glodowska, M., van der Kolk, M. R., Jetten, M. S. M., & Welte, C. U. (2024). Probing Denitrifying Anaerobic Methane Oxidation via Antimicrobial Intervention: Implications for Innovative Wastewater Management. Environmental Science and Technology, 58(14), 6250-6257. https://doi.org/10.1021/acs.est.3c07197 R
RkJQdWJsaXNoZXIy MTk4NDMw