285 References Susanti, D., & Mukhopadhyay, B. (2012). An Intertwined Evolutionary History of Methanogenic Archaea and Sulfate Reduction. PLoS ONE, 7(9), Article e45313. https://doi.org/10.1371/journal. pone.0045313 Taboada, B., Estrada, K., Ciria, R., & Merino, E. (2018). Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics, 34(23), 41184120. https://doi.org/10.1093/bioinformatics/bty496 Takai, K., & Horikoshi, K. (2000). Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Applied and Environmental Microbiology, 66(11), 5066-5072. https://doi.org/10.1128/aem.66.11.5066-5072.2000 Taylor, S., Ninjoor, V., Dowd, D. M., & Tappel, A. L. (1974). Cathepsin B2 measurement by sensitive fluorometric ammonia analysis. Analytical Biochemistry, 60(1), 153-162. https://doi. org/10.1016/0003-2697(74)90140-7 Terzian, P., Olo Ndela, E., Galiez, C., Lossouarn, J., Pérez Bucio, R. E., Mom, R., Toussaint, A., Petit, M. A., & Enault, F. (2021). PHROG: families of prokaryotic virus proteins clustered using remote homology. NAR Genomics and Bioinformatics, 3(3), Article lqab067. https://doi. org/10.1093/nargab/lqab067 Thamdrup, B., Steinsdóttir, H. G. R., Bertagnolli, A. D., Padilla, C. C., Patin, N. V., GarciaRobledo, E., Bristow, L. A., & Stewart, F. J. (2019). Anaerobic methane oxidation is an important sink for methane in the ocean’s largest oxygen minimum zone. Limnology and Oceanography, 64(6), 2569-2585. https://doi.org/10.1002/lno.11235 Tian, Y., Liu, S., Guo, Z., Wu, N., Liang, J., Zhao, R., Hao, L., & Zeng, M. (2022). Insight into Greenhouse Gases Emissions and Energy Consumption of Different Full-Scale Wastewater Treatment Plants via ECAM Tool. International Journal of Environmental Research and Public Health, 19(20), Article 13387. https://doi.org/10.3390/ijerph192013387 Timmers, P. H., Widjaja-Greefkes, H. C. A., Ramiro-Garcia, J., Plugge, C. M., & Stams, A. J. (2015). Growth and activity of ANME clades with different sulfate and sulfide concentrations in the presence of methane. Frontiers in Microbiology, 6, Article 988. https://doi.org/10.3389/ fmicb.2015.00988 Timmers, P. H. A., Welte, C. U., Koehorst, J. J., Plugge, C. M., Jetten, M. S. M., & Stams, A. J. M. (2017). Reverse Methanogenesis and Respiration in Methanotrophic Archaea. Archaea, Article 654237. https://doi.org/10.1155/2017/1654237 Treude, T., Krause, S., Maltby, J., Dale, A. W., Coffin, R., & Hamdan, L. J. (2014). Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling. Geochimica et Cosmochimica Acta, 144, 217-237. https://doi.org/10.1016/j.gca.2014.08.018 Vaksmaa, A., Guerrero-Cruz, S., van Alen, T. A., Cremers, G., Ettwig, K. F., Lüke, C., & Jetten, M. S. M. (2017). Enrichment of anaerobic nitrate-dependent methanotrophic ‘Candidatus Methanoperedens nitroreducens’ archaea from an Italian paddy field soil. Applied Microbiology and Biotechnology, 101(18), 7075-7084. https://doi.org/10.1007/s00253-017-8416-0 R
RkJQdWJsaXNoZXIy MTk4NDMw