Maider Junkal Echeveste Medrano

283 References Simon, J., & Kroneck, P. M. H. (2013). Microbial Sulfite Respiration. Advances in Microbial Physiology, 62, 45-117. https://doi.org/10.1016/B978-0-12-410515-7.00002-0 Singh, P., & Tiwary, B. N. (2017). Optimization of conditions for polycyclic aromatic hydrocarbons (PAHs) degradation by Pseudomonas stutzeri P2 isolated from Chirimiri coal mines. Biocatalysis and Agricultural Biotechnology, 10, 20-29. https://doi.org/10.1016/j. bcab.2017.02.001 Sivan, O., Antler, G., Turchyn, A. V., Marlow, J. J., & Orphan, V. J. (2014). Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proceedings of the National Academy of Sciences, 111(40), E4139-E4147. https://doi.org/10.1073/pnas.1412269111 Skennerton, C. T., Chourey, K., Iyer, R., Hettich, R. L., Tyson, G. W., & Orphan, V. J. (2017). Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea. mBio, 8(4), Article e00530-17. https://doi.org/10.1128/mBio.00530-17 Slobodkin, A. I., Ratnikova, N. M., Slobodkina, G. B., Klyukina, A. A., Chernyh, N. A., & Merkel, A. Y. (2023). Composition and Metabolic Potential of Fe(III)-Reducing Enrichment Cultures of Methanotrophic ANME-2a Archaea and Associated Bacteria. Microorganisms, 11(3), Article 555. https://doi.org/10.3390/microorganisms11030555 Slomp, C. P. (2013). Reconstructing the history of euxinia in a coastal sea. Geology, 41(4), 523524. https://doi.org/10.1130/focus0420131.1 Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Analytical Chemistry, 78(3), 779-787. https://doi.org/10.1021/ac051437y Smith, G. J., Angle, J. C., Solden, L. M., Borton, M. A., Morin, T. H., Daly, R. A., Johnston, M. D., Stefanik, K. C., Wolfe, R., Gil, B., & Wrighton, K. C. (2018). Members of the Genus Methylobacter Are Inferred To Account for the Majority of Aerobic Methane Oxidation in Oxic Soils from a Freshwater Wetland. mBio, 9(6), Article e00815-18. https://doi.org/10.1128/ mbio.00815-18 Smith, G. J., & Wrighton, K. C. (2019). Metagenomic Approaches Unearth Methanotroph Phylogenetic and Metabolic Diversity. Current Issues in Molecular Biology, 33(1), 57-84. https:// doi.org/10.21775/cimb.033.057 Soetaert, K., Petzoldt, T., & Meysman, F. (2010). marelac: Tools for Aquatic Sciences (R package version 2.1 ed.). Solorzano, L. (1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography, 14(5), 799-801. https://doi.org/10.4319/lo.1969.14.5.0799 Søndergaard, D., Pedersen, C. N. S., & Greening, C. (2016). HydDB: A web tool for hydrogenase classification and analysis. Scientific Reports, 6(1), Article 34212. https://doi.org/10.1038/ srep34212 Soued, C., Bogard, M. J., Finlay, K., Bortolotti, L. E., Leavitt, P. R., Badiou, P., Knox, S. H., Jensen, S., Mueller, P., Lee, S. C., Ng, D., Wissel, B., Chan, C. N., Page, B., & Kowal, P. (2024). Salinity causes widespread restriction of methane emissions from small inland waters. Nature Communications, 15(1), Article 717. https://doi.org/10.1038/s41467-024-44715-3 R

RkJQdWJsaXNoZXIy MTk4NDMw