282 References Schoelmerich, M. C., Ouboter, H. T., Sachdeva, R., Penev, P. I., Amano, Y., West-Roberts, J., Welte, C. U., & Banfield, J. F. (2022). A widespread group of large plasmids in methanotrophic Methanoperedens archaea. Nature Communications, 13(1), Article 7085. https://doi.org/10.1038/ s41467-022-34588-9 Schoenhofen, I. C., Vinogradov, E., Whitfield, D. M., Brisson, J. R., & Logan, S. M. (2009). The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology, 19(7), 715-725. https://doi.org/10.1093/glycob/cwp039 Schorn, S., Graf, J. S., Littmann, S., Hach, P. F., Lavik, G., Speth, D. R., Schubert, C. J., Kuypers, M. M. M., & Milucka, J. (2024a). Persistent activity of aerobic methane-oxidizing bacteria in anoxic lake waters due to metabolic versatility. Nature Communications, 15(1), Article 5293. https://doi.org/10.1038/s41467-024-49602-5 Schorn, S., Graf, J. S., Littmann, S., Hach, P. F., Lavik, G., Speth, D. R., Schubert, C. J., Kuypers, M. M. M., & Milucka, J. (2024b). Persistent activity of aerobic methane-oxidizing bacteria in anoxic lake waters due to metabolic versatility. Nature Communications, 15(1), 5293. https:// doi.org/10.1038/s41467-024-49602-5 Schulz, H., & Zabel, M. (2006). Marine Geochemistry (2nd revised, updated and extended edition ed.). Springer Segarra, K. E. A., Schubotz, F., Samarkin, V., Yoshinaga, M. Y., Hinrichs, K. U., & Joye, S. B. (2015). High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nature Communications, 6(1), Article 7477. https://doi. org/10.1038/ncomms8477 Sela-Adler, M., Ronen, Z., Herut, B., Antler, G., Vigderovich, H., Eckert, W., & Sivan, O. (2017). Co-existence of Methanogenesis and Sulfate Reduction with Common Substrates in SulfateRich Estuarine Sediments [Original Research]. Frontiers in Microbiology, 8, Article 877. https:// doi.org/10.3389/fmicb.2017.00766 Shaffer, M., Borton, M. A., McGivern, B. B., Zayed, A. A., La Rosa, Sabina L., Solden, L. M., Liu, P., Narrowe, A. B., RodrĂguez-Ramos, J., Bolduc, B., GazitĂșa, M. C., Daly, R. A., Smith, G. J., Vik, D. R., Pope, P. B., Sullivan, M. B., Roux, S., & Wrighton, Kelly C. (2020). DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Research, 48(16), 8883-8900. https://doi.org/10.1093/nar/gkaa621 Shao, B., Niu, L., Xie, Y.-G., Zhang, R., Wang, W., Xu, X., Sun, J., Xing, D., Lee, D.-J., Ren, N., Hua, Z.-S., & Chen, C. (2024). Overlooked in-situ sulfur disproportionation fuels dissimilatory nitrate reduction to ammonium in sulfur-based system: novel insight of nitrogen recovery. Water Research, Article 121700. https://doi.org/10.1016/j.watres.2024.121700 Sieber, C. M. K., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G., & Banfield, J. F. (2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nature Microbiology, 3(7), 836-843. https://doi.org/10.1038/s41564-018-0171-1 Siefert, R. L., & Plattner, G.-K. (2004). The role of coastal zones in global biogeochemical cycles. Eos, Transactions American Geophysical Union, 85(45), 470-470. https://doi. org/10.1029/2004EO450005
RkJQdWJsaXNoZXIy MTk4NDMw