281 References Saunois, M., Martinez, A., Poulter, B., Zhang, Z., Raymond, P., Regnier, P., Canadell, J. G., Jackson, R. B., Patra, P. K., Bousquet, P., Ciais, P., Dlugokencky, E. J., Lan, X., Allen, G. H., Bastviken, D., Beerling, D. J., Belikov, D. A., Blake, D. R., Castaldi, S., Crippa, M., Deemer, B. R., Dennison, F., Etiope, G., Gedney, N., Höglund-Isaksson, L., Holgerson, M. A., Hopcroft, P. O., Hugelius, G., Ito, A., Jain, A. K., Janardanan, R., Johnson, M. S., Kleinen, T., Krummel, P., Lauerwald, R., Li, T., Liu, X., McDonald, K. C., Melton, J. R., Mühle, J., Müller, J., MurguiaFlores, F., Niwa, Y., Noce, S., Pan, S., Parker, R. J., Peng, C., Ramonet, M., Riley, W. J., RocherRos, G., Rosentreter, J. A., Sasakawa, M., Segers, A., Smith, S. J., Stanley, E. H., Thanwerdas, J., Tian, H., Tsuruta, A., Tubiello, F. N., Weber, T. S., van der Werf, G., Worthy, D. E., Xi, Y., Yoshida, Y., Zhang, W., Zheng, B., Zhu, Q., Zhu, Q., & Zhuang, Q. (2024). Global Methane Budget 2000-2020. Earth System Science Data. https://doi.org/10.5194/essd-2024-115 Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M. I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., JanssensMaenhout, G., Jensen, K. M., Joos, F., Kleinen, T., Krummel, P. B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton, J. R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O’Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P., Thornton, B. F., Tian, H., Tohjima, Y., Tubiello, F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der Werf, G. R., Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., & Zhuang, Q. (2020). The Global Methane Budget 2000–2017. Earth System Science Data, 12(3), 1561-1623. https://doi. org/10.5194/essd-12-1561-2020 Sawicka, J. E., & Brüchert, V. (2017). Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments. Biogeosciences, 14(2), 325-339. https://doi.org/10.5194/ bg-14-325-2017 Scheller, S., Yu, H., Chadwick, G. L., McGlynn, S. E., & Orphan, V. J. (2016). Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 351(6274), 703-707. https://doi.org/10.1126/science.aad7154 Schimz, K.-L. (1980). The effect of sulfite on the yeast Saccharomyces cerevisiae. Archives of Microbiology, 125(1), 89-95. https://doi.org/10.1007/BF00403203 Schlitzer, R. (2015). Ocean data view. Available online at: https://odv.awi.de. Schmitz, R. A., Peeters, S. H., Mohammadi, S. S., Berben, T., van Erven, T., Iosif, C. A., van Alen, T., Versantvoort, W., Jetten, M. S. M., Op den Camp, H. J. M., & Pol, A. (2023). Simultaneous sulfide and methane oxidation by an extremophile. Nature Communications, 14(1), Article 2974. https://doi.org/10.1038/s41467-023-38699-9 Schoelmerich, M. C., Ly, L., West-Roberts, J., Shi, L.-D., Shen, C., Malvankar, N. S., Taib, N., Gribaldo, S., Woodcroft, B. J., Schadt, C. W., Al-Shayeb, B., Dai, X., Mozsary, C., Hickey, S., He, C., Beaulaurier, J., Juul, S., Sachdeva, R., & Banfield, J. F. (2024). Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires. Nature Communications, 15(1), Article 5414. https://doi.org/10.1038/s41467-024-49548-8 R
RkJQdWJsaXNoZXIy MTk4NDMw