280 References Reis, P. C. J., Tsuji, J. M., Weiblen, C., Schiff, S. L., Scott, M., Stein, L. Y., & Neufeld, J. D. (2024). Enigmatic persistence of aerobic methanotrophs in oxygen-limiting freshwater habitats. The ISME Journal, 18(1), Article wrae041. https://doi.org/10.1093/ismejo/wrae041 Reusch, T. B., Dierking, J., Andersson, H. C., Bonsdorff, E., Carstensen, J., Casini, M., Czajkowski, M., Hasler, B., Hinsby, K., & Hyytiäinen, K. (2018). The Baltic Sea as a time machine for the future coastal ocean. Science Advances, 4(5), Article eaar8195. https://doi. org/10.1126/sciadv.aar8195 Riesch, R., Tobler, M., & Plath, M. (2015). Hydrogen Sulfide-Toxic Habitats. In R. Riesch, M. Tobler, & M. Plath (Eds.), Extremophile Fishes: Ecology, Evolution, and Physiology of Teleosts in Extreme Environments (pp. 137-159). Springer. https://doi.org/10.1007/978-3-319-13362-1_7 Rodriguez-R, L. M., & Konstantinidis, K. T. (2016). The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints, 4, Article e1900v1. https://doi.org/10.7287/peerj.preprints.1900v1 Rosentreter, J. A., Borges, A. V., Deemer, B., Holgerson, M. A., Liu, S., Song, C., Melack, J. M., Raymond, P. A., Duarte, C. M., Allen, G. H., Olefeldt, D., Poulter, B., Batin, T. I., & Eyre, B. D. (2021). Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 14, 225-230. https://doi.org/10.1038/s41561-021-00715-2 Ruff, S. E., Humez, P., de Angelis, I. H., Diao, M., Nightingale, M., Cho, S., Connors, L., Kuloyo, O. O., Seltzer, A., Bowman, S., Wankel, S. D., McClain, C. N., Mayer, B., & Strous, M. (2023). Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems. Nature Communications, 14(1), Article 3194. https://doi.org/10.1038/s41467-023-38523-4 Ruff, S. E., Kuhfuss, H., Wegener, G., Lott, C., Ramette, A., Wiedling, J., Knittel, K., & Weber, M. (2016). Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy. Frontiers in Microbiology, 7, Article 374. https://doi.org/10.3389/fmicb.2016.00374 Russ, L., Speth, D. R., Jetten, M. S., Op den Camp, H. J., & Kartal, B. (2014). Interactions between anaerobic ammonium and sulfur-oxidizing bacteria in a laboratory scale model system. Environmental Microbiology, 16(11), 3487-3498. https://doi.org/10.1111/1462-2920.12487 Sakoula, D., Smith, G. J., Frank, J., Mesman, R. J., Kop, L. F. M., Blom, P., Jetten, M. S. M., van Kessel, M. A. H. J., & Lücker, S. (2022). Universal activity-based labeling method for ammonia- and alkane-oxidizing bacteria. The ISME Journal, 16(4), 958-971. https://doi.org/10.1038/s41396021-01144-0 Salgaonkar, B. B., Mani, K., & Braganca, J. M. (2013). Characterization of polyhydroxyalkanoates accumulated by a moderately halophilic salt pan isolate Bacillus megaterium strain H16. Journal of Applied Microbiology, 114(5), 1347-1356. https://doi.org/10.1111/jam.12135 Sander, R. (2015). Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 15(8), 4399-4981. https://doi.org/10.5194/acp-15-4399-2015 Saunois, M., Jackson, R. B., Bousquet, P., Poulter, B., & Canadell, J. G. (2016). The growing role of methane in anthropogenic climate change. Environmental Research Letters, 11(12), Article 120207. https://doi.org/10.1088/1748-9326/11/12/120207
RkJQdWJsaXNoZXIy MTk4NDMw