267 References Fan, S.-Q., Wen, W.-R., Xie, G.-J., Lu, Y., Nie, W.-B., Liu, B.-F., Xing, D.-F., Ma, J., & Ren, N.-Q. (2023). Revisiting the Engineering Roadmap of Nitrate/Nitrite-Dependent Anaerobic Methane Oxidation. Environmental Science & Technology, 57(50), 20975-20991. https://doi.org/10.1021/ acs.est.3c02806 Flegler, V. J., Rasmussen, A., Rao, S., Wu, N., Zenobi, R., Sansom, M. S. P., Hedrich, R., Rasmussen, T., & Böttcher, B. (2020). The MscS-like channel YnaI has a gating mechanism based on flexible pore helices. Proceedings of the National Academy of Sciences, 117(46), 2875428762. https://doi.org/10.1073/pnas.2005641117 Fortune, J., van de Kamp, J., Holmes, B., Bodrossy, L., Gibb, K., & Kaestli, M. (2024). Dynamics of nitrogen genes in intertidal sediments of Darwin Harbour and their connection to N-biogeochemistry. Marine Environmental Research, 198, Article 106500. https://doi. org/10.1016/j.marenvres.2024.106500 Frank, J., Zhang, X., Marcellin, E., Yuan, Z., & Hu, S. (2023). Salinity effect on an anaerobic methane- and ammonium-oxidising consortium: Shifts in activity, morphology, osmoregulation and syntrophic relationship. Water Research, 242, Article 120090. https:// doi.org/10.1016/j.watres.2023.120090 Gagliano, M. C., Sudmalis, D., Pei, R., Temmink, H., & Plugge, C. M. (2020). Microbial Community Drivers in Anaerobic Granulation at High Salinity. Frontiers in Microbiology, 11, Article 235. https://doi.org/10.3389/fmicb.2020.00235 Gao, Y., Wang, Y., Lee, H.-S., & Jin, P. (2022). Significance of anaerobic oxidation of methane (AOM) in mitigating methane emission from major natural and anthropogenic sources: a review of AOM rates in recent publications. Environmental Science: Advances, 1(4), 401-425. https://doi.org/10.1039/D2VA00091A Garber, A. I., Nealson, K. H., Okamoto, A., McAllister, S. M., Chan, C. S., Barco, R. A., & Merino, N. (2020). FeGenie: A Comprehensive Tool for the Identification of Iron Genes and Iron Gene Neighborhoods in Genome and Metagenome Assemblies. Frontiers in Microbiology, 11, Article 37. https://doi.org/10.3389/fmicb.2020.00037 Glodowska, M., Ma, Y., Smith, G., Kappler, A., Jetten, M., & Welte, C. U. (2023). Nitrate leaching and its implication for Fe and As mobility in a Southeast Asian aquifer. FEMS Microbiology Ecology, 99(4), Article fiad025. https://doi.org/10.1093/femsec/fiad025 Glodowska, M., Welte, C. U., & Kurth, J. M. (2022). Metabolic potential of anaerobic methane oxidizing archaea for a broad spectrum of electron acceptors. Advances in Microbial Physiology, 80, 157-201. https://doi.org/10.1016/bs.ampbs.2022.01.003 Good, N. M., Fellner, M., Demirer, K., Hu, J., Hausinger, R. P., & Martinez-Gomez, N. C. (2020). Lanthanide-dependent alcohol dehydrogenases require an essential aspartate residue for metal coordination and enzymatic function. Journal of Biological Chemistry, 295(24), 8272-8284. https://doi.org/10.1074/jbc.RA120.013227 Goude, R., Renaud, S., Bonnassie, S., Bernard, T., & Blanco, C. (2004). Glutamine, glutamate, and alpha-glucosylglycerate are the major osmotic solutes accumulated by Erwinia chrysanthemi strain 3937. Applied and Environmental Microbiology, 70(11), 6535-6541. https:// doi.org/10.1128/aem.70.11.6535-6541.2004 R
RkJQdWJsaXNoZXIy MTk4NDMw