265 References Dalcin Martins, P., de Monlevad, J. P. R. C., Echeveste Medrano, M. J., Lenstra, W. K., Wallenius, A. J., Hermans, M., Slomp, C. P., Welte, C. U., Jetten, M. S. M., & van Helmond, N. A. G. M. (2024). Sulfide Toxicity as Key Control on Anaerobic Oxidation of Methane in Eutrophic Coastal Sediments. Environmental Science & Technology, 58(26), 11421–11435. https:// doi.org/10.1021/acs.est.3c10418 Dalcin Martins, P., Echeveste Medrano, M. J., Arshad, A., Kurth, J. M., Ouboter, H. T., Op den Camp, H. J. M., Jetten, M. S. M., & Welte, C. U. (2022). Unraveling Nitrogen, Sulfur, and Carbon Metabolic Pathways and Microbial Community Transcriptional Responses to Substrate Deprivation and Toxicity Stresses in a Bioreactor Mimicking Anoxic Brackish Coastal Sediment Conditions. Frontiers in Microbiology, 13, Article 798906. https://doi.org/10.3389/ fmicb.2022.798906 Dalcin Martins, P., Frank, J., Mitchell, H., Markillie, L. M., & Wilkins, M. J. (2019). Wetland Sediments Host Diverse Microbial Taxa Capable of Cycling Alcohols. Applied and Environmental Microbiology, 85(12), Article e00189-19. https://doi.org/10.1128/aem.00189-19 Dalcin Martins, P., Hoyt, D. W., Bansal, S., Mills, C. T., Tfaily, M., Tangen, B. A., Finocchiaro, R. G., Johnston, M. D., McAdams, B. C., & Solensky, M. J. (2017). Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands. Global Change Biology, 23(8), 3107-3120. https://doi.org/10.1111/gcb.13633 Day Leslie, A., Carlson Hans, K., Fonseca Dallas, R., Arkin Adam, P., Price Morgan, N., Deutschbauer Adam, M., & Costa Kyle, C. (2024). High-throughput genetics enables identification of nutrient utilization and accessory energy metabolism genes in a model methanogen. mBio, 15(9), e00781-00724. https://doi.org/10.1128/mbio.00781-24 de Graaff, D. R., Felz, S., Neu, T. R., Pronk, M., van Loosdrecht, M. C. M., & Lin, Y. (2019). Sialic acids in the extracellular polymeric substances of seawater-adapted aerobic granular sludge. Water Research, 155, 343-351. https://doi.org/10.1016/j.watres.2019.02.040 Dean, J. F., Middelburg, J. J., Röckmann, T., Aerts, R., Blauw, L. G., Egger, M., Jetten, M. S., de Jong, A. E., Meisel, O. H., & Rasigraf, O. (2018). Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics, 56(1), 207-250. https://doi.org/10.1002/2017RG000559 Delgado Vela, J., Bristow, L. A., Marchant, H. K., Love, N. G., & Dick, G. J. (2021). Sulfide alters microbial functional potential in a methane and nitrogen cycling biofilm reactor. Environmental Microbiology, 23(3), 1481-1495. https://doi.org/10.1111/1462-2920.15352 Deng, Y., Liang, C., Zhu, X., Zhu, X., Chen, L., Pan, H., Xun, F., Tao, Y., & Xing, P. (2024). Methylomonadaceae was the active and dominant methanotroph in Tibet lake sediments. ISME Communications, 4(1), Article ycae032. https://doi.org/10.1093/ismeco/ycae032 Diao, M., Dyksma, S., Koeksoy, E., Ngugi, D. K., Anantharaman, K., Loy, A., & Pester, M. (2023). Global diversity and inferred ecophysiology of microorganisms with the potential for dissimilatory sulfate/sulfite reduction. FEMS Microbiology Reviews, 47(5), Article fuad058. https://doi.org/10.1093/femsre/fuad058 Dührkop, K., Fleischauer, M., Ludwig, M., Aksenov, A. A., Melnik, A. V., Meusel, M., Dorrestein, P. C., Rousu, J., & Böcker, S. (2019). SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods, 16(4), 299-302. https:// doi.org/10.1038/s41592-019-0344-8 R
RkJQdWJsaXNoZXIy MTk4NDMw