Maider Junkal Echeveste Medrano

261 References Baquero, D. P., Cvirkaite-Krupovic, V., Hu, S. S., Fields, J. L., Liu, X., Rensing, C., Egelman, E. H., Krupovic, M., & Wang, F. (2023). Extracellular cytochrome nanowires appear to be ubiquitous in prokaryotes. Cell, 186(13), 2853-2864.e2858. https://doi.org/10.1016/j. cell.2023.05.012 Bar-Or, I., Elvert, M., Eckert, W., Kushmaro, A., Vigderovich, H., Zhu, Q., Ben-Dov, E., & Sivan, O. (2017). Iron-coupled anaerobic oxidation of methane performed by a mixed bacterialarchaeal community based on poorly reactive minerals. Environmental Science & Technology, 51(21), 12293-12301. https://doi.org/10.1021/acs.est.7b03126 Beal, E. J., House, C. H., & Orphan, V. J. (2009). Manganese-and iron-dependent marine methane oxidation. Science, 325(5937), 184-187. https://doi.org/10.1126/science.1169984 Beblo-Vranesevic, K., Galinski, E. A., Rachel, R., Huber, H., & Rettberg, P. (2017). Influence of osmotic stress on desiccation and irradiation tolerance of (hyper)-thermophilic microorganisms. Archives of Microbiology, 199(1), 17-28. https://doi.org/10.1007/s00203-0161269-6 Becker, D. F., & Ragsdale, S. W. (1998). Activation of Methyl-SCoM Reductase to High Specific Activity after Treatment of Whole Cells with Sodium Sulfide. Biochemistry, 37(8), 2639-2647. https://doi.org/10.1021/bi972145x Bell, E., Lamminmäki, T., Alneberg, J., Qian, C., Xiong, W., Hettich, R. L., Frutschi, M., & Bernier-Latmani, R. (2022). Active anaerobic methane oxidation and sulfur disproportionation in the deep terrestrial subsurface. The ISME Journal, 16(6), 1583-1593. https://doi.org/10.1038/ s41396-022-01207-w Berger, S., Frank, J., Dalcin Martins, P., Jetten Mike, S. M., & Welte Cornelia, U. (2017). HighQuality Draft Genome Sequence of “Candidatus Methanoperedens sp.” Strain BLZ2, a NitrateReducing Anaerobic Methane-Oxidizing Archaeon Enriched in an Anoxic Bioreactor. Genome Announcements, 5(46), Article e01159-17. https://doi.org/10.1128/genomea.01159-17 Bethke, C., Sanford, R., Kirk, M., Jin, Q., & Flynn, T. (2011). The Thermodynamic ladder in Geomicrobiology. American Journal of Science, 311(3), 183-210. https://doi.org/10.2475/03.2011.01 Beulig, F., Røy, H., McGlynn, S., & Jørgensen, B. (2019). Cryptic CH4 cycling in the sulfate– methane transition of marine sediments apparently mediated by ANME-1 archaea. The ISME Journal, 13(2), 250-262. https://doi.org/10.1038/s41396-018-0273-z Bhattarai, S., Cassarini, C., Gonzalez-Gil, G., Egger, M., Slomp, C. P., Zhang, Y., Esposito, G., & Lens, P. N. L. (2017). Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3. Microbial Ecology, 74(3), 608-622. https://doi.org/10.1007/s00248-017-0978-y Bhattarai, S., Cassarini, C., & Lens, P. N. L. (2019). Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiology and Molecular Biology Reviews, 83(3), Article e00074-18. https://doi.org/10.1128/ mmbr.00074-18 R

RkJQdWJsaXNoZXIy MTk4NDMw