260 References REFERENCES Al-Shayeb, B., Schoelmerich, M. C., West-Roberts, J., Valentin-Alvarado, L. E., Sachdeva, R., Mullen, S., Crits-Christoph, A., Wilkins, M. J., Williams, K. H., Doudna, J. A., & Banfield, J. F. (2022). Borgs are giant genetic elements with potential to expand metabolic capacity. Nature, 610(7933), 731-736. https://doi.org/10.1038/s41586-022-05256-1 Almroth-Rosell, E., Edman, M., Eilola, K., Meier, H., & Sahlberg, J. (2016). Modelling nutrient retention in the coastal zone of an eutrophic sea. Biogeosciences, 13(20), 5753-5769. https://doi. org/10.5194/bg-13-5753-2016 Alneberg, J., Bjarnason, B. S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., Lahti, L., Loman, N. J., Andersson, A. F., & Quince, C. (2014). Binning metagenomic contigs by coverage and composition. Nature Methods, 11(11), 1144-1146. https://doi.org/10.1038/nmeth.3103 Aramaki, T., Blanc-Mathieu, R., Endo, H., Ohkubo, K., Kanehisa, M., Goto, S., & Ogata, H. (2020). KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics, 36(7), 2251-2252. https://doi.org/10.1093/bioinformatics/btz859 Aromokeye, D. A., Kulkarni, A. C., Elvert, M., Wegener, G., Henkel, S., Coffinet, S., Eickhorst, T., Oni, O. E., Richter-Heitmann, T., & Schnakenberg, A. (2020). Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments. Frontiers in Microbiology, 10, Article 3041. https://doi.org/10.3389/fmicb.2019.03041 Arshad, A., Dalcin Martins, P., Frank, J., Jetten, M. S. M., Op den Camp, H. J. M., & Welte, C. U. (2017). Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio. Environmental Microbiology, 19(12), 4965-4977. https://doi.org/10.1111/1462-2920.13977 Arshad, A., Speth, D. R., de Graaf, R. M., Op den Camp, H. J., Jetten, M. S., & Welte, C. U. (2015). A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea. Frontiers in Microbiology, 6, Article 1423. https:// doi.org/10.3389/fmicb.2015.01423 Bakker, D., Bange, H., Gruber, N., Johannessen, T., Upstill-Goddard, R., Borges, A., Delille, B., Löscher, C., Naqvi, S. W. A., Omar, A., & Santana-Casiano, J. (2014). Air-Sea Interactions of Natural Long-Lived Greenhouse Gases (CO2, N2O, CH4) in a Changing Climate. In P. S. Liss & M. T. Johnson (Eds.), Ocean-Atmosphere Interactions of Gases and Particles (pp. 113-170). Springer Earth System Sciences. https://doi.org/10.1007/978-3-642-25643-1_3 Balderston, W. L., & Payne, W. J. (1976). Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides. Applied and Environmental Microbiology, 32(2), 264-269. https://doi.org/10.1128/aem.32.2.264-269.1976 Bange, H. W., Bartell, U., Rapsomanikis, S., & Andreae, M. O. (1994). Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochemical Cycles, 8(4), 465-480. https://doi.org/10.1029/94GB02181 Bao, Y., Federhen, S., Leipe, D., Pham, V., Resenchuk, S., Rozanov, M., Tatusov, R., & Tatusova, T. (2004). National center for biotechnology information viral genomes project. Journal of Virology, 78(14), 7291-7298. https://doi.org/10.1128/jvi.78.14.7291-7298.2004
RkJQdWJsaXNoZXIy MTk4NDMw