Bibliography 147 Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. https: //doi.org/10.1109/TIP.2003.819861 Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P., & Sahuc, S. (2001). Optic flow is used to control human walking. Nature Neuroscience, 4(2), 213–216. https://doi.org/10.1038/84054 Weiland, J. D., Liu, W., & Humayun, M. S. (2005). Retinal prosthesis. Annual Review of Biomedical Engineering, 7, 361–401. https://doi.org/10.1146/ annurev.bioeng.7.060804.100435 White, J., Kameneva, T., & McCarthy, C. (2019). Deep reinforcement learning for task-based feature learning in prosthetic vision. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2019, 2809– 2812. https : / / doi . org / 10 . 1109 / EMBC.2019.8856541 White, J., Kameneva, T., & McCarthy, C. (2022). Vision processing for assistive vision: A deep reinforcement learning approach. IEEE Trans. Hum. Mach. Syst., 52(1), 123–133. https : / / doi . org/10.1109/THMS.2021.3121661 Wilke, R. G., Moghadam, G. K., Lovell, N. H., Suaning, G. J., & Dokos, S. (2011). Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants. Journal of Neural Engineering, 8(4). https://doi.org/ 10.1088/1741-2560/8/4/046016 Winawer, J., & Parvizi, J. (2016). Linking Electrical Stimulation of Human Primary Visual Cortex, Size of Affected Cortical Area, Neuronal Responses, and Subjective Experience. Neuron, 92(6), 1213–1219. https://doi.org/10. 1016/j.neuron.2016.11.008 Wong, S. (2018). Traveling with blindness: A qualitative space-time approach to understanding visual impairment and urban mobility. Health & Place, 49, 85–92. https://doi.org/10.1016/j. healthplace.2017.11.009 Xie, S., & Tu, Z. (2017). Holistically-nested edge detection. Int. J. Comput. Vis., 125(1-3), 3–18. https://doi.org/10. 1007/S11263-017-1004-Z Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8619–8624. https://doi. org/10.1073/pnas.1403112111 Yin, P., Lyu, J., Zhang, S., Osher, S., Qi, Y., & Xin, J. (2019). Understanding straightthrough estimator in training activation quantized neural nets [preprint]. arXiv: 1903.05662. Zapf, M. P. H., Boon, M.-Y., Lovell, N. H., & Suaning, G. J. (2016). Assistive peripheral phosphene arrays deliver advantages in obstacle avoidance in simulated end-stage retinitis pigmentosa: A virtual-reality study. Journal of Neural Engineering, 13(2), 026022. https://doi.org/10.1088/ 1741-2560/13/2/026022
RkJQdWJsaXNoZXIy MTk4NDMw