146 Bibliography van Rheede, J. J., Kennard, C., & Hicks, S. L. (2010). Simulating prosthetic vision: Optimizing the information content of a limited visual display. Journal of Vision, 10(14), 32–32. https : //doi.org/10.1167/10.14.32 van Velthoven, E. A. M., van Stuijvenberg, O. C., Haselager, D. R. E., Broekman, M., Chen, X., Roelfsema, P., Bredenoord, A. L., & Jongsma, K. R. (2022). Ethical implications of visual neuroprostheses—a systematic review. Journal of Neural Engineering, 19(2), 026055. https : / / doi . org / 10 . 1088 / 1741 - 2552/ac65b2 van Vugt, B., Dagnino, B., Vartak, D., Safaai, H., Panzeri, S., Dehaene, S., & Roelfsema, P. R. (2018). The threshold for conscious report: Signal loss and response bias in visual and frontal cortex. Science, 360(6388), 537–542. https://doi.org/10.1126/science. aar7186 van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double q-learning. In D. Schuurmans & M. P. Wellman (Eds.), Proceedings of the thirtieth AAAI conference on artificial intelligence, february 12-17, 2016, phoenix, arizona, USA (pp. 2094–2100). AAAI Press. https : / / doi . org / 10 . 1609 / AAAI . V30I1.10295 Vergnieux, V., Mace, M. J.-M., & Jouffrais, C. (2014). Wayfinding with simulated prosthetic vision: Performance comparison with regular and structureenhanced renderings. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2585–2588. https : / / doi . org / 10 . 1109 / EMBC . 2014 . 6944151 Vergnieux, V., Macé, M. J., & Jouffrais, C. (2017). Simplification of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation. Artificial Organs, 41(9), 852–861. https://doi.org/10. 1111/aor.12868 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., . . . van Mulbregt, P. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https: / / doi . org / 10 . 1038 / s41592 - 019 - 0686-2 Vurro, M., Crowell, A. M., & Pezaris, J. S. (2014). Simulation of thalamic prosthetic vision: Reading accuracy, speed, and acuity in sighted humans. Frontiers in Human Neuroscience, 8. https:// doi.org/10.3389/fnhum.2014.00816 Wang, J., Zhao, R., Li, P., Fang, Z., Li, Q., Han, Y., Zhou, R., & Zhang, Y. (2022a). Clinical Progress and Optimization of Information Processing in Artificial Visual Prostheses. Sensors, 22(17), 6544. https : / / doi . org / 10 . 3390 / s22176544 Wang, W., Lai, Q., Fu, H., Shen, J., Ling, H., & Yang, R. (2022b). Salient object detection in the deep learning era: An in-depth survey. IEEE Trans. Pattern Anal. Mach. Intell., 44(6), 3239–3259. https://doi.org/10.1109/TPAMI. 2021.3051099
RkJQdWJsaXNoZXIy MTk4NDMw