Hylke Salverda

116 Chapter 6 References 1. Rüegger C, Hegglin M, Adams M, et al. Population based trends in mortality, morbidity and treatment for very preterm- and very low birth weight infants over 12 years. BMC pediatrics 2012;12(1 %@ 1471-2431):17. 2. Hellström A, Hård AL. Screening and novel therapies for retinopathy of prematurity - A review. Early human development 2019;138:104846. 3. Hellstrom A, Perruzzi C, Ju M, et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proceedings of the National Academy of Sciences of the United States of America 2001;98(10):5804-8. 4. Haynes RL, Folkerth RD, Keefe RJ, et al. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. Journal of neuropathology and experimental neurology 2003;62(5):441-50. 5. Askie LM, Darlow BA, Finer N, et al. Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration. Jama 2018;319(21):2190-201. 6. van Zanten HA, Tan RNGB, van den Hoogen A, et al. Compliance in oxygen saturation targeting in preterm infants: a systematic review. 2015;174(12):1561-72. 7. Carlo WA, Finer NN, Walsh MC, et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 2010;362(21):1959-69. 8. Schmidt B, Whyte RK, Asztalos EV, et al. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: A randomized clinical trial. JAMA 2013;309(20):2111-20. 9. Stenson BJ T-MW, Darlow BA, Simes J, Juszczak E, Askie L, et al. BOOST II United Kingdom Collaborative Group, BOOST II Australia Collaborative Group, BOOST II New Zealand Collaborative Group. Oxygen saturation and outcomes in preterm infants. The New England journal of medicine 2013;368(22):2094-104. 10. van Zanten HA, Tan RNGB, van den Hoogen A, et al. Compliance in oxygen saturation targeting in preterm infants: a systematic review. European journal of pediatrics 2015;174(12):1561-72. 11. Fathabadi OS, Gale TJ, Olivier JC, et al. Automated control of inspired oxygen for preterm infants: What we have and what we need. Biomedical Signal Processing and Control 2016;28:9-18. 12. Claure N, Bancalari E, D’Ugard C, et al. Multicenter crossover study of automated control of inspired oxygen in ventilated preterm infants. Pediatrics 2011;127(1):e76-83. 13. Claure N, D’Ugard C, Bancalari E. Automated adjustment of inspired oxygen in preterm infants with frequent fluctuations in oxygenation: a pilot clinical trial. The Journal of pediatrics 2009;155(5):640-5 e1-2. 14. Claure N, Gerhardt T, Everett R, et al. Closed-loop controlled inspired oxygen concentration for mechanically ventilated very low birth weight infants with frequent episodes of hypoxemia. Pediatrics 2001;107(5):1120-4. 15. van Kaam AH, Hummler HD, Wilinska M, et al. Automated versus Manual Oxygen Control with Different Saturation Targets and Modes of Respiratory Support in Preterm Infants. The Journal of pediatrics 2015;167(3):545-50 e1-2.

RkJQdWJsaXNoZXIy MTk4NDMw