Aernoud Fiolet

67 Viewing Atherosclerosis through a Crystal Lens REFERENCES 1. G.G. Schwartz, P.G. Steg, M. Szarek, et al. ODYSSEY OUTCOMES Committees and Investigators. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med, 374 (2018), pp. 1-10 2. J.W. Eikelboom, S.J. Connolly, J. Bosch, et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med, 377 (2017), pp. 1319-1330 3. P.M. Ridker, B.M. Everett, T. Thuren, et al., CANTOS Trial Group Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med, 377 (2017), pp. 1119-1131 4. J. Boren, M.J. Chapman, R.M. Krauss, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J, 41 (2020), pp. 2313-2330, 10.1093/eurheart/ehz962 5. J.R. Guyton, K.F. Klemp. Transitional features in human atherosclerosis. intimal thickening, cholesterol clefts, and cell loss in human aortic fatty streaks. Am J Pathol, 143 (1993), pp. 14441457 6. P. Libby. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol, 32 (2012), pp. 20452051 7. G.S. Abela. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J Clin Lipidol, 4 (2010), pp. 156-16 8. A. Janoudi, F.E. Shamoun, J.K. Kalavakunta, G.S. Abela. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J, 37 (2016), pp. 1959-1967 9. P. Düewell, H. Kono, K.J. Rayner, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 464 (2010), pp. 1357-1361 10. F. Martinon, V. Pétrilli, A. Mayor, A. Tardivel, J. Tschopp. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 440 (2006), pp. 237-241 11. A. Grebe, E. Latz. Cholesterol crystals and inflammation. Curr Rheumatol Rep, 15 (2013), p. 313 12. C.R. Loomis, G.G. Shipley, D.M. Small. The phase behavior of hydrated cholesterol. J Lipid Res, 20 (1979), pp. 525-535 13. A. Vedre, D.R. Pathak, M. Crimp, C. Lum, M. Koochesfahani, G.S. Abela. Physical factors that trigger cholesterol crystallization leading to plaque rupture. Atherosclerosis, 203 (2009), pp. 89-96 14. F.M. Konikoff, P.L. De La Porte, H. Laufer, N. Domingo, H. Lafont, T. Gilat. Calcium and the anionic polypeptide fraction (APF) have opposing effects on cholesterol crystallization in model bile. J Hepatol, 27 (1997), pp. 707-715 15. B.E. North, S.S. Katz, D.M. Small. The dissolution of cholesterol monohydrate crystals in atherosclerotic plaque lipids. Atherosclerosis, 30 (1978), pp. 211-217 16. F. Konikoff, D. Chung, J. Donovan. Filamentous, helical and tubular microstructures during cholesterol crystallization from bile. J Clin Invest, 90 (1992), pp. 1155-1160 17. B. Khaykovich, C. Hossain, J.J. McManus, A. Lomakin, D.E. Moncton, G.B. Benedek. Structure of cholesterol helical ribbons and self-assembling biological springs. Proc Natl Acad Sci, 104 (2007), pp. 9656-9660 18. N.P. Reynolds, J. Adamcik, J.T. Berryman, et al. Competition between crystal and fibril formation in molecular mutations of amyloidogenic peptides. Nat Commun, 8 (2017), pp. 1338-1348 19. A.G. Shtukenberg, Y.O. Punin, A. Gujral, B. Kahr. Growth actuated bending and twisting of single crystals. Angew Chem Int Ed, 53 (2014), pp. 672-699

RkJQdWJsaXNoZXIy MTk4NDMw