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As children gain confidence in their ability to walk, they increase their speed, eventually shift-
ing from walking to running. Determining when and how running develops is a challenge, as 
there is no standard for measuring the development of running in children and the accompa-
nying motor control. Biomechanics and neuromuscular control are two aspects that should 
be properly addressed when it comes to understanding the development of running skills. In 
the following sections, I delve into both aspects in greater detail and show what we may learn 
from them when studying the development of running in children. 

Biomechanics of Locomotion 

Biomechanics encompasses the analysis of movement patterns, muscle and joint forces, and 
energy expenditure during movement such as locomotion. Most biomechanical models of 
human locomotion are based on the gait patterns of adults. However, children cannot be 
considered merely scaled-down versions of adults (Rose & Arellano, 2021). Consequently, 
models used in adults are most likely to not be readily transferable to children. Before digging 
into this more, it is important to understand the models defining the most frequent gait pat-
terns in adults: walking and running. 

Walking can be modelled as a simple inverted pendulum swing where the center-of-mass 
(CoM) oscillates over the stance leg with the highest point at midstance (Alexander, 1976) cf. 
Figure 1.1, left panel. By contrast, Running can be modelled as a spring mass with the stance 
leg being compressed during stance (Blickhan, 1989; McMahon & Cheng, 1990) and the CoM 
is at its lowest point during midstance, cf. Figure 1.1, right panel. According to these models, 
the CoM’s kinetic and potential energies are oscillating in-phase during walking and out-of-
phase during running. 

Both models found experimental support in adult studies which revealed that in walking, the 
transfer between kinetic and potential energy is out-of-phase during stance and around 65% 
of energy is recovered at the most optimal walking speed. By contrast, the transfer of energy 
between kinetic and potential energy of the CoM in running hardly exceeds 5% (Cavagna, 
Saibene, & Margaria, 1964; Cavagna, Thys, & Zamboni, 1976). Biomechanics-based energy 
estimates may hence serve as a classifier discriminating between walking and running. 

Another common classifier to distinguish running from walking in adults is the presence or 
absence of a flight phase, i.e., a period where neither foot touches the ground. Put differently, 
walking can be distinguished from running by the double support phase during walking and 
flight phase during running. However, recent research suggests that running at slow speeds 
do not inherently result in a flight phase but the gait pattern still adheres to the spring mass 
model and result in in-phase oscillations of kinetic and potential energy (Bonnaerens et al., 
2019; Bonnaerens et al., 2021; Shorten & Pisciotta, 2017). 
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When considering kinematics and kinetics, in adults, running is typically associated with a 
more flexed pattern compared to walking (Farley & Ferris, 1998). This can be observed in knee 
joint angles during stance, see Figure 1.1 for illustration. This, however, does not hold true in 
infants, not yet walking independently but supported while locomoting on a treadmill at high 
speeds (Vasudevan, Patrick, & Yang, 2016). 

 

Figure 1.1: Schematic of walking and running models. Top, left: inverted pendulum swing mechanism 
for walking, top, right: spring mass model for running. Bottom: stick figures of an adult stride with the 
black indicating the stance and blue/red the swing phase for walking and running, respectively. Next 
to that are the kinetic and potential energies of the CoM, knee joint angle, and vertical hip displace-
ment. Gait cycle bars represent mean stance and swing duration. Adapted from data acquired in Bach, 
Daffertshofer, and Dominici (2021a). 

When children take their first independent steps, their gait pattern does not comply with the 
adult model of the pendulum swing mechanism, as there are no distinct oscillations of the 
CoM corresponding to the double oscillations in adults (Ivanenko, Dominici, et al., 2004). The 
exchange between kinetic and potential energies of the CoM is lower in children taking their 
first steps than in children older than two years (Ivanenko, Dominici, et al., 2004) and clearly 
lower than in adults (Hallemans, Aerts, Otten, De Deyn, & De Clercq, 2004). If children learn-
ing to walk are not exploiting the pendulum swing mechanism, it is conceivable that children 
learning to run also do not make full use of the spring mass model. This may affect the joint 
kinematics, ground reaction forces, and energy expenditure during running. Finally, running 
in children might not require a flight phase like fast running adults. This will affect the ability 
to run with a flight phase but possibly also the in-phase oscillations of kinetic and potential 
energies of the CoM that one observes in adults. 
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The question arises as to whether the two common classifiers, energy exchange and presence 
of a flight phase are also suitable for defining running in children. And, given that challenge, 
one may wonder how the maturity of running can be determined. If running cannot readily 
be classified, then it might not be possible to determine how mature a running pattern is. To 
solve this dilemma, I propose to use a combination of data such as whole-body kinematics, 
kinetics, and muscle activity patterns to infer the maturity of locomotor patterns. It is not 
clear which parameters are needed to explain running (development) in children, so state-of-
the-art data mining and machine learning techniques can be utilized for blindly finding pat-
terns in the data as these do not suffer from a priori parameter selections. 

In recent years, machine learning algorithms have gained popularity in classifying the mode 
of locomotion and distinguishing people with gait impairments from healthy individuals 
(Figueiredo, Santos, & Moreno, 2018; Labarrière et al., 2020; Narayanan, Desai, Stewart, 
Duncan, & Mackay, 2020). Traditionally, the biomechanics of locomotion is investigated using 
one or a handful of kinematic variables such as joint angles, joint angular velocities, or joint 
moments. It is possible to detect some differences between walking and running via isolated 
kinematic parameters, however, many subtleties of the developing gait pattern remain 
opaque. It thus seems necessary to combine multiple kinematic and kinetic parameters to 
make inferences on the gait pattern. There are many ways to do so. A common approach 
relies on supervised learning, often closely related to mere linear regression. Supervised 
learning has several limitations and comes with the risk of overfitting. The alternative to avoid 
this risk, is unsupervised learning, and it comes as no surprise that it has been gaining popu-
larity in recent years. In unsupervised learning, data are not necessarily pre-selected but an-
alyzed for their predictive capacity. When it comes to data mining, a frequently used approach 
is hierarchical clustering that allows for circumventing selection bias when searching for pat-
terns in data. Nonetheless, clustering can still suffer from the risk of classification bias and 
potentially yield invalid output. The primary reason for this is covariation in the data, which 
can be eliminated via principal component analysis (PCA), i.e., pre-whitening. Here I would 
like to note that, in more traditional gait analysis, PCA is typically used to identify and exploit 
covariance rather than eliminating it. PCA has indeed been used successfully to identify fac-
tors contributing to gait recovery in animals and humans after spinal cord injury by combining 
more than hundred kinematic and kinetic parameters (Courtine et al., 2009; Dominici et al., 
2012; Friedli et al., 2015; Wenger et al., 2016). 

Combining PCA with clustering is not new. Several studies looked at motor activity in chronic 
obstructive pulmonary disease (Sherrill, Moy, Reilly, & Bonato, 2005), classified gait patterns 
based on video data (DeCann, Ross, & Culp, 2014), and revealed distinct running patterns in 
healthy adults based on 3D kinematics (Phinyomark, Hettinga, Osis, & Ferber, 2015). This sug-
gest that unsupervised learning could be an appropriate method to distinguish walking from 
running and determine the degree of maturity in locomotor patterns. I investigated this in 
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children aged three-nine years old and used this approach to specify the development of run-
ning longitudinally assessed over a one to four years age range combining both kinematic and 
neuromuscular parameters. 

Neuromuscular control of locomotion 

Steering the kinematics and kinetics during walking and running involves approximately 600 
skeletal muscles. Controlling each muscle individually would require enormous computa-
tional load from the central nervous system (CNS). The CNS is believed to circumvent this by 
utilizing muscle synergies, groups of muscles that receive a common neural output. There is 
a plethora of studies starting with Bernstein (1967) that support the notion that the CNS re-
duces the degrees of freedom of control task by building on muscle synergies (Bernstein, 
1967; Bizzi & Cheung, 2013; d'Avella, Saltiel, & Bizzi, 2003; Ting & Macpherson, 2005). 

By non-invasively recording the activity of a group of muscles involved in a movement, muscle 
synergies can be extracted and analyzed. Here, muscle synergies were employed to deter-
mine the neuromuscular control of walking and running in children under the age of nine and 
gained new insights into the development of neuromuscular control in early childhood. I de-
fined muscle synergies by decomposing multivariate electromyographic (EMG) signals – a 
proxy for muscle activity – via non-negative matrix factorization (NMF) (Dominici et al., 2011; 
Lee & Seung, 1999; Rabbi et al., 2020; Steele, Rozumalski, & Schwartz, 2015; Tresch, Cheung, 
& d'Avella, 2006).  

The conventional NMF approach (Lee & Seung, 2001) is to estimate weighting coefficients 𝑊𝑊 
and activation waveforms 𝐶𝐶 by minimizing the Frobenius norm between the enveloped sig-
nals and the sum of the synergies (𝑊𝑊 ∙ 𝐶𝐶, i.e., weightings ´	waveforms), 

‖	𝐸𝐸 − (𝑊𝑊 ∙ 𝐶𝐶)	‖! = 𝑚𝑚𝑚𝑚𝑚𝑚 

𝐸𝐸 represents the EMG envelopes, as an 𝑚𝑚 × 𝑡𝑡 matrix (𝑚𝑚 = number of muscles, 𝑡𝑡 = time sam-
ples), the weighting coefficients 𝑊𝑊 an 𝑚𝑚 × 𝑚𝑚 matrix (𝑚𝑚 = number of synergies), and 𝐶𝐶 the 
activation waveforms (𝑚𝑚 × 𝑡𝑡 matrix), see Figure 1.2. 

The muscle weights provide information about which muscles are contributing to a muscle 
synergy and the activation patterns provide the temporal information about when in the gait 
cycle the muscles are active and for how long. 
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Figure 1.2: Schematic of muscle synergy extraction. Rectified muscle activity of five muscles (M1-M5; 
left) is decomposed into three synergies (syn1-syn3) comprising of muscle weights, (𝑊𝑊; middle) and 
activation patterns (𝐶𝐶; right). Each muscle contributes with a certain weight to each of the activation 
patterns illustrated with the shaded areas corresponding to each color of the synergies. As an example, 
M1, M3, and M4 are the contributors to the activation pattern of Synergy 1 (Syn1).  

The decision about the number of synergies explaining the analyzed movement is often an 
arbitrary one. Meaning, the number of muscle synergies during movement analysis may differ 
based on the chosen methodology. Studies in adults have nonetheless found that five or less 
muscle synergies are involved with great consistency. This even holds during various types of 
locomotion such as level walking (Ivanenko, Poppele, & Lacquaniti, 2004; Kibushi, Moritani, 
& Kouzaki, 2022; Mileti et al., 2020), uneven walking (Santuz, Ekizos, Eckardt, Kibele, & 
Arampatzis, 2018), up or downhill walking (Dewolf, Mesquita, & Willems, 2020), direction 
changes (Chia Bejarano et al., 2017; Oliveira et al., 2013), perturbed walking (Chvatal & Ting, 
2012; Hagedoorn, Zadravec, Olenšek, van Asseldonk, & Matjačić, 2022), walking at different 
speeds (Buurke, Lamoth, van der Woude, & den Otter, 2016; Kibushi, Hagio, Moritani, & 
Kouzaki, 2018), split-belt treadmill walking (Maclellan et al., 2014), running (Cappellini, 
Ivanenko, Poppele, & Lacquaniti, 2006; Oliveira, Gizzi, Ketabi, Farina, & Kersting, 2016; 
Santuz, Ekizos, Janshen, et al., 2018), and in older adults walking (Baggen et al., 2020; 
Monaco, Ghionzoli, & Micera, 2010). While healthy adults present with a stable number of 
muscle synergies independent of the type of locomotion the same cannot be observed in 
children learning to walk. When neonates are held over a stable surface to elicit their stepping 
reflex only two basic activation patterns are present (Dominici et al., 2011). Later, when taking 
their first independent steps, the two basic activation patterns are supplemented by two ad-
ditional patterns that, combined with the two basic patterns, persist until adulthood 
(Dominici et al., 2011). This suggests that the number of synergies can be an indication of a 
mature walking pattern. A recent study found that four-year-old children who run display 
fewer muscle synergies than an untrained adult runner (Cheung et al., 2020). While the lower 
number of synergies in children running compared to untrained adults could be due to 

M1

M2

M3

M4

M5

= x

M1 M2 M3 M4 M50 100Gait cycle[%] 0 100Gait cycle[%]

Syn1

Syn3

Syn2

Muscle activity Muscle weights Activation patterns
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immaturity of the running pattern, it may also be a result of co-contraction as well as an at-
tempt to reduce the degrees of freedom available (Cheung et al., 2020). 

Muscle synergy analysis can provide important insight into the neuromuscular control of run-
ning and informs about the differences between running and walking. In adults, it is estab-
lished, that there is a shift in the timing of one muscle synergy related to the activation of the 
calf muscles which corresponds to a shorter stance phase (Cappellini et al., 2006; Yokoyama, 
Ogawa, Kawashima, Shinya, & Nakazawa, 2016). It is worth considering whether a similar pat-
tern is present in children during the development and maturation of running. In fact, it has 
been observed that even during walking, the peak medial gastrocnemius activity shifts with 
increasing walking speeds in children aged 7-9 years from 45% at comfortable walking speeds 
to 25% at fast walking speeds in children aged 7-9 years but not older children (Tirosh, 
Sangeux, Wong, Thomason, & Graham, 2013). 

In sum, studying muscle synergies, will provide insight into the neural capacity of children, 
with the synergy weights and activation waveforms revealing the motor control strategy used 
during a task, be that walking or running. Biomechanics, by contrast, which encompasses pa-
rameters, that represent the outcome of that strategy. By combining both, I expect to add to 
our understanding of the development of running in children aged 1-9 years. 

Extending methods 

Research on gait and running patterns in adults and children has been predominantly carried 
out in a laboratory setting designed for high-quality data acquisition including many strides 
(often required for synergy analysis). The latter usually involves a treadmill, and while loco-
moting on a treadmill is biomechanically like locomoting overground (van Ingen Schenau, 
1980), treadmill requires habituation (Van Hooren et al., 2020). This certainly applies to very 
young children. 

However, especially in children walking or running in a laboratory environment might not be 
representative of how they behave at home or on the playground. The main challenge with 
collecting data in their natural environment is that data quality recorded in natural environ-
ments might not match laboratory recordings. A central step in proper gait analysis is to de-
tect stepping events, e.g., the moments at which the foot touches or lifts off the ground. In 
the lab this is realized via assessing ground-reaction forces that – if one can afford it – are 
integrated into a treadmill.  

The shape of the vertical ground reaction forces can be estimated quite accurately from ac-
celerometry (Horsley et al., 2021) or other wearable sensors, and neural networks is a prom-
ising tool to do so (Ancillao, Tedesco, Barton, & O'Flynn, 2018). I investigated the combination 
of accelerometers and machine learning in the form of artificial neural networks to first 
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predict ground reaction forces and, from this, the step events during walking and running in 
adults. Once a tool like that is developed, children’s locomotion – especially their running 
development – can be investigated in children’s natural environment in the future. 

Research questions 

In this thesis I will investigate the motor control of the development of running in children by 
combining neuromuscular and biomechanical measures using novel techniques and state-of-
the-art-statistics. I structured my work along the following questions: 

Q1. How suitable are the common classifiers in running for children learning to run? 
Q2. How to determine the degree of maturity in locomotory patterns in children? 
Q3. What is the neuromuscular control of running in children? 
Q4. What is the longitudinal development of running in very young children? 
Q5. How can ground-reaction forces be estimated from shank accelerometer data? 

Q1 & Q2 are meant to reveal limitations of current analysis techniques and measures but first 
and foremost to provide solutions to overcome these limitations. With the suggested solu-
tions at hand, answering Q3 & Q4 will contribute to our current understanding of the devel-
opment of running in children. The answers to Q5 will bring my scientific advances at step 
closer to the natural environment and real-life application. 

Outline thesis 

This thesis contains a set of experimental studies with the second and third chapters being 
cross-sectional, the fourth being longitudinal, and the fifth being exploratory in nature. 

In the study summarized in Chapter 2 I addressed the research questions Q1 & Q2. I investi-
gated whether the two most common classifiers of running are sensitive enough to classify 
mature running in children and subsequently combined these measures with more advanced 
statistical methods. In brief, I ranked locomotion patterns in children using clustering and, by 
comparing the locomotion patterns to those of adults, I determined their degree of maturity. 
To answer question Q3, in Chapter 3 I focused on the neuromuscular control of the develop-
ment of running in a cross-sectional design. I investigated the muscular activity and the num-
ber and structure of muscle synergies and related these findings to the ability to run with a 
flight phase. In the study underlying Chapter 4 the aim was to elucidate the longitudinal de-
velopment of running in very young children (Q4). I followed two children from their first 
independent steps until ~32 months since onset of independent walking and compare their 
locomotor patterns with those of adults. In this study I combined the knowledge gained on 
maturity of gait patterns with the knowledge gained on neuromuscular control. Chapter 5 
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answers question Q5 by introducing a method to estimate vertical ground reaction force 
waveforms from accelerometer data to be able to accurately predict gait events. This method 
is the first step towards extending methods to the field.  

The main findings are summarized in Chapter 6 and further discussed against the literature. 

  

1

17

General introduction

165404 Bach BNW.indd   17165404 Bach BNW.indd   17 28-03-2023   12:0628-03-2023   12:06



 

  Chapter 2

165404 Bach BNW.indd   18165404 Bach BNW.indd   18 28-03-2023   12:0628-03-2023   12:06



 

CChhaapptteerr  22   

TThhee  ddeevveellooppmmeenntt  ooff  mmaattuurree  ggaaiitt  ppaatttteerrnnss  
iinn  cchhiillddrreenn  dduurriinngg  wwaallkkiinngg  aanndd  rruunnnniinngg  
 

 

Bach, M.M., Daffertshofer, A., and Dominici, N. (2021) 

Eur J Appl Physiol, 2021. 121(4): p. 1073-1085  

THE DEVELOPMENT OF 
MATURE GAIT PATTERNS 

IN CHILDREN DURING 
WALKING AND RUNNING

Bach, M.M., Daffertshofer, A., and Dominici, N.

Eur J Appl Physiol, 2021. 121(4): p. 1073-1085

165404 Bach BNW.indd   19165404 Bach BNW.indd   19 28-03-2023   12:0628-03-2023   12:06



 

Abstract 

We sought to identify the developing maturity of walking and running in young children. We 
assessed gait patterns for the presence of flight and double support phases complemented 
by mechanical energetics. The corresponding classification outcomes were contrasted via a 
shotgun approach involving several potentially informative gait characteristics. A subsequent 
clustering turned out very effective to classify the degree of gait maturity. 

Participants (22 typically developing children aged 2-9 years and 7 young, healthy adults) 
walked/ran on a treadmill at comfortable speeds. We determined double support and flight 
phases and the relationship between potential and kinetic energy oscillations of the center-
of-mass. Based on the literature, we further incorporated a total of 93 gait characteristics 
(including the above-mentioned ones) and employed multivariate statistics comprising prin-
cipal component analysis for data compression and hierarchical clustering for classification. 

While the ability to run including a flight phase increased with age, the flight phase did not 
reach 20% of the gait cycle. It seems that children use a walk-run-strategy when learning to 
run. Yet, the correlation strength between potential and kinetic energies saturated and so did 
the amount of recovered mechanical energy. Clustering the set of gait characteristics allowed 
for classifying gait in more detail. This defines a metric for maturity in terms of deviations 
from adult gait, which disagrees with chronological age. 

The degree of gait maturity estimated statistically using various gait characteristics does not 
always relate directly to the chronological age of the child. 
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Introduction 

Running and walking – two everyday types of locomotion in humans – are distinguishable to 
the naked eye by obvious differences in kinematics and kinetics. When adults run, there is a 
well-defined flight phase during which none of the legs are in contact with the ground, unlike 
walking that comprises a double support phase during which both legs are on the ground 
together. It, therefore, comes as no surprise that the presence or absence of a flight phase is 
the most commonly used classifier to distinguish walking from running.  

Turning to a more biomechanical perspective, walking may be modelled as an inverted 
pendulum swing: the center-of-mass (CoM) vaults over the stance leg (Alexander, 1976) 
resulting in peaks in the CoM trajectory during mid-stance and an out-of-phase exchange 
between potential and kinetic energies (Saibene & Minetti, 2003). Running, on the other 
hand, may be modelled as a spring, at least in adults: the stance leg compresses (Blickhan, 
1989; McMahon & Cheng, 1990) resulting in a CoM trajectory with the lowest point at mid-
stance and in-phase oscillations of potential and kinetic energies. In adults walking, the 
amount of saved energy, typically quantified as percentage of the recovered energy, is about 
65% at the most optimal speed. In adults running, by contrast, the energy recovery does not 
depend on speed and fluctuates around 5% (Cavagna et al., 1964; Cavagna et al., 1976). This 
observation motivates an alternative and, by now, likewise accepted measure to distinguish 
walking from running, namely out-of-phase versus in-phase oscillations of potential and 
kinetic energies as well as the exchange between them. 

In children, the ability to walk develops slowly from first independent steps to about 7 years 
of age, both in terms of mechanical energy and kinematics (Cheron, Bengoetxea, Bouillot, 
Lacquaniti, & Dan, 2001; Cheron, Bouillot, et al., 2001; Dominici, Ivanenko, Cappellini, 
Zampagni, & Lacquaniti, 2010; Hallemans et al., 2004; Ivanenko, Dominici, et al., 2004; 
Ivanenko, Dominici, Cappellini, & Lacquaniti, 2005; Ivanenko, Dominici, & Lacquaniti, 2007). 
It seems that efficient use of the pendulum mechanism during walking develops gradually, 
the recovery of mechanical energy is lower in toddlers during their first independent steps 
than in toddlers aged two and up who have more walking experience (Ivanenko, Dominici, et 
al., 2004), and it is much lower than in adults walking at comparable speeds (Hallemans et al., 
2004). 

Running in children is not as well researched. Vasudevan et al. (2016) showed that infants are 
able to take some steps with a flight phase when supported on a treadmill but that their kin-
ematic patterns disagree with adult running. An earlier study in children running revealed 
instances in which the energy recovery exceeded 11% during slow running (Schepens, Wil-
lems, & Cavagna, 1998) and, hence, about twice as high as one may expect for running in 
adults. Since the corresponding experimental trials were excluded from further analysis, it 
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remains opaque whether or not exaggerated energy recovery values at slow speeds are part 
of the development of running. In any case, though, a mature and efficient walking pattern 
seems to develop gradually. This lets us believe that an equivalent gradual change should be 
visible in the development of running. 

Current studies on energetics in children typically assessed over-ground locomotion with one 
or two strides recorded per trial (Ivanenko, Dominici, et al., 2004; Schepens, Bastien, Heglund, 
& Willems, 2004; Schepens & Detrembleur, 2009; Schepens, Willems, Cavagna, & Heglund, 
2001). However, over-ground locomotion often introduces more variability in the gait speed 
than treadmill locomotion. Arguably, speed is easier to correct on the treadmill (Cavagna, 
Heglund, & Taylor, 1977), but certainly, one can record more strides per participant poten-
tially providing more statistical power in the subsequent analyses. It is for that reason that 
we adopted this experimental design to answer: (i) how does running on a treadmill develop 
in children when running is defined as having a flight phase; and (ii) how does this change 
when defining running as the in-phase oscillations of kinetic and potential energies? 

If ‘proper’ running in children is meant to resemble running patterns of adults in some sense, 
then the development of running implies an increasing degree of gait maturity. Yet, adult gait 
already comes with substantial variability, raising doubts as to whether identifying the pres-
ence of a flight phase or pinpointing phase relationship between the CoM’s kinetic and po-
tential energy will indeed provide a robust means to determine this degree of gait maturity. 
That is, while (i) & (ii) are relevant questions to ask, one may wonder whether or not the two 
characteristics they address suffice to quantify the (development of) running in children. In 
fact, the literature offers a plenitude of kinematic and kinetic parameters and other gait char-
acteristics that might be informative about the gait maturity. We, therefore, supplemented 
flight phase presence and energy relationship by a large set of parameters that we chose 
based on previous studies that proved their capacity for categorizing gait patterns (Carriero, 
Zavatsky, Stebbins, Theologis, & Shefelbine, 2009; Courtine et al., 2009; Dewolf, Sylos-Labini, 
Cappellini, Lacquaniti, & Ivanenko, 2020; Dominici et al., 2012; Fortney, 1983; Friedli et al., 
2015; Ivanenko, Cappellini, Dominici, Poppele, & Lacquaniti, 2007; Phinyomark, Petri, Ibanez-
Marcelo, Osis, & Ferber, 2018; Roberts, Mongeon, & Prince, 2017; Van Hooren et al., 2020; 
Vasudevan et al., 2016; Wenger et al., 2016). Without informed pre-selection of parameters, 
however, such a shotgun approach faces the challenge that parameters may covary and – 
when combined – do not only yield redundant information but may cause a classification bias. 
Principal component analysis (PCA) is a common means to remove such covariation and, as 
such, it comes as no surprise that it has been applied extensively to identify types of locomo-
tion in experimental settings (Courtine et al., 2009; Dominici et al., 2012; Friedli et al., 2015; 
Wenger et al., 2016). Here, we first applied PCA to rank-reduce our parameter set before 
clustering the parameters (DeCann et al., 2014; Phinyomark, Osis, Hettinga, & Ferber, 2015; 
Sherrill et al., 2005) to classify gait patterns in children by the degree they deviate from gait 
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patterns in adults. With this two-step procedure, we sought to answer (iii) if our ‘blind’ ap-
proach allows for pinpointing details of the development of gait in children, and whether it 
can serve to discriminate between mature and immature locomotion. 

Methods 

Participants 

This study included 22 typically developing children aged 2-9 years and 7 young healthy adults 
as controls for mature patterns, where mature patterns here refer to adult performance. Ex-
clusion criteria were known neurological and developmental diseases. Table 2.1 provides an 
overview of the relevant participant characteristics. 

Table 2.1: Participant characteristics 

 AGE (RANGE) GENDER (M/F) HEIGHT [CM] WEIGHT [KG] 

CHILDREN 26-106 months  10/12 122 (110-130) 22.5 (18.5-25.7) 
ADULTS 22-28 years 4/3 180 (176-182) 69 (66-78) 

MEDIAN (25TH-75TH PERCENTILE). AGE IS THE FULL RANGE 

The adult participants and the guardians/parents of the children provided written informed 
consent in compliance with the Declaration of Helsinki. The children provided assent. The 
experimental design was approved by The Scientific and Ethical Review Board of the Faculty 
of Behavioural & Movement Sciences, Vrije Universiteit Amsterdam, Netherlands (File num-
ber: VCWE-2016-149R1). 

Setup 

The experiment consisted of comfortable walking and running on the treadmill. Every condi-
tion was recorded for a minimum of 20 strides where possible and for maximum 100 strides. 

Participants could familiarize themselves for several minutes on the treadmill during which 
walking and running were practiced. No set time was imposed. Subsequently, the comforta-
ble speed was determined for both walking and running conditions by starting at a slow speed 
and increasing in intervals of 0.1 km/h until the participant reported a comfortable speed. In 
the following, the walking and running conditions refer to the prescribed condition that the 
participant was asked to perform (i.e., walking and running) during the specific recording. 

Children participants wore a full body climbing harness (CAMP Bambino Full Body Harness, 
CAMP USA, Colorado) modified to also have a secure attachment point on the back. All par-
ticipants wore their own shoes for the duration of the experiment. 
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Data acquisition 

Kinematic data were recorded using an active marker system (Optotrak Motion System, NDI 
Measurement Sciences, ON, Canada) at 100 Hz. A camera was placed diagonally behind the 
treadmill on either side and one camera was placed diagonally in front on the right-hand side 
of the participant. Single markers were attached to the skin overlying the following bony land-
marks on the right head of 5th metatarsal, right lateral malleolus (LM), right lateral femoral 
epicondyle (LE), and right greater trochanter (GT), right and left calcaneus (HE), right and left 
glenohumeral joint, right and left lateral humeral epicondyle, and right and left ulnar styloid. 
Kinematics of the right and left upper limbs were of poor quality and did not allow for further 
analysis. Kinematics could not be recorded in all participants (see Supplementary Mate-
rial 2.3). 

Vertical, mediolateral, and forwards ground reaction forces (𝐹𝐹", 𝐹𝐹#$, 𝐹𝐹% GRFs) were sampled 
at 1 kHz for each belt via the two force plates in the instrumented dual-belt treadmill (Motek 
Medical BV, Culemborg, the Netherlands). 

Foot switches (piezo-resistive pressure sensitive sensors: Zerowire; Cometa, Bareggio, Italy) 
were placed on the skin on the heel and the head of the first metatarsal underneath the right 
and the left foot and were secured with tape where necessary. Shoes and socks were placed 
over the foot switches. The foot switch signals were sampled at 2 kHz. Full-body electromy-
ography recordings were made but not analyzed here. Kinematics, ground reaction forces, 
and foot switch data were synchronized. At the end of the recording session, anthropometric 
measurements were taken for every participant. These included mass (𝑚𝑚) and stature of the 
participant as well as the lengths of the main body segments. 

Data analysis 

Flight and double support phases 

Step events (heel strike and toe-off bilaterally) were determined based on the kinetic and 
kinematic data. The vertical ground reaction forces (𝐹𝐹") were pre-processed with a Savitzky-
Golay polynomial filter (3rd order, 121 samples; Savitzky & Golay, 2002). We defined heel 
strike (HS) and toe-off (TO) events as the first samples crossing a fixed threshold 
(mean(𝐹𝐹") 10⁄ ). First and last HS and TO were excluded for further analysis to avoid transi-
ents. The HE markers in the vertical direction served to detect step events from the kinemat-
ics (Roerdink, Coolen, Clairbois, Lamoth, & Beek, 2008). The foot switch detection was based 
on a simple ‘on/off’ algorithm. All events were manually inspected, and events were added 
or removed when needed (e.g., when dragging/jumping). Events were primarily detected 
based on the 𝐹𝐹", but we supplemented with events based on kinematic and foot-switch de-
tections whenever single foot GRF data were missing or did not allow for event detection. All 
relevant data were re-sampled to 1 kHz for this application. From the step events, we 
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determined double support and flight phases as well as the corresponding means and stand-
ard deviations over all strides per participant and condition. We also computed the walking 
Froude (Alexander & Jayes, 1983) for all participants and conditions based on the treadmill 
speed and leg length using: 

𝐹𝐹𝐹𝐹 =
𝑣𝑣&

𝑔𝑔 ∙ 𝑙𝑙 

Potential and kinetic energies 

The combined forces from the right and left force plates of the treadmill served to estimate 
the kinetic (𝐸𝐸') and potential energy (𝐸𝐸() of the CoM in the sagittal plane, following Cavagna 
(1975); Ivanenko, Dominici, et al. (2004); Saibene and Minetti (2003); Schepens et al. (2004); 
Schepens and Detrembleur (2009). For full calculations see Supplementary Material 2.1. In 
brief, the kinetic energy 𝐸𝐸' was estimated based on the CoM’s velocity in the vertical and the 
forward directions. Here, we would like to note that changes of kinetic energy in the medio-
lateral direction are usually much smaller than those observed in the vertical and forward 
directions (Tesio, Lanzi, & Detrembleur, 1998; Tesio & Rota, 2019), and that the lateral work 
can be assumed less than 10% of total work. That is, lateral components can be considered 
negligible (Schepens & Detrembleur, 2009). The potential energy 𝐸𝐸(	was determined via the 
CoM’s position in the vertical direction by integrating the corresponding velocity. Then, we 
estimated the Pearson correlation coefficients 𝐹𝐹 between 𝐸𝐸' and 𝐸𝐸( for each stride to quan-
tify the degree of in-phase and out-of-phase oscillations of the energies. 

To quantify the amount of mechanical energy that can be saved via a pendulum mechanism 
(see Introduction) we determined the relative recovered mechanical energy as (Cavagna et 
al., 1976): 

𝑅𝑅 = 1 −
𝑊𝑊)*+

𝑊𝑊% +𝑊𝑊"
 

where the external work (W)*+) was based on the sum of @𝐸𝐸' + 𝐸𝐸(A-increments over a stride 
and the work in forward and vertical directions (W% and W") on the sum of increments of the 
forward and vertical CoM energies, respectively (Cavagna et al., 1976). 

PCA and clustering 

Based on the kinetics and right-side kinematics, numerous spatiotemporal, kinetic, and kine-
matic parameters were calculated that provided a comprehensive quantification of gait fea-
tures. In total 93 parameters were determined for every participant when kinematic meas-
urements were available (n = 18 participants; 13 children and 5 adults). The parameters can 
be split into themes that represent modalities of gait. To build on the findings of the ability to 
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run with a flight phase and have in-phase oscillations of potential and kinetic energies during 
running, we supplemented these parameters with additional temporal features (in total 9 
parameters), additional features of the pendulum/swing mechanisms (in total 11 parame-
ters), limb endpoint trajectories (12 parameters), stability measures (3 parameters), segmen-
tal and joint angles (21 parameters) and velocities (9 parameters), kinetics (6 parameters), 
intra-limb coordination (2 parameters), intersegmental coordination (14 parameters), and in-
terlimb coordination (6 parameters). By including parameters from several strides per partic-
ipant, we implicitly incorporated the variance across strides as this is a common measure for 
gait variability. For a detailed list of parameters see Supplementary Material 2.2. We normal-
ized the parameters that were directly related to the size of the participant to body-size/body 
weight (e.g., step length, step height, vertical force; see Supplementary Material 2.2 for de-
tails). All the parameters were combined in a [(number of participants ´ condition ´ number 
of strides) ́  number of parameters] matrix [1530 ´ 93] and z-scored along the first dimension 
prior to PCA. As outlined above, PCA primarily served to rank-reduce the parameter matrix, 
which eliminates parameter covariations and, by this, allows for an unbiased classification via 
conventional clustering (see below). We selected the leading three principal components 
(PCs) as they turned out to suffice for our classification purposes (Courtine et al., 2009; 
Dominici et al., 2012; Friedli et al., 2015; Phinyomark, Osis, et al., 2015). To which degree the 
different 93 parameters influenced the first three PCs can be given by the corresponding 

loadings = 𝑢𝑢 ∙ √𝜆𝜆, where 𝑢𝑢 denotes the eigenvector of a PC and 𝜆𝜆 its eigenvalue. We consid-
ered a parameter a strong contributor to a PC when its loading exceeded the 95% confidence 

threshold 𝐶𝐶𝐶𝐶,- = 1.96 √𝑛𝑛⁄ , with 𝑛𝑛 = 93. 

Finally, we applied hierarchical clustering. In doing so, we first built a dendrogram or cluster 
tree (Milligan, 1980; Murtagh & Contreras, 2011; Xu & Wunsch, 2005) using average links 
(unweighted pair group method with arithmetic mean) based on the correlation distances 
across the 3D reduced  parameter set (we also tested other distance measures, like Euclidean 
and Mahalanobis distances, but none of them yielded comparably proper clusters). The den-
drogram was thresholded based on the cophenetic correlation coefficients (CCC; Sokal & 
Rohlf, 1962) and, for comparison, also by visual inspection, with the latter focusing on both 
categorization of walking versus running and classification of mature and immature locomo-
tion. To distinguish mature from immature locomotion, we computed the average pairwise 
correlation distance from every participant belonging to a distinct walking cluster to the 
adults walking and from every participant belonging to a distinct running cluster to the adults 
running. Put differently, the correlation distance measures gait maturity with the adult gait 
pattern as reference. 
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Statistics 

We assessed the influence of age on the presence of a flight phase (FP) during running, as 
well as the influence of age and condition on the presence a double support (DS) phase. For 
this, we used two linear regression models across both children and adults, the first one with 
FP as response variable and age as predictor, the second one with DS as response variable 
and age, condition, and the interaction between the two as predictors. For both models we 
considered 𝑝𝑝 < 0.05 statistically significant. 

We quantified the age-dependence of the correlation coefficients 𝑟𝑟 and of the relative recov-
ered energy 𝑅𝑅 by least squares fitting exponential functions 𝑎𝑎 ∙ 𝑒𝑒.//1(345.6) 	+ 𝑏𝑏, where t 
was the time constant, and a, b, g three constants, and report their explanatory power, in 
terms of adjusted R2-values, unless specified otherwise. 

Results 

Although 29 participants were included in the analysis on the mechanical energies of the 
CoM, only 18 participants were included in the analysis of the effects of kinematic and kinetic 
parameters on distinguishing mature from immature gait and walking from running. All par-
ticipant characteristics, as well as the numbers of strides included in each part of the analysis 
can be found in Supplementary Material 2.3. It is worthwhile adding that the minor differ-
ences between stride numbers relate to the quality of the data varying between datasets. The 
youngest participants that we recorded (< 50 months of age) were all locomoting with hand-
hold from the experimenter or parent/guardian. We confirmed that this did not affect the 
kinetics post-recording. 

Flight and double support phases 

We expressed FP and DS relative to the gait cycle (Figure 2.1a). For the running condition, a 
FP was present in some participants and the linear regression revealed a significant effect of 
age (𝑝𝑝 < 2×10-16), i.e., FP increased with age. DS revealed main effects of both age and condi-
tion (𝑝𝑝 < 2×10-16, 𝑝𝑝 = 0, respectively), and it decreased for running. We also found an interac-
tion effect (𝑝𝑝 = 5.8×10-6) as summarized in Table 2.2. The normalized speeds given as Froude 
values differed between conditions for all participants; see Figure 2.1b. 
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Figure 2.1: Temporal patterns during walking and running and normalized speed. a) Double support 
phase (positive numbers) and flight phase (negative numbers) expressed as a percentage of the gait 
cycle (mean± SD) for walking (upper panel) and running (lower panel), as a function of age (months-
rounded to the nearest whole integer) for each child participant and adults as a grand average. b) 
Normalized speed expressed as the Froude value (𝑣𝑣! 𝑔𝑔 ∙ 𝑙𝑙⁄ ) for each participant and condition (walking 
in blue and running in red). Error bars signify standard deviations between participants for adults and 
differences between trials for the walking condition of the participants of 82 and 91 months and run-
ning condition for the second participant of 106 months. 

Table 2.2: Linear regression of the effects of age and condition on double-support and flight phases 

 FACTOR ESTIMATE SE 𝒕𝒕 𝒑𝒑-VALUE 

𝑫𝑫𝑫𝑫 Intercept 31.03 0.26 117.50 0 
 Age -0.01 0.00 -9.57 <2×10-16 
 Condition_Running -24.40 0.38 -64.35 0 
 Age:Condition_Running -0.01 0.00 -4.54 5.8×10-6 

𝑭𝑭𝑭𝑭 Intercept 4.63 0.38 12.24 <2×10-16 
 Age 0.06 0.00 25.62 <2×10-16 

Abbreviations: DS, double support; FP, flight phase; SE, standard error; 𝒕𝒕, t-
statistics  
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The corresponding stick figures, vertical hip displacements, and knee joint angles of four rep-
resentative participants are presented in Figure 2.2. For all participants, the vertical GT dis-
placement (𝐺𝐺𝐺𝐺") was maximal during mid-stance of the load-bearing leg, adhering to the dou-
ble-peaked profile of the pendular mechanism of the CoM during walking. During running, 
the 𝐺𝐺𝐺𝐺" was minimal during mid-stance of the load-bearing leg, suggesting a spring leg be-
havior of running. However, this was only present in the three oldest participants. In the 
youngest participants during running, 𝐺𝐺𝐺𝐺" was maximal at mid-stance. In Figure 2.2, 𝐺𝐺𝐺𝐺" and 
the knee joint angle for five strides for each of the displayed participants show a less pro-
nounced pattern in the youngest participants compared to the adult, which suggests a more 
immature gait pattern in the younger participants and a mature one for the adult participant. 

 

Figure 2.2: Kinematics during walking and running. Stick figures of representative strides of four rep-
resentative participants during walking (upper panel) and running (lower panel). The black parts of the 
stick figures correspond to stance phase and the colored to the swing phase (blue for walking; red for 
running). Below, five representative strides are presented for each participant for left and right leg. 
Ensemble averages (± SD of five gait cycles) of knee joint angle and vertical hip displacement (𝐺𝐺𝐺𝐺") for 
each participant and condition. Gait cycle bars represent mean stance and swing duration for each 
participant with the horizontal black bar representing the standard deviation between strides. 𝐺𝐺𝐺𝐺" is 
expressed in relative units (normalized by the limb length l). 
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Potential and kinetic energies 

We found a moderate exponential relationship between age and the correlation coefficients 
𝑟𝑟 for walking and running (R2 = 0.53, R2 = 0.51, respectively; Figure 2.3a), while the relative 
recovered energy 𝑅𝑅 was strongly correlated with age for both walking and running (R2 = 0.59, 
R2 = 0.70, respectively; Figure 2.3b). 

 
Figure 2.3: Effects of the mechanical energy of the CoM on age. a) The correlation coefficient 𝑟𝑟 between 
𝐸𝐸# and 𝐸𝐸$ as a function of age for walking (blue) and running (red). There is an exponential relationship 
between age and 𝑟𝑟 for both walking and running. b) The relative recovered energy 𝑅𝑅 as a function of 
age for walking (blue) and running (red). There is an exponential relationship between 𝑅𝑅 and age for 
both walking and running. 

Shotgun and clustering 

The first three PCs accounted for 57% of the total variance of the data while this might be 
considered a low proportion in conventional PCA, one has to realize that we z-scored the 
input variables which let us consider three PCs to cover a sufficient portion of data variance. 
The scatterplots in Figure 2.4 illustrate the separation between the prescribed walking and 
running patterns (filled and unfilled markers, respectively) with clear correlations illustrated 
in the PC1/PC2 plane. The loadings associated with these three PCs revealed that all parame-
ters except for three were significantly larger than the 95% confidence interval, and thus uni-
formly influenced the variance in the data. The three exceptions were parameters 75, 76, and 
82 (cf., Supplementary Material 2.2 and 2.4). 
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Figure 2.4: Principal component analysis (PCA) outcomes for walking and running. A) The outcome of 
the PCA in PC1-PC2 space. B) The outcome of the PC1-PC3 space. Each dot represents a stride and the 
color-coding refer to the age in months of the participants. The filled circles are the prescribed walking 
condition and the un-filled circles are the prescribed running condition. 

The average linkage and correlation distance had a CCC of 0.92. There were no clear distinc-
tions between the number of clusters when analyzing dissimilarity values. However, visual 
inspection of the dendrogram indicated that either four or eight clusters adequately repre-
sented the original data (see Supplementary Material 2.5). A Calinski Harabasz stopping rule 
(Milligan & Cooper, 1985) applied for 1-10 clusters confirmed this split, at least in parts, as it 
revealed two of the four clusters. Since we aimed for distinguishing mature from immature 
patterns as well as walking from running patterns, we continued with the four clusters iden-
tified visually. 

In Figure 2.5, each of the clusters is represented with the relation every participant had to 
them. We expected adults to have a mature walking and running pattern and, accordingly, 
we grouped them together as a single node (indicated as ‘A’ in Figure 2.5). The thickness of 
the lines represents the percentage of strides, larger than 5%, belonging to a certain cluster. 
Every cluster is plotted in an individual color. Cluster 1 contained the adults running and 
94.7% of the running strides from the participant aged 93 months. Cluster 2 contained be-
tween 74.6% and 100% of all prescribed running strides from the participants aged 71 to 106 
months bar the participant of 93 months (5.3% of the strides from this participant belonged 
to cluster 2), together with around 50% of the prescribed running strides from the participants 
of 62 and 59 months. Cluster 3 covered between 42 and 100% of the prescribed walking 
strides from the participant aged 62 months to the adults and 16.1% of the walking strides 
from the participant of 59 months. Finally, cluster 4 contained around 50% of the prescribed 
running strides from participants of 59 and 62 months, 25% of the prescribed running strides 
from the participants of 71 months and all prescribed running and walking strides from the 
participant of 40 months, together with some walking strides from older participants, most 
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importantly, around 80% of walking strides from the participant of 59 months, around 50% 
of the walking strides from the participants aged 82, and 40% of the walking strides of the 
participant of 106 months (see Supplementary Material 2.6 for further details on the spread 
of strides into every cluster).  

 
Figure 2.5: Clustering output. a) Output of clustering ordered based on age (months), with the young-
est participant on the right side and the adults (A) on the left side for walking (blue circles) and running 
(red circles). The size of the clusters (C1-C4) depends on the amounts of strides belonging to each clus-
ter, similarly the thickness of the lines connecting each cluster with a participant depends on the 
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percentage of data from each participant belonging to that cluster. b) Calculated average pairwise 
correlation distance to the mature walking patterns of the adults (A) (upper panel) and to the mature 
running patterns of the adults (A) (lower panel) as a function of age. c) Calculated average pairwise 
correlation distance to the mature walking patterns of the adults (A) (upper panel) and the mature 
running patterns of the adults (A) (lower panel) as a function of gait maturity. The upper axis in both 
plots represents the age of the participants in months (rounded to nearest whole integer). Note that 
the increase in age is not monotonic as it is a function of gait maturity (immature from left going to 
mature on right). Note also that the lower axis in both plots is not in units of the correlation distance 
(which is shown on the y-axis) but set to arbitrary values (indices of sorting); that is, the seeming ex-
ponential decay should not be interpreted as such. Color notation is the same as in a), C4 represents 
immature walking, C3 represents mature walking, C2 represents immature running and C1 represents 
mature running. The size of the circles depends on the amounts of strides belonging to each cluster. d) 
Output of clustering based on maturity with the least mature patterns on the right side and the most 
mature (adults - A) on the left side. For a full overview of the percentage of strides belonging to each 
cluster, see Supplementary Material 2.6. 

As shown in Figure 2.5a, the younger children were grouped in separate clusters from the 
adult participants. The average pairwise distance to the adult patterns for walking and run-
ning separately, i.e., our measure for gait maturity is depicted in Figure 2.5b. Obviously, there 
was no directed relationship between our measure of gait maturity and the participants’ age. 
To illustrate this further in Figure 2.5c, we ordered participants based on their respective dis-
tance to the mature pattern of the adults depending on whether their strides fall into the 
walking or running clusters, but here we also included the corresponding ages on the top x-
axes. The participant of 40 months is only present in the walking clusters as the strides be-
longing to the prescribed running conditions are clustered with the walking strides of the 
other participants. Some participants are present twice as their strides fall into more clusters 
(see above). In Figure 2.5d, the order of the participants has been re-arranged following the 
maturity order in Figure 2.5c. When a participant had strides falling into two clusters, they 
were ordered based on the position in which most of their strides belong to. 

Discussion 

The aim of this paper was to investigate the development of running on a treadmill. Gait clas-
sification traditionally relies on the presence of a flight phase or the display of in-phase oscil-
lations of kinetic and potential energies during running. Expectedly, both measures have their 
limitation in quantifying subtle changes in gait patterns. Hence, we supplemented them by a 
substantial set of alternative gait characteristics and followed a statistics-based classification 
of walking and running and the development thereof.  

Not all children were able to run with a flight phase. Their running patterns clearly differed 
from that of adults, but also from (their own) walking. As such, their prescribed running 
should not be classified as walking. We found exponentially saturating changes in the corre-
lation between kinetic and potential energies and the total amount of recovered mechanical 
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energy, implying there were in-phase oscillations of kinetic and potential energies during 
running and out-of-phase oscillations during walking. On top of that, our cluster analysis 
revealed the absence of a direct relationship between chronological age and maturity of the 
(prescribed) walking and running patterns in children aged 40-106 months. 

Flight and double support phases 

Running can be defined as having a flight phase. We showed that young children who are 
asked to run on a treadmill at comfortable speeds are not able to do so. This might be inter-
preted as they are in fact not running. At first glance, the gait patterns remind one of walking, 
but a closer look reveals that they are not walking either. It seems that children learning to 
run make use of what could be called a “walk-run strategy” that contains both double support 
and flight phases. The (relative) duration of the double support phase in running, is of course 
not comparable to that seen in walking. Interestingly, this also extends to the in-phase and 
out-of-phase oscillations of kinetic and potential energies. 

Potential and kinetic energies 

We already mentioned in the introduction that Schepens et al. (1998) studied running in chil-
dren aged 2-16 years. In that study all trials were excluded in which the relative energy recov-
ery 𝑅𝑅 exceeded 11% as they were deemed not to be running trials. This is unfortunate as our 
finding support the idea that in the learning period the gait is a mix of a walking and a running 
pattern. That is, 𝑅𝑅 may occasionally exceed 11% during running, in our case in six participants. 
When incorporating the correlation coefficients 𝑟𝑟, however it is still possible to distinguish 
between conditions for all participants as the potential energy oscillates out-of-phase for the 
walking conditions (𝑟𝑟 being negative) and in-phase for the running conditions (𝑟𝑟 being posi-
tive). In fact, the two types of locomotion (walking and running) are different in speed for all 
participants in our study (see Figure 2.1b and Supplementary Material 2.1), and despite the 
young participants sometimes running with double support phase, this is still different from 
the double support phases observed in the walking condition. 

Yet, we have to admit that the overall findings in the energetics, with the exponential rela-
tionships between 𝑅𝑅 and 𝑟𝑟 and age are mostly influenced by the youngest participants. It 
seems that the energetics are not fine-grained enough to distinguish between older children 
and adults and thus will not reveal how running matures from children older than 3.5 to 
adults. 

Shotgun and clustering 

Chronological age and gait maturity of treadmill locomotion are not directly related in chil-
dren aged 3.5-9 years old. Maturity of one type of locomotion is also not directly linked to 
that of the other type of locomotion and as such, a child can display mature walking, but not 
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mature running and vice versa. We defined gait maturity as the pairwise correlation distance 
from adult patterns and thus used the mean of the adult walking and running patterns, re-
spectively, as a reference for mature patterns. This allowed us to rank participants based on 
their individual distance to the mature patterns of walking and running, separately. 

These results appear more complete, indeed, when compared to those on flight phases and 
energetics only. We are, therefore, inclined to argue that a shotgun approach with proper 
pattern classification can provide additional insight in the development of running in children. 
In an earlier study, Phinyomark, Osis, et al. (2015) already showed that two distinct kinematic 
running patterns in adults running can be identified combining PCA and clustering analysis on 
separate kinematic waveforms. In our eight-cluster analysis, we found one adult with a sepa-
rate running pattern from all other participants and this finding could be related to differ-
ences in the running pattern (see Supplementary Material 2.5). However, we here considered 
the adult group as a single group as, despite differences between adults they display a ‘ma-
ture’ pattern, and as such we chose the four-cluster result as the main result. 

We ‘blindly’ selected 93 parameters, with which we succeeded to categorize gait patterns and 
classify their change in the course of development. The obvious next step is to identify which 
of these parameters have significant contributions to the classification. One can in fact isolate 
subsets of the parameter by their contribution to principal components (see e.g., Kaptein et 
al., 2014). In doing so, we found that the temporal parameters (such as flight phase/double 
support phase) and pendulum/swing mechanisms (e.g., the oscillations of kinetic and poten-
tial energies) do greatly influence PC1. However, others were also adding to it, like leg/joint 
velocities and limb endpoint velocities. That is, when it comes to the time course of develop-
ment, many if not all these parameters seem to covary, a fact that of course also extends to 
PC2 and PC3. From the composition of PC1 one may conclude that – albeit important – the 
mere presence of flight phase and in-phase oscillations of potential and kinetic energies does 
not suffice to distinguishing walking from running. More information is needed to pinpoint 
the (type of) gait pattern and define its degree of maturity. Yet, one has to realize that in our 
gait classification PCA primarily served for rank reduction followed by hierarchical clustering. 
Isolating relevant parameters in the space spanned by three principal components for their 
contribution to the correlation distance based hierarchical clustering is clearly less trivial. 
Here we hope for future work to provide rigorous methods to determine which specific pa-
rameters play a role for each of the clusters; more advanced statistical models like genetic 
algorithms may help with this. Only if this or alternative methods will succeed, can our shot-
gun approach not only ‘describe’ the change of gait patterns, but may serve as unbiased 
means to determine which parameters are crucial for this change.  
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Limitations and choices 

In the current dataset participants of around 4 years of age are absent due to recruitment or 
measurement issues. This leaves a relatively large gap of 19 months between the child of 40 
months and the child of 59 months. We do not expect our outcomes to change qualitatively 
when that gap is filled, but without a doubt it can provide further information on the maturity 
of locomotion in the younger children. 

The type of locomotion referred to throughout this paper is the prescribed locomotion and 
this means that despite asking the children to run and either them or their parent/guardian 
confirmed it as running, they might not have been able to run as they would have over 
ground. Despite this potential limitation, we are positive that –in our experiments– the 
prescribed running patterns were not like those one would expect for walking or even fast 
walking. 

Our participants were walking and running on a treadmill at a constant comfortable speed 
during the whole trial, with the advantage that the amounts of strides analyzed for each con-
dition varied between 15 and 76 strides (Supplementary Material 2.3). This is in contrast to 
most other studies on the mechanics of locomotion where participants walk or ran over 
ground and thus did not record more than two or three steps per trial with up to ten trials 
per participant (Ivanenko, Dominici, et al., 2004; Schepens et al., 2004; Schepens & 
Detrembleur, 2009; Schepens et al., 1998) amounting to a 10-15 strides per participant. 
Moreover, it is more difficult to control the speed of the participant when locomoting over 
ground compared to on a treadmill and as such more fluctuations in the speed of the partici-
pant are expected. Speed fluctuations are important to account for when analyzing the ener-
getics during average locomotion (Cavagna et al., 1977). 

A final note on data ‘pre’-processing: Prior to performing PCA, data were z-scored along the 
first dimension. The normalization of parameters across strides results in the adult values not 
skewing the PCA and cluster analysis in terms of amplitude. When looking at Figure 2.4, it 
seems that the variability between and within participants was not larger in the older children 
than in the adults, arguably due to the normalization. Variability within participants hence 
appears an unlikely cause for larger correlation distances from the young children to the 
adults in our clustering approach. Moreover, not all parameters were normalized to body-
size/body weight (see Supplementary Material 2.2) prior to the z-scoring, PCA, and subse-
quent clustering. The ones that were normalized directly relate to the size of the participant 
(e.g., step length, step height, vertical force), whereas for example joint and segmental angles 
are already considered dimensionless (see e.g., Hof, 1996). One may argue, however, that 
(almost) all the parameters might have been influenced by both the participants’ size and the 
speeds performed. Yet, there were several instances of a single participant being split into 
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more than one cluster, while maintaining the same speed. We hence do not believe that 
speed or body size were influencing factors in our cluster results. 

Kinematic and kinetic parameters are influenced by neural factors and vice versa. A recent 
comprehensive review on the neural circuitries and biomechanics of walking and running in 
development (Dewolf, Sylos-Labini, et al., 2020) showed that running patterns mature during 
childhood but that the underlying mechanisms are still not thoroughly investigated. Here, we 
give some insights into the underlying kinematics and kinetics of this development. However, 
we did not investigate the muscular components as part of this study. We know from adults 
that the muscle activity patterns differ between adults walking and running and that there is 
a reduction in the duration of contraction with age for both the medial gastrocnemius muscle 
in walking for typically developing children (Cappellini et al., 2016; Tirosh et al., 2013), as well 
as in the thumb adductor during pinching movements (Dayanidhi, Kutch, & Valero-Cuevas, 
2013). These findings suggest that the immature locomotor patterns found in this study could 
be correlated to increased contraction time. A recent study in children with cerebral palsy 
showed that it was possible to change their kinematic gait patterns without influencing their 
selective motor control (Booth, van der Krogt, Harlaar, Dominici, & Buizer, 2019). However, 
whether this also applies to typically developing children should be confirmed with further 
analysis of the muscle activity signals. Another recent study investigating muscle activity pat-
terns during running in preschoolers and adults with different training experience revealed 
substantial developmental and training-related plasticity suggesting a long-term reorganiza-
tion to satisfy the biomechanical changes and functional requirements of locomotion (Cheung 
et al. 2020). 

Conclusion 

Clustering revealed that there is no direct agreement between chronological age and maturity 
in young children walking and running when comparing their gait patterns to those of adults. 
When learning to run, young children make use of a “walk-run-strategy”. This strategy pro-
vides the ability to run with a combination of strides with double support and flight phase and 
yields in-phase oscillations of potential and kinetic energies. 
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Supplementary Material 2.1 

The following illustrates the steps taken to calculate the relevant energetic parameters. 

First, the acceleration (𝑎𝑎) of the center-of-mass (CoM) was calculated in the sagittal plane: 

 𝑎𝑎% =
𝐹𝐹%
𝑚𝑚 (1) 

 𝑎𝑎" =
𝐹𝐹"
𝑚𝑚 − 𝑔𝑔	 (2) 

Where, 𝐹𝐹 = Ground reaction forces, 𝑓𝑓 = forward, 𝑣𝑣 = vertical, 𝑚𝑚 = body mass, 𝑔𝑔=9.81ms-2, 

gravitational acceleration. 

Next, we calculated the velocity of the CoM in the sagittal plane: 

 𝑣𝑣8 =	\𝑎𝑎8 	𝑑𝑑𝑑𝑑 + 𝑐𝑐8  (3) 

Where i denotes either the forward, or vertical direction, ci is the integration constant. The 
integration constants were found by calculating the mean speed of the GT marker on the 
assumption that GT is close to the CoM and so the corresponding velocity is equal to the mean 
speed of the CoM. 

The instantaneous kinetic energy 𝐸𝐸' of the CoM was then defined as: 

 𝐸𝐸' =
1
2𝑚𝑚	𝑣𝑣%& +

1
2𝑚𝑚	𝑣𝑣"& (4) 

Kinetic energy comprises of the vertical and forwards components computed in (3). The in-
stantaneous potential energy 𝐸𝐸(	of the CoM was given as: 

 𝐸𝐸( = 𝑚𝑚𝑔𝑔\𝑣𝑣"	𝑑𝑑𝑑𝑑 + 𝑐𝑐 (5) 

The integration constant c is arbitrary and was taken equal to 0.  

The total mechanical energy of the CoM 𝐸𝐸9:9 was the sum of 𝐸𝐸' and 𝐸𝐸( waveforms over a 
stride: 

 𝐸𝐸9:9 =	𝐸𝐸' +	𝐸𝐸( (6) 

The positive external work 𝑊𝑊5;9 was calculated as the sum of increments of 𝐸𝐸9:9 over a stride 
(Cavagna et al. 1976). As well as the forward work 𝑊𝑊%	and the vertical work 𝑊𝑊"	were com-
puted as the sum of increments of Ef and Ev, respectively: 

38

Chapter 2

165404 Bach BNW.indd   38165404 Bach BNW.indd   38 28-03-2023   12:0728-03-2023   12:07



 

 𝐸𝐸% =
1
2𝑚𝑚𝑣𝑣%& (7) 

 𝐸𝐸" = 𝐸𝐸( +	
1
2𝑚𝑚	𝑣𝑣"& (8) 

Finally, the percentage recovery 𝑅𝑅 introduced by Cavagna et al. (1976) estimate the ability to 
save mechanical energy and was determined as:  

 𝑅𝑅 = 1 −
𝑊𝑊5;9

𝑊𝑊% +𝑊𝑊"
 (9) 

Since 𝑊𝑊)*+ may depend on stride length and on the participants’ anthropometry we normal-
ized it via 

𝑊𝑊)*+ → 𝑊𝑊b)*+ =
/

#∙=
	𝑊𝑊)*+ 

where, 𝑚𝑚 denotes the participant’s body mass and 𝑑𝑑 the stride length. 

As a measure of the variability between strides we computed the standard deviation of 𝑟𝑟 
denoted by 𝜎𝜎(𝑟𝑟).	There was a moderate exponential relationship between age and 𝜎𝜎(𝑟𝑟) of 
both walking and running (R2 = 0.67, R2 = 0.57, respectively; Figure S2.1a), whereas 𝑊𝑊)*+ did 
not correlate with age (R2 = 0.16, R2 = 0.02, walking and running, respectively; Figure S2.1b). 

 

Figure S2.1:  Effects of variability of the correlation between mechanical energies of the CoM and ex-
ternal work on age a) The variability of the correlation between 𝐸𝐸# and 𝐸𝐸$, 𝜎𝜎(𝑟𝑟), as a function of age 
for walking (blue) and running (red). There is an exponential relationship between age and 𝜎𝜎(𝑟𝑟) for 
both walking and running. d) The external work as a function of age for walking (blue) and running 
(red). There is no linear relationship between the external work and age for walking and running. 
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Effect of speed 

Children of different sizes and adults ran and walked at different speeds and thus we corre-
lated the measures to the Froude number, i.e., to the dimensionless speed. The Froude num-
ber is a measure for speed normalization across participants of different sizes. It is given by 
(Alexander & Jayes, 1983) 

𝐹𝐹𝐹𝐹 =
𝑣𝑣&

𝑔𝑔 ∙ 𝑙𝑙 

here, 𝑣𝑣 denotes the speed, 𝑔𝑔 = 9.81ms-2 is the gravitational constant and 𝑙𝑙 is the participant’s 
leg length and measured as thigh (GT–LE) plus shank (LE–LM) length. 

For the analysis of 𝐹𝐹, 𝑅𝑅, 𝜎𝜎(𝐹𝐹), and 𝑊𝑊)*+, linear and exponential curves were fitted as appro-
priate to investigate the relationships with age and the normalized speed (walking Froude 
number), respectively. The adjusted R2-value will be reported unless specified otherwise. 

The spread in speeds was not (entirely) age dependent, as can be observed in the overlap of 
the lightest and darkest colors dots in Figure S2.2. The correlation coefficient 𝐹𝐹 between 𝐸𝐸' 
and 𝐸𝐸( during walking and running was weakly correlated to the Froude number (R2 = 0.31 
and R2 = 0.22, respectively; Figure S2.2a). There was no relationship between 𝜎𝜎(𝐹𝐹) and the 
Froude number for running (R2 = -0.02), although there was a weak to moderate relationship 
between 𝜎𝜎(𝐹𝐹) and the Froude number during walking (R2 = 0.36 Figure S2.2b). Furthermore, 
we found a moderate relationship between 𝑅𝑅 and walking (R2 = 0.58), while we could not 
identify any relationship between the 𝑅𝑅 and the Froude number during running (R2 = 0.133; 
Figure S2.2c). Likewise absent was a relationship between 𝑊𝑊5;9 and the Froude number dur-
ing walking and running (R2 = 0.14, R2 = -0.00, respectively; Figure S2.2d). 
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Figure S2.2: Effects of the mechanical energy of the CoM on dimensionless speed (Froude number). a) 
The correlation coefficient 𝑟𝑟 between 𝐸𝐸# and 𝐸𝐸$ as a function of the Froude number for walking (blue) 
and running (red). There is a second order polynomial relationship between the Froude value and 𝑟𝑟 for 
both walking and running. b) The variability of the correlation 𝑟𝑟 between 𝐸𝐸# and 𝐸𝐸$, 𝜎𝜎(𝑟𝑟), as a function 
of the Froude number for walking (blue) and running (red). There is a relationship between 𝜎𝜎(𝑟𝑟) Froude 
for walking, but not for running. c) The percentage recovery 𝑅𝑅 as a function of Froude for walking 
(blue) and running (red). There is a relationship between 𝑅𝑅 and Froude for walking, but not for running. 
d) The external work as a function of Froude for walking (blue) and running (red). There is no relation-
ship between 𝑊𝑊%&' and Froude for walking and running. For all panels in the figure applies that the 
color-gradient refers to the age of the participant and the lightest colors are the youngest participants 
where the darkest colors are the adults 

Hallemans et al. (2004) found that the maximal recovery during walking was around 40% in 
toddlers aged 12-18 months. The range we find in children aged 2-9 years is between 35%-
70%, and we see an increase with age. In our study we find a relationship between the per-
centage recovery and the dimensionless speed. There is a direct link between the smaller 
stature (and thus slower speed) and the ability to recover energy when walking on a treadmill. 
Participants were walking at comparable dimensionless speeds. 

We find no relationships between external work and age or dimensionless speed during run-
ning and a limited relationship during walking indicating that some participants are 
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locomoting at an optimal speed. The lack of relationship was also shown when comparing 
normal weight adolescents with their overweight counterparts running at the same speed 
(Taboga et al., 2012), however this is in contrast to the work presented in the introduction 
(Hallemans et al., 2004; Schepens et al., 2004; Van de Walle et al., 2010). We do not find any 
relationship for running due to the elastic energy which is not accounted for in external work 
in running (Cavagna et al., 1977; Saibene & Minetti, 2003). However, we would have expected 
some relationship between the external work and age and Froude value for walking. The find-
ing can be related to the differences between over ground and treadmill running.  

  

42

Chapter 2

165404 Bach BNW.indd   42165404 Bach BNW.indd   42 28-03-2023   12:0728-03-2023   12:07



 

Supplementary Material 2.2 

Computed gait parameters from kinematic and kinetic recordings. Parameter numbers refer 
to variables in PCA. Normalized parameters are denoted with square brackets []. 

Table S2.1: Computed gait parameters from kinematic and kinetic recordings. Abbreviations: Param: 
Parameter; Norm: normalization; l, leg-length; FS, foot strike; TO, toe-off; SE, end-of-swing; AP, 
anterior-posterior; ML, medio-lateral; w, body weight; SS, single support; d, stride length (1D); Min, 
minimum; Max, maximum; Amp, amplitude;	𝑢𝑢, eigenvector; elev, elevation. 

PARAM DETAILED EXPLANATION 
   UNIT 
[NORM] 

PARAM DETAILED EXPLANATION 
   UNIT 
[NORM] 

TEMPORAL FEATURES LEG/JOINT ANGULAR VELOCITY 
1 Stride duration s 48 Ankle joint velocity (Min) deg/s 
2 Froude velocity  49 Main-leg velocity (Max) deg/s 
3 Stance duration s 50 Knee joint velocity (Max) deg/s 
4 Percentage swing duration % GC 51 Ankle joint velocity (Max) deg/s 
5 Percentage stance duration % GC 52 Main-leg velocity (Amp) deg/s 
6 Percentage double support % GC 53 Knee joint velocity (Amp) deg/s 
7 Percentage flight phase % GC 54 Ankle joint velocity (Amp) deg/s 

8 Stride length (1D) [1/l] KINETICS 

9 Stride length (3D) [1/l] 55 Mean AP force during stance phase N 

LIMB ENDPOINT (VM) TRAJECTORY 56 Mean ML force during stance phase N 

10 Step length [1/l] 57 Mean vertical force during stance phase [1/w] 
11 Step height [1/l] 58 Mean AP force during SS phase N 
12 Maximum backward position  [1/l] 59 Mean ML force during SS phase N 
13 Minimum forward position  [1/l] 60 Mean vertical force during SS phase  [1/w] 

14 Maximum velocity during swing m/s INTRA-LIMB COORDINATION 
15 Relative timing of max velocity during swing % GC 61 Correlation limb-arm AP direction  
16 Acceleration at swing onset m/s2 62 Phase relationship between limb-arm  

17 Endpoint velocity m/s INTERSEGMENTAL COORDINATION 
18 Orientation of velocity vector at swing onset rad 63 Percentage of variance (1st 𝑢𝑢)   
19 Position of ankle with respect to hip at FS [1/l] 64 Percentage variance (2nd 𝑢𝑢)  
20 Position of ankle with respect to hip at TO [1/l] 65 Percentage variance (3rd 𝑢𝑢)   
21 Position of ankle with respect to hip at SE [1/l] 66 Projection of 1st 𝑢𝑢 on thigh axis  

STABILITY 67 Projection of 1st 𝑢𝑢 on shank axis  

22 Lateral displacement of foot during swing [1/l] 68 Projection of 1st 𝑢𝑢 on foot axis  
23 Step width (AP) [1/l] 69 Projection of 2nd 𝑢𝑢 on thigh axis  
24 Step width (ML) [1/l] 70 Projection of 2nd 𝑢𝑢 on shank axis  

JOINT AND SEGMENTAL ANGLES 71 Projection of 2nd 𝑢𝑢 on foot axis  

25 Thigh elevation angle (Min) deg 72 Projection of 3rd 𝑢𝑢 on thigh axis  
26 Shank elevation angle (Min) deg 73 Projection of 3rd 𝑢𝑢 on shank axis  
27 Foot elevation angle (Min) deg 74 Projection of 3rd 𝑢𝑢 on foot axis  
28 Main-leg elevation angle (Min) deg 75 Area of the gait loop deg2 
29 Thigh elevation angle (Max) deg 76 Ratio of left to right leg cycle duration  

30 Shank elevation angle (Max) deg INTERLIMB COORDINATION 

31 Foot elevation angle (Max) deg 77 Phase difference hip and knee elev. angles  
32 Main-leg elevation angle (Max) deg 78 Phase difference foot and shank elev. angles  
33 Knee joint angle (Min) deg 79 Max r (thigh and shank elevation angles)  
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34 Ankle joint angle (Min) deg 80 Max r (shank and foot elevation angles)  
35 Limb abduction (Min) deg 81 Max r (knee and ankle joint angles)  
36 Knee joint angle (Max) deg 82 Max r (ankle and foot joint angles)  

37 Ankle joint angle (Max) deg PENDULUM/SPRING MECHANISM 

38 Main-leg abduction (Max) deg 83 Amplitude of vertical hip displacement m 
39 Thigh elevation angle (Amp) deg 84 Amplitude of ML hip displacement m 
40 Shank elevation angle (Amp) deg 85 Forwards work 𝑊𝑊! [1/w] 
41 Foot elevation angle (Amp) deg 86 Vertical work 𝑊𝑊" [1/w] 
42 Main-leg elevation angle (Amp) deg 87 External work 𝑊𝑊#$% [1/d∙w] 
43 Knee joint angle (Amp) deg 88 Recovery in percentage (𝑅𝑅) % 
44 Ankle joint angle (Amp) deg 89 Amplitude kinetic energy 𝐸𝐸& [1/w] 
45 Main-leg medio-lateral angle (Amp) deg 90 Amplitude potential energy 𝐸𝐸' [1/w] 

LEG/JOINT ANGULAR VELOCITY 91 Amplitude total energy 𝐸𝐸%(% [1/w] 

46 Main-leg velocity (Min) deg/s 92 Maximal correlation between	𝐸𝐸& and 𝐸𝐸'  
47 Knee joint velocity (Min) deg/s 93 Lag between 𝐸𝐸& and 𝐸𝐸' % GC 
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Supplementary Material 2.3 

Number of strides analyzed for each child participant (CH) and the adults (AD) as a group for 
each condition in each analysis. A total of 29 participants were included in the analysis on the 
mechanical energies of the CoM (Energetics), and 18 participants were included in the 
analysis of the effects of kinematic and kinetic parameters (PCA-Clustering). Adult data are 
presented as the median (25th-75th percentile). For the adults, n= 7 for the energetic analysis 
and n = 5 for running PCA-clustering analysis and n = 4 for the walking analysis for the PCA-
clustering. 

Table S2.2: Number of strides analyzed for each child participant (CH) and the adults (AD) as a group 
for each condition in each analysis. 

SUBJ 
AGE (MONTHS) ENERGETICS PCA-CLUSTERING 

Walking Running Walking Running 
CH1 26 24 57 - - 
CH2 37 21 24 - - 
CH3 37 35 61 - - 
CH4 37 22 17 - - 
CH5 40 15 17 13 16 
CH6 59 26 32 26 31 
CH7 61 32 29 31 29 
CH8 70 40 40 - - 
CH9 71 71 38 71 38 
CH10 75 14 30 - - 
CH11 78 64 86 64 83 
CH12 81 22 23 22 23 
CH13 82 26 26 26 26 
CH14 88 29 31 29 31 
CH15 91 15 40 - - 
CH16 92 30 34 30 34 
CH17 93 76 56 76 56 
CH18 97 17 28 - - 
CH19 99 56 62 56 62 
CH20 102 68 45 68 45 
CH21 106 40 45 - - 
CH22 106 71 12 71 12 
      
A1-A7 Adults 39 (32.0-55.5) 44 (28.5-50.0) 53 (39.0-58.0) 50 (41.9-59.5) 
  n=7 n=7 n=4 n=5 
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Supplementary Material 2.4 

The loadings related to the three PCs. The color-coding refers to the loading with a darker 
color meaning a higher loading for that factor and PC. For an overview of the parameters, see 
Supplementary Material 2.2. 

 

Figure S2.3: The loadings related to the three PCs. 
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Supplementary Material 2.5 

Dendrogram showing the split into eight clusters. The clusters one to four (or cluster one and 
two in the four-cluster solution) are the clusters containing mostly the prescribed running 
condition (see Supplementary Material 2.6). Clusters five to eight (or clusters three and four 
in the four-cluster solution), are the clusters containing mostly the prescribed walking 
condition. The y-axis on the figure is a measure for the distance between clusters as measured 
with the correlation distance. The taller the links between two leaf nodes, the longer the leaf 
nodes (or clusters) are situated from each other in the 3D space. 

 

 

Figure S2.4:: Dendrogram showing the split into eight clusters. 

Clustering output for eight clusters. Ordered based on age (months – rounded to the nearest 
whole integer), with the youngest participant on the right side and the adults (A) on the left 
for walking (blue circles) and running (red circles). The size of the clusters (C1-C8) depend on 
the amounts of strides belonging to each cluster, similarly the thickness of the lines 
connecting each cluster with a participant depend on the percentage of data from each 
participant belonging to that cluster. For a full overview of the percentage of strides belonging 
to each cluster, see Supplementary Material 2.6. 
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Figure S2.5: Clustering output for eight clusters. 
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Supplementary Material 2.6 

The percentage of strides from each participant that belongs to each cluster for the four-
cluster solution (left) and eight-cluster solution (right). Numbers in red are the percentage of 
strides smaller than five percent and are not considered in the figures presenting the cluster 
analysis. 

Table S2.3: The percentage of strides from each participant that belongs to each cluster.. 

AGE 4 CLUSTERS 8 CLUSTERS 
 C1 C2 C3 C4 C1 C2 C3 C4 C5 C6 C7 C8 

WALKING            

40      100.0         100.0   
59    16.1 83.9       16.1 83.9   
61    93.1 6.9       93.1 6.9   
71    86.8 13.2       86.8 13.2   
78    72.3 27.7       72.3 26.5 1.2 
81    95.7 4.3       95.7 4.3   
82    42.3 57.7       42.3 57.7   
88    100.0       3.2 96.8     
92    100.0       5.9 94.1     
93    100.0         100.0     
99    100.0       1.6 98.4     
102    100.0       2.2 97.8     
106    58.3 41.7       58.3 41.7   
A1    100.0       100.0       
A2    100.0       100.0       
A3    100.0       100.0       
A4    100.0       98.2 1.8     
A5                   
RUNNING            

40       100.0               100.0 
59   50.0   50.0       50.0       50.0 
61   51.6   48.4       51.6     3.2 45.2 
71   74.6   25.4     1.4 73.2       25.4 
78   100.0         40.6 59.4         
81 4.5 95.5       4.5 45.5 50.0         
82   100.0         34.6 65.4         
88 13.8 86.2       13.8 79.3 6.9         
92   100.0         20.0 80.0         
93 94.7 5.3     13.2 81.6 5.3           
99 7.1 91.1   1.8   7.1 85.7 5.4     1.8   
102 1.5 98.5       1.5 98.5           
106   100.0         42.3 57.7         
A1 100.0         100.0             
A2 97.3 2.7       97.3 2.7           
A3 100.0         100.0             
A4 96.6 3.4       96.6 3.4           
A5 100.0       100               
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Abstract 

Muscle synergies reflect the presence of a common neural input to multiple muscles. Steering 
small sets of synergies is commonly believed to simplify the control of complex motor tasks 
like walking and running. When these locomotor patterns emerge, it is likely that synergies 
emerge as well. We hence hypothesized that in children learning to run the number of ac-
companying synergies increases and that some of the synergies’ activities display a temporal 
shift related to a reduced stance phase as observed in adults. We investigated the develop-
ment of locomotion in 23 children aged 2–9 years of age and compared them with seven 
young adults. Muscle activity of 15 bilateral leg, trunk, and arm muscles, ground reaction 
forces, and kinematics were recorded during comfortable treadmill walking and running, fol-
lowed by a muscle synergy analysis. We found that toddlers (2–3.5 years) and preschoolers 
(3.5–6.5 years) utilize a “walk-run strategy” when learning to run: they managed the fastest 
speeds on the treadmill by combining double support (DS) and flight phases (FPs). In particu-
lar the activity duration of the medial gastrocnemius muscle was weakly correlated with age. 
The number of synergies across groups and conditions needed to cover sufficient data varia-
tion ranged between four and eight. The number of synergies tended to be smaller in toddlers 
than it did in preschoolers and school-age children, but the adults had the lowest number for 
both conditions. Against our expectations, the age groups did not differ significantly in the 
timing or duration of synergies. We believe that the increase in the number of muscle syner-
gies in older children relates to motor learning and exploration. The ability to run with a FP is 
clearly associated with an increase in the number of muscle synergies. 
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Introduction 

Muscle synergies reflect a common neural input to multiple muscles easing the control of 
complex motor tasks like locomotion (Bernstein, 1967; Bizzi & Cheung, 2013). The central 
nervous system can activate large groups of muscles by small sets of descending neural signals 
at specific moments during the gait cycle (Bizzi & Cheung, 2013; d'Avella et al., 2003; Ting & 
Macpherson, 2005). 

When children develop walking skills, the number of muscle synergies that accompany the 
cyclic movement of the lower extremities increases (Dominici et al., 2011). In neonates, two 
muscle synergies are present resembling the reflexive stepping pattern seen at birth, while in 
toddlers two additional are present, i.e., a total of four synergies can be observed that persist 
to and during adulthood (Dominici et al., 2011; Sylos-Labini et al., 2020). The shape of the 
synergies’ waveforms evolves from wide, sinusoidal shapes to more focal ones with shorter 
activation duration from toddlers to preschoolers and adults (Dominici et al., 2011). Here, we 
ask whether there is similar change in the number of synergies and the shape of their wave-
forms during the development of running. Is it generally true that an immature locomotor 
pattern is represented by fewer muscle synergies and less focal activation peaks? 

Running may be defined as having a flight phase (FP) in contrast to walking where there is a 
double support phase (DS). Infants without independent walking experience toddling on a 
treadmill but with body-weight support show a shift from DS to FP at speeds of around 
0.75 m/s (Vasudevan et al., 2016). Children, at the age of 6–18 years can run with FP though 
seemingly only in about 90% of the strides  (Rozumalski, Novacheck, Griffith, Walt, & 
Schwartz, 2015). Given the relatively rare presence of FP, one may expect that children learn-
ing to run employ a so-called walk-run strategy, i.e., a mixture of DS and FP. 

Running in adults differs from walking in that the activation timing changes in several muscles, 
amplitudes increase, or activation profiles may alter all together (Cappellini et al., 2006; 
Hagio, Fukuda, & Kouzaki, 2015; Ivanenko, Cappellini, Poppele, & Lacquaniti, 2008; Yokoyama 
et al., 2016). Muscle synergy analysis revealed, in particular, a shift in timing that is related to 
the activation of the calf muscles in line with a shorter stance phase in running compared to 
walking (Cappellini et al., 2006). One may ask whether such a pattern is also present in chil-
dren during the development and maturation of running. In fact, already without running, the 
peak medial gastrocnemius activity of children at the age of 7–9 years does shift to earlier in 
the gait cycle during walking from ~45% at comfortable speeds to ~25% at fast speeds (Tirosh 
et al., 2013). Yet, it seems that the medial gastrocnemius muscle is pivotal for the develop-
ment of walking as its full-width half-maximum (FWHM) decreases with age in typically de-
veloping children aged 1–12 years (Cappellini et al., 2016). The FWHM is a measure of the 
duration of the peak activation and any reduction of this measure suggests an increased 
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ability to contract the muscle. But how do all these changes relate to (the emergence of) the 
aforementioned, common neural input? 

We sought to answer these questions by investigating the development of both walking and 
running in children aged 2–9 years old. Using electromyographic (EMG) signals from 15 bilat-
eral leg, trunk, and arm muscles, we extracted muscle synergies and related their number and 
waveforms with the ability to run with a FP. We expected the youngest children to make use 
of the afore-introduced walk-run strategy. We also hypothesized that the pivotal role of the 
medial gastrocnemius muscle extends to the development of running and expected its FWHM 
to reduce with increasing age for both walking and running. If this assumption holds, this will 
imply a (gradual) maturation of muscle synergies toward resemblance of adult patterns by 
means of an increased number of synergies accompanied by a temporal shift related to a 
reduced stance phase. To anticipate, we failed to find support for some of these hypotheses. 

Materials and Methods 

Participants 

Thirty healthy participants were included in this study (23 children aged 2–9 years old and 7 
young adults; see Table 3.1) with exclusion of those with known developmental disease or 
neurological disorders. Participant groups were selected based on the ability to manage the 
speeds on a treadmill with FP (~ running, see below): toddlers (range: 25.7–40.4 months), 
preschoolers (range: 59.0–75.0 months), school-age (range: 78.4–106.1 months), and adults 
(range: 22–28 years).  

Table 3.1: Participant characteristics. Mean (SD) 

 TODDLERS PRESCHOOLERS SCHOOL-AGE ADULTS 
AGE 35.3 (5.6) months 66.1 (6.5) months 92.9 (9.5) months 24.15 (2.5) years 
GENDER (M/F) 2/3 3/3 6/6 4/3 
HEIGHT [CM] 96.2 (2.8) 117.2 (7.7) 130.2 (6.8) 178.7 (5.7) 
WEIGHT [KG] 15.0 (2.0) 20.8 (3.3) 25.4 (4.9) 71.3 (8.3) 

Adult participants and guardians/parents of the children provided written informed consent 
in compliance with the Declaration of Helsinki. Ethical approval was given by The Scientific 
and Ethical Review Board of the Faculty of Behavioural & Movement Sciences, Vrije Universi-
teit Amsterdam, Netherlands (file number: VCWE-2016-149R1). 

Setup 

Participants were instructed to walk or run on the treadmill (Motek Medical BV, Culemborg, 
the Netherlands) at a comfortable speed. Each of these conditions was repeated until a min-
imum of 20 consecutive strides had been recorded, where possible (Oliveira, Gizzi, Farina, & 
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Kersting, 2014). When more than twenty gait cycles were recorded, the middle twenty cycles 
were chosen for analysis. 

Walking and running were practiced and comfortable speeds were first determined by start-
ing at a slow pace that was increased in steps of 0.1 km/h until the participant reported a 
comfortable speed. In two instances, participants were unable/unwilling to continue after 
practicing and we included the data recorded during these familiarization trials for analysis 
(one for walking and another for running). 

Children participants wore a full body climbing harness (CAMP Bambino Full Body Harness, 
CAMP CO, United States) modified to also have a secure attachment point on the back at all 
times when on the treadmill. All participants wore own shoes for the duration of the experi-
ment. 

Data Acquisition 

Behavior 

Vertical, mediolateral, and anteroposterior ground reaction forces were sampled at 1 kHz for 
every trial via the two force plates in the instrumented treadmill. 

Foot switches (piezo-resistive pressure sensitive sensors: Zerowire; Cometa, Bareggio, Italy) 
were placed on the skin on the heel and the head of the first metatarsal underneath the foot 
and were secured with tape; shoes and socks were placed over the foot switches. Foot switch 
data were sampled at 2 kHz. 

Kinematic data were recorded bilaterally using an active marker system (Optotrak motion 
system, NDI Measurement Sciences, Ontario, Canada) and sampled at 100 Hz. Two cameras 
were placed diagonally behind the treadmill, and one was placed diagonally in front on the 
right-hand side of the participant. Single markers were attached to the right head of 5th met-
atarsal, right lateral malleolus (LM), right lateral femoral epicondyle (LE), and right greater 
trochanter (GT), right and left calcaneus, right and left glenohumeral joint, right and left lat-
eral humeral epicondyle, and right and left ulnar styloid. Here, kinematic and foot switch data 
merely served for step detection in the case the vertical ground reaction data were unreliable. 

Electrophysiology 

Bipolar electromyographic (EMG) signals were recorded with a wireless system (Mini wave 
plus, Zerowire; Cometa, Bareggio, Italy; sampled at 2 kHz after online band-pass filtering be-
tween 10 and 500 Hz) using pediatric Ag-AgCl pre-gelled EMG disk-electrodes for children 
(inter-electrode distance: 19 mm: DuoTrode, Myotronics, Kent, WA, United States) and pre-
gelled Ag-AgCl electrodes for adults (BlueSensor H5; Ambu, Ballerup, Denmark). Skin was 
cleaned with alcohol and excess hair was removed prior to electrode placement on the bulk 
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of the muscle belly parallel to the muscle fiber direction, conform SENIAM recommendations 
(Hermens et al., 1999). 

We targeted the following 16 bilateral muscles: tibialis anterior (TA), gastrocnemius medialis 
(MG), biceps femoris (BF), vastus medialis oblique (VMO), rectus femoris (RF), tensor fascia 
latae (TFL), adductor longus, gluteus maximus (GM), erector spinae–L2 level (ES), latissimus 
dorsi (LD), deltoid–anterior part (AD), deltoid–posterior part (PD), trapezius–descending part 
(TRAP), triceps brachii (TB), biceps brachii (BB), and brachioradialis (BR). Adductor longus was, 
on the basis of the quality of the recorded muscle activity, excluded for all participants for 
further analysis leaving 15 bilateral muscles. 

A single participant was recorded in a different lab using a slightly different setup. The kine-
matics was measured at 100 Hz using a passive marker system (Vicon Motion Systems Ltd., 
Oxford, United Kingdom). The reflective markers (14 mm in diameter) were placed bilaterally 
in the same positions as the other participants. Twelve cameras were placed around the ceil-
ing of the room. The treadmill (Motek Medical BV, Amsterdam, the Netherlands), measured 
only vertical ground reaction forces. The EMG protocol and equipment did not differ from the 
other participants. 

Data Analysis 

Behavior 

While step events were mainly detected based on the vertical ground reaction forces (𝐹𝐹"), 
they were supplemented with the events detected from the heel markers and foot switches 
when 𝐹𝐹" data were not sufficient for the event detection. The 𝐹𝐹" were filtered with a Savitzky-
Golay filter (3rd order, 121 framelength; Savitzky & Golay, 2002). Heel strike (HS) and toe-off 
(TO) were defined as the first sample crossing the threshold [mean(𝐹𝐹") /10]. First and last HS 
and TO were excluded for further analysis. Heel markers were used to detect step events from 
the kinematics (Roerdink et al., 2008). The foot switch detection was based on an on/off al-
gorithm. Foot switch data and kinematic data were re-sampled to 1 kHz for this application. 
All events were visually verified. The FP and DS were determined for up to twenty strides for 
every participant and condition. 

All behavioral data were time-normalized to the right HS. Based on HS and TO, the percentage 
stance and swing of each gait cycle were determined. Velocity was normalized to leg length 
yielding the walking Froude number (Alexander & Jayes, 1983) 

𝐹𝐹𝐹𝐹 =
𝑣𝑣&

𝑔𝑔 ∙ 𝑙𝑙 

where, 𝑣𝑣 denotes stride speed as measured by the treadmill (m/s), 𝑔𝑔 represents the gravita-
tional constant (9.81ms-2) and 𝑙𝑙 is the leg length (m) as the combined measured distance of 
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thigh (GT-LE) and shank (LE-LM). Normalizing to the walking Froude number is considered 
suitable when comparing gait patterns at different speeds in participants of different size 
(Ivanenko, Dominici, et al., 2004). 

Electrophysiology 

Electromyographic data were visually inspected, and artifacts were removed using a custom-
written burst-detection algorithm. EMG data were high-pass (2nd order bi-directional 
Butterworth filter at 20 Hz; De Luca, Gilmore, Kuznetsov, & Roy, 2010; Willigenburg, 
Daffertshofer, Kingma, & van Dieen, 2012) and notch filtered (bi-directional stop notch filter 
around k·50 Hz, k = 1,…,10, with half-bandwidth of 0.5 Hz). Subsequently, EMG data were 
rectified using the modulus of the analytic signal and finally low-pass filtered (bidirectional 
2nd order filter at 10 Hz) to obtain the corresponding EMG envelopes (Oliveira et al., 2016). 
These envelopes were time-normalized to 200 samples per gait cycle. Right-side EMG signals 
were normalized to the right HS and left-side EMG normalized to the left HS.  

To characterize differences in the duration of EMG activity, we computed the FWHM. The 
FWHM was calculated as the number of samples exceeding each cycle’s half maximum, after 
subtracting the cycle’s minimum. We determined FWHM for each condition as the grand av-
erage within groups and across right and left side and expressed it as a percentage of the gait 
cycle. While we determined FWHM for every muscle per group, in view of our hypothesis we 
also expressed FWHM of the MG muscle as a function of age. Moreover, we estimated the 
phase shift 𝜏𝜏	between the walking and running mean activity patterns of the MG muscle 
(Ivanenko, Poppele, et al., 2004) using the cross-correlation. The cross-correlation was com-
puted as (Nelson-Wong, Howarth, Winter, & Callaghan, 2009): 

𝑅𝑅>?(Δ) = 	
∫𝛼𝛼(𝑡𝑡) ∙ 𝛽𝛽(𝑡𝑡 + Δ)𝑑𝑑𝑡𝑡

i∫𝛼𝛼&(𝑡𝑡)𝑑𝑑𝑡𝑡 ∙ ∫ 𝛽𝛽&(𝑡𝑡)𝑑𝑑𝑡𝑡
 

where 𝛼𝛼 and 𝛽𝛽 denote the two mean-subtracted waveforms during walking and running and 
Δ refers to a time lag between the two. Then, the maximum correlation peak was determined 
as well as its corresponding time lag 𝜏𝜏. Positive 𝜏𝜏 values indicate a lag of the MG signal during 
walking relative to running. To ease interpretation, we expressed the time lag 𝜏𝜏 in percent of 
the gait cycle. 

For the subsequent synergy analysis, the concatenated EMG envelopes (concatenation leads 
to higher reconstruction accuracy (RA); Oliveira et al., 2014) were amplitude normalized to 
the mean value for every individual muscle (Goudriaan et al., 2018; Halaki & Gi, 2012; 
Torricelli et al., 2014). To increase the signal-to-noise ratio for the synergy analysis, the muscle 
synergy analysis was performed on each participant side (Clark, Ting, Zajac, Neptune, & Kautz, 
2010), and thus, EMG envelopes were concatenated in a (15 muscles) × (20 strides × 200 sam-
ples) matrix for every condition and side for each participant. To ease comparison of our 
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experimental findings with the literature, we also performed the muscle synergy analysis on 
only the lower limb muscles (TA, MG, BF, VMO, RF, TFL, GM, and ES), which resulted in an 
(8 muscles) × (20 strides × 200 samples) matrix for each participant, condition, and side (see 
Supplementary Material 3.1 for details). 

For dimensionality reduction we first employed a principal component analysis (PCA) on the 
mean-centered data (Boonstra et al., 2015). The appropriate number of muscle synergies was 
determined as the minimum number required to explain 80% of the variance. Then, a rank-
reduced dataset was reconstructed, and the mean was added back. Subsequently, we em-
ployed non-negative matrix factorization (NMF) as a decomposition tool (Dominici et al., 
2011; Lee & Seung, 1999; Rabbi et al., 2020; Steele, Tresch, & Perreault, 2015; Tresch et al., 
2006) to identify the relevant muscle synergies. Similar to PCA, NMF is an optimization 
method but is supplemented by the constraint that both the extracted weighting coefficients 
and activation waveforms are non-negative. This accounts for the constructive (non-negative) 
superposition of neural and muscle activations. Following the conventional NMF approach, 
weightings 𝑊𝑊 and activation waveforms 𝐶𝐶 were estimated by minimizing the Frobenius norm 
between (rank-reduced) envelope data 𝐸𝐸 and the sum of synergies (𝑊𝑊 ∙ 𝐶𝐶, i.e., weight-
ings × waveforms): 

‖𝐸𝐸 −𝑊𝑊 ∙ 𝐶𝐶‖! = min 

𝐸𝐸 denotes the aforementioned data, i.e. it resembles an 𝑚𝑚 × 𝑡𝑡 matrix (𝑚𝑚 = 15 muscles and 𝑡𝑡 
= 20 strides × 200 samples), the weighting coefficients 𝑊𝑊 comprise an 𝑚𝑚 × 𝑛𝑛 matrix (𝑛𝑛 = num-
ber of synergies), and 𝐶𝐶 contains the activation waveforms (𝑚𝑚 × 𝑡𝑡 matrix) (Lee & Seung, 
1999). We employed a multiplicative algorithm (Berry, Browne, Langville, Pauca, & 
Plemmons, 2007, implemented in Matlab, The Mathworks, Natick, MA, United States, ver. 
2019b; 200 replicates, 3000 iterations, convergence threshold 10-6 and termination tolerance 
10-8) that requires an a-priori choice of the number of muscle synergies. Capitalizing on the 
optimized Frobenius norm, we also estimated the RA following (Kerkman, Bekius, Boonstra, 
Daffertshofer, & Dominici, 2020; Zandvoort, van Dieen, Dominici, & Daffertshofer, 2019) that 
is defined as 

𝑅𝑅𝑅𝑅 = 1 −
‖𝐸𝐸 − (𝑊𝑊 ∙ 𝐶𝐶)‖!

‖𝐸𝐸‖!
 

In addition, we verified that the selected number of synergies adequately reconstruct the 
activity of each muscle by computing the RA per muscle, condition, and participant side.  

The output of the NMF is (pseudo-)random for every optimization run. Hence, we ordered 
the outcomes by their correlation across participants. To do so, a separate NMF analysis was 
carried out on the grand-average of the adult data and the waveforms were arranged based 
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on the timing of the main peaks of the activation pattern (Cappellini et al., 2006; Santuz et al., 
2020). Subsequently, this serve as a “model-order” for the outputs of the NMF from all other 
participants which were then correlated to that model-order and ranked based on the largest 
Pearson correlation coefficient. 

Finally, we determined the FWHM of every activation waveform for each participant side and 
the time lag 𝜏𝜏	between walking and running activation waveforms. 

Statistics 

Descriptive statistics included the calculation of the mean and standard deviation (SD). 

Behavior 

To test for effects of age on FP and for effects of age and condition (levels: instructed walking 
and running) on DS, we used two linear regression models. Next to main effects, the second 
one also served to identify interactions age × condition. The significance threshold was set to 
 a = 0.05. 

Group differences in stance duration, stride duration, and Froude values were assessed using 
Kruskal-Wallis tests for every condition (with corresponding Bonferroni correction for multi-
ple comparison); note that Kolmogorov-Smirnov tests revealed significant deviations from 
normality arguably due to small group sizes, which let us choose for non-parametric testing. 
Only p-values below 0.01 were considered significant in order to correct for the multiple cor-
rections. 

Electrophysiology 

Along the same lines of the behavioral data, the time lag between walking and running and 
the FWHM of muscle activations and the waveforms of the muscle synergies were compared 
non-parametrically for every condition (Kruskal-Wallis tests with Bonferroni correction). 
Moreover, we detailed the age-dependency of the MG’s FWHM by fitting exponentially satu-
rating functions. To quantify the corresponding goodness-of-fit we report the adjusted R2-
value unless specified otherwise. 

Results 

We failed to record the aimed-for minimum of 20 strides for all participants (between 14 and 
20 strides were analyzed). All the children in the toddler group were assisted with handhold 
by either a researcher or their parent/guardian (N = 5). Yet, we are confident that this did not 
affect the level of body-weight support during locomotion as we verified the level of vertical 
ground reaction forces via the toddler’s body weight (range of body-weight support was 0-
7%). The conditions referred to in the following are the instructed conditions. 
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Behavioral Results 

As expected, the young children in this study used a combination of DS and FP when running 
on a treadmill (see Figure 3.1A). For FP there was a significant main effect of age (𝑝𝑝	< 0.001) 
and the FP increased with increasing age. A similar significance could be established for the 
main effect of age on DS (𝑝𝑝	< 0.001) but, opposite to FP, DS decreased with increasing age. 
And there was a significant main effect of condition on DS (𝑝𝑝	< 0.001), which turned out to be 
smaller during running than during walking. Moreover, we found a significant age × condition 
interaction effect on DS (𝑝𝑝	= 0.0012); see Table 3.2 for overview. 

Table 3.2: Linear regression estimates 

 FACTOR ESTIMATE SE 𝒕𝒕 𝒑𝒑-VALUE 

D𝑺𝑺 Intercept 29.59 0.39 74.95 0 
 Age -0.02 0.00 -6.31 4×10-10 
 Condition Running -22.79 0.55 -41.20 <2×10-16 
 Age:Condition Running -0.01 0.00 -3.25 0.0012 

FP Intercept 3.95 0.59 6.82 2×10-11 
 Age 0.07 0.00 19.73 <2×10-16 

Abbreviations: DS, double support phase; FP, flight phase; SE, standard error; 𝑡𝑡, t-statis-
tic. 

We could not establish significant differences in stride duration between groups for walking, 
while during running stride duration of preschoolers and the school-age group differed signif-
icantly from that of the adults (𝑝𝑝 = 0.0008, 𝑝𝑝	= 0.0061, respectively, Figure 3.1B). We also 
found a significant difference in stance duration between the toddlers and both the school-
age group and the adults, both during walking (𝑝𝑝 = 0.0072, 𝑝𝑝 = 0.0077, respectively) and run-
ning (𝑝𝑝 = 0.0045, 𝑝𝑝 = 0.0003, respectively). And the stance duration of preschoolers differed 
significantly from that in the adults for running (𝑝𝑝 = 0.0095); see Figure 3.1C. 

The aforementioned differences are particularly interesting since for dimensionless speed we 
only found significant differences between toddlers and adults during walking (𝑝𝑝 = 0.0027) 
and between toddlers and adults during running (𝑝𝑝 = 0.0061); see Figure 3.1D. 
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Figure 3.1: Temporal gait parameters. (A) Percentage double support and flight phase during walking 
(blue) and running (red). Flight phase is depicted with negative numbers. Vertical dotted lines separate 
the different groups: Toddlers, Preschoolers, School-age, and Adults, (B) Stride duration for walking 
and running, (C) Stance duration for walking and running, (D) Froude number for walking and running. 
Abbreviations: DS, double support; FP, flight phase; s, seconds; T, toddlers; P, preschoolers; S, school-
age; A, adults; V, velocity, g, gravitational constant; L, leg length; * = 𝑝𝑝 < 0.01, ** = 𝑝𝑝 < 0.001. 

Electrophysiology 

The ensemble-averaged EMGs of all muscles depicted in Figure 3.2A appeared consistent with 
those reported in the literature for school-age and adult participants (e.g., Cappellini et al., 
2006; Cappellini et al., 2018; Rozumalski, Steele, & Schwartz, 2017; Tirosh et al., 2013). 

During walking, lower leg activity had about the same overall modulation across groups with 
wider peaks of activity in the toddler group that was reduced in the older groups. Activity 
patterns in arm muscles were relatively flat during the gait cycle across all groups, while trunk 
muscles showed a clear modulation with increasing intensity in all the groups, but the adults. 
The gluteus maximus activity showed only a single major peak in the beginning of the stance 
phase in the toddlers, while in adults two isolated peaks were present with the additional one 
being early swing, in agreement with earlier reports (Cappellini et al., 2016; Cappellini et al., 
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2006; Dominici et al., 2011; Kerkman et al., 2020; Olree & Vaughan, 1995). Likewise, the erec-
tor spinae activity showed a single, prolonged activation peak for about 50% of the gait cycle 
in the toddlers, whereas in adults we could observe two distinct peaks. 

During running, EMG activity increased in all muscles, but most pronounced in the adults’ 
lower extremities. In the toddlers, the EMG patterns of upper trunk muscles largely agreed 
with those of the other groups, but peak activity was less pronounced. A clear pattern of 
activation in arm muscles was visible in all groups except toddlers with more consistent EMG 
activity in the adults. The upper trunk (TRAP and PD) muscles changed from a pattern with 
two negligible peaks to a pattern with two prominent ones. The lower trunk muscle (ES) 
changed from a unimodal pattern with a small burst of activity during heel strike to a promi-
nent bimodal pattern with bursts of activity in early stance and mid-swing (Figure 3.2A). 

As expected, the most notable differences between the two conditions (instructed walking 
vs. running) were found in the time lag of peak activity of the calf muscle (MG) toward earlier 
in the gait cycle during running. The toddlers displayed a significantly smaller shift than the 
adults (p= 0.0071) and, when looking at all groups, there was a clear trend of shift increase 
with increasing age. The time lag in the toddler group had a mean (±SD) of 8.8 ± 8.0% of the 
gait cycle, where the others’ time lags were 16.3 ± 5.7%, 18.5 ± 7.8%, and 20.5 ± 7.1% (for 
preschoolers, school-age, and adults, respectively); cf. Figure 3.5B. 

For the MG’s FWHM we found a decreasing function of age for both instructed walking and 
running conditions with goodness-of-fit values of R2 = 0.26 and R2 = 0.30, respectively (Figure 
3.2C and 2D). 

62

Chapter 3

165404 Bach BNW.indd   62165404 Bach BNW.indd   62 28-03-2023   12:0728-03-2023   12:07



 

 

Figure 3.2: Characteristics of EMG signals. (A) Grand averages of 15 EMG activity patterns for walking 
(blue) and running (red) for all four groups, data are plotted vs. normalized gait cycle, relative duration 
of stance varied across groups, a bar indicates an amount of variability in the stance phase duration 
across groups. (B) Phase shift between the peak activation of medial gastrocnemius (MG) for walking 
and running for each group, positive value indicates a lag of walking signal relative to running signal. 
(C + D) Full-width half-maximum (FWHM) of the MG activity as a function of age for walking (C) and 
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running (D). Continuous lines represent exponential fittings, note the decrease in values with age. (E) 
FWHM of all muscles (means + SD) for the four groups. Abbreviations: TA, tibialis anterior; MG, medial 
gastrocnemius; BF, biceps femoris; VMO, vastus medialis oblique; RF, rectus femoris; TFL, tensor fascia 
latae; GM, gluteus maximus; ES, erector spinae; LD, latissimus dorsi; AD, anterior deltoid; PD, posterior 
deltoid; TRAP, trapezius; TB, triceps brachii; BB, biceps brachii; BR, brachioradialis; T, toddlers; P, pre-
schoolers; S, school-age; A, adults; FWHM, full-width half-maximum. * = 𝑝𝑝 < 0.01, ** = 𝑝𝑝 < 0.001, 
*** = 𝑝𝑝 < 0.0001. 

Last but not least, we found significant differences in the FWHM between groups for eight 
muscles in the walking condition and six muscles in the running condition (Figure 3.2E). In the 
lower leg muscles, we found significant differences between the toddler group and the adults 
(TA: 𝑝𝑝 = 0.00012, MG: 𝑝𝑝 = 0.00011, BF: 𝑝𝑝 < 0.00006) for walking (MG: 𝑝𝑝 = 0.0017, BF: 
𝑝𝑝 = 0.0018) and for running; between the preschoolers and the adults in the TA muscle during 
walking (𝑝𝑝 = 0.0064) and the MG and BF muscles during running (𝑝𝑝 = 0.0009, 𝑝𝑝 = 0.00017, re-
spectively); and between school-age and adults in the BF muscle during running (𝑝𝑝 = 0.0048). 
In the upper leg muscles the only differences were found in the walking condition between 
the preschoolers and the adults in the RF, TFL, and GM muscles (𝑝𝑝 = 0.0021,	𝑝𝑝 = 0.0097, 
	𝑝𝑝 = 0.009, respectively). In the lower trunk muscles the ES muscle was significantly different 
between toddlers and the school-age group, toddlers and adults, the preschoolers and the 
adults, and finally the school-age children and the adults for walking (𝑝𝑝 = 0.002, 𝑝𝑝 < 0.00001, 
𝑝𝑝 = 0.0001, 𝑝𝑝 = 0.0085, respectively) but also the toddlers and preschoolers were significantly 
different from the adults (𝑝𝑝 = 0.0071, 𝑝𝑝 = 0.0024, respectively) during running. The LD was 
significantly different between all children groups and the adults for walking (𝑝𝑝 < 0.00001, 
𝑝𝑝 = 0.0056, 𝑝𝑝 = 0.0006, respectively) and between the preschoolers and adults for running 
(𝑝𝑝 = 0.0054). In the upper trunk muscles the only differences were visible in the running con-
dition with significant differences between the school-age group and adults in AD 
(𝑝𝑝 = 0.00026), and the toddlers as well as the preschoolers were significant different from the 
adults in TRAP (𝑝𝑝 = 0.0004, 𝑝𝑝 = 0.0053, respectively). No significant differences were found in 
the arm muscles for any condition. 

Number of Synergies 

The results for the analysis involving all muscles are illustrated in Figure 3.3. Across participant 
sides and conditions, PCA revealed that four to eight components were needed to explain 
80% of the variance with the highest numbers needed for the walking condition compared to 
the running condition (Figure 3.3A). In the toddlers walking, 70% of the group required six 
synergies (range: five-seven), while in the preschoolers and the school-age groups, the ma-
jority required seven synergies (50% and 55%, respectively, range: four-seven and five-eight, 
respectively), and finally in the adult group five-six synergies were needed with 72% requiring 
five synergies. For running, 80% of the toddlers required six synergies (range: five-six), in the 
preschoolers 50% of them required six synergies (range: five-seven), and school-age group 
there was an almost even distribution between participants requiring six and seven synergies 
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(40%, respectively, range: four-seven synergies), whereas in the adults five synergies ex-
plained the variance of the data for 70% of the participants, with a range of four-five. After 
NMF, the percentage of RA remained approximately 70% across groups and conditions (Fig-
ure 3.3B) and RA across single muscles exceeded 70% as a group average across conditions. 

The results of the lower limb analysis and the number of synergies extracted can be found in 
Supplementary Material 3.1. Between two and five synergies were needed to explain the var-
iance across all participants and conditions with the majority of the participants requiring four 
synergies during walking and the majority requiring three during running. Similarly, to the 
full-body analysis, the percentage RA on the lower limb analysis varied around 70%. 

 

Figure 3.3: Number of synergies and accuracy. (A) Number of synergies needed to account for the cycle-
to-cycle variability of EMG activity during walking and running for each group as determined by prin-
cipal component analysis PCA (>80% of variance). (B) The corresponding reconstruction accuracy (RA) 
after rank-reduction with PCA followed by NMF. (C) The RA (mean ± SD) for each muscle and condition 
(blue = walking, red = running). Abbreviations: TA, tibialis anterior; MG, medial gastrocnemius; BF, 
biceps femoris; VMO, vastus medialis oblique; RF, rectus femoris; TFL, tensor fascia latae; GM, gluteus 
maximus; ES, erector spinae; LD, latissimus dorsi; AD, anterior deltoid; PD, posterior deltoid; TRAP, 
trapezius; TB, triceps brachii; BB, biceps brachii; BR, brachioradialis; T, toddlers; P, preschoolers; S, 
school-age; A, adults. 
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Structure of Muscle Synergies 

Based on the number of muscle synergies identified per participant in the previous section, 
the activation waveforms and corresponding weighting coefficients were grouped; cf. Figure 
3.4. Every waveform showed a peak at a specific moment during the gait cycle. In Figure 3.4, 
the first waveform for all groups represented the loading response around the foot contact 
moment. On average, the lower limb muscles among others, the BF, VMO, and GM largely 
contributed to the first synergy during walking and running in the toddlers, while for the older 
children and the adults VMO contributed more to it. The second waveform peaked at mid-
stance and due to the relatively shorter stance phase for running compared to walking, this 
pattern was shifted to earlier in the gait cycle during running compared to walking. As ex-
pected, this waveform was mostly influenced by the MG (Cappellini et al., 2006). The third 
waveform peaked prior to foot off in the walking condition across groups, and after foot-off 
for the running condition except for the toddler group, where it peaked around the foot-off 
event. This synergy was primarily influenced by the ES and the other trunk and arm muscles 
during walking and running. The fourth waveform reached its maximum at the early swing 
and was dominated by the TA muscle, presumably because the foot needs to clear the floor 
at this moment in the gait cycle, whereas the fifth waveform peaked at the end of swing in 
preparation for the foot contact. Higher order waveforms, if present, were more variable be-
tween participants and less defined when it comes to the main peak: the fifth synergy was 
not dominated by any particular muscles but predominantly influenced by the trunk and arm 
muscles, and this applies also to the sixth, seventh, and eighth synergies when present across 
groups. 
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Figure 3.4: Muscle synergy structure for the four groups for walking (left; in blue) and running (right; 
in red). Vertical dotted line in activation timing plots represents the end of the stance phase. Each 
colored line represents a participant side, leading to one line for right side and one line for left side for 
each participant resulting in a total of (n=10) for the toddler group, (n=12) for the preschoolers, (n=24) 
for the school-age group, and (n=14) for the adult group. Black lines represent the mean. Y-axis is in 
arbitrary units. In the weighting plots, each colored bar represents the weighting coefficient for one 
participant side, the weightings are ordered based on their size. The black outlines represent the mean 
for the group. Abbreviations: TA, tibialis anterior; MG, gastrocnemius medialis; BF, biceps femoris; 
VMO, vastus medialis oblique; RF, rectus femoris; TFL, tensor fascia latae; GM, gluteus maximus; ES, 
erector spinae; LD, latissimus dorsi; AD, anterior deltoid; PD, posterior deltoid; TRAP, trapezius; TB, 
triceps brachii; BB, biceps brachii; and BR, brachioradialis. 

Using FWHM for the temporal activation waveforms (Figure 3.5), we found a significant dif-
ference between the toddler group and adult group in the third waveform in walking 
(𝑝𝑝 = 0.0013). For running, the only significant differences were found in waveform four be-
tween the preschoolers and adults (𝑝𝑝 = 0.0084) and in waveform five between the school-age 
group and the adults (𝑝𝑝 = 0.0074). There was a trend toward a larger FWHM in the younger 
groups for waveform two in walking, and a trend toward a reduction in the FWHM in running 
with increasing age, but with a similar duration of the FWHM in the adult group compared to 
the toddlers in running. There were no significant differences between groups for the phase 
shift of the activation waveforms between walking and running due to the large variabilities 
between participant sides. 

 

Figure 3.5: FWHM of consistent activation waveforms and phase shift between walking and running 
activation waveforms. (A) FWHM of all waveforms as a function of the percentage of the gait cycle for 
each group. Colour-coding refer to the groups. (B) Phase shift as a function of the gait cycle, determined 
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using the cross-covariance between the waveforms for walking and running. Means and standard 
deviations are given per group. Abbreviations: FWHM, full-width half-maximum. * = 𝑝𝑝 < 0.01. 

Previous findings in adults from Cappellini et al. (2006) showed a characteristic time lag in the 
temporal activation pattern corresponding to the second synergy (weighted primarily on the 
calf muscles) to an early moment in the gait cycle in running compared to walking. We found 
a similar phase shift in all groups but no significant differences between the four groups. 

Discussion 

Children make use of a walk-run strategy when learning to run. A weak exponential relation-
ship between age and the FWHM of the MG muscle for both walking and running indicates 
this muscle to be important for development. We found a varying number of synergies be-
tween participant sides when investigating the muscle synergies during comfortable walking 
and running in 15 leg, trunk, and arm muscles in four age groups. It seems that a smaller 
number of synergies are active in the toddler group and adult groups compared to the pre-
schoolers and school-age groups. Despite tendencies to wider activation patterns in the 
youngest groups, there were few significant differences between the groups. Yet, we did not 
find any significant differences in time lags between activation patterns between walking and 
running across the four groups. 

Behavioral Results 

We found very similar stride duration and normalized speed across groups, with only few 
significant differences. However, we found several significant differences in the stance dura-
tion across groups in the running condition (Figure 3.1C). This difference in stance duration 
appears correlated to the split of the groups, which was based on the ability to manage the 
running condition with a FP; cf. Figure 3.1A. Here it seems that a longer stance duration with 
decreasing age is directly related to the reduced ability to run with a FP. 

There are two traditional ways of defining running: having a FP or the kinetic and potential 
energies of the center of mass being in-phase. Here, we argue that all children were running 
despite the lack of a FP. That is, they did not have a FP in the instructed running conditions, 
but their double support phases differ from the double support phases observed during walk-
ing (see, e.g., Table 3.2: Linear regression estimates). Hence, we refer to this as making use of 
a “walk-run strategy.” Our previous research into the development of mature running pat-
terns revealed that even in young children walking and running are distinguishable from each 
other and that a multitude of kinetic and kinematic parameters can serve to discriminate be-
tween immature and mature gait patterns (Bach et al., 2021a). 

3

69

Muscle synergies during treadmill locomotion

165404 Bach BNW.indd   69165404 Bach BNW.indd   69 28-03-2023   12:0728-03-2023   12:07



 

Muscle Activity 

Tirosh et al. (2013) found that the difference of the peak MG activation for children aged 7-9 
years old was around 20% of the gait cycle between walking at comfortable and fast speeds. 
In this study we found a shift of around 9% of the gait cycle for the toddlers (2-3.5 years), 
increasing to around 16% for preschoolers (3.5-6.5 years) and 19% for school-age (6.5-9 
years). Put differently, the shift between walking and running in our oldest children group 
was comparable to what Tirosh et al. (2013) found in their study between walking and fast 
walking. The fast walking speed in the study of Tirosh et al. (2013) were of similar speed as 
the comfortable running speeds in this study for the oldest children (0.65-0.75 Froude vs 0.75 
Froude in our study). 

To test the hypothesis of the existence of a walk-run strategy, we examined the EMG patterns 
in the children for four types of locomotion: prescribed running with only FP, prescribed run-
ning with only DS, prescribed running with a mix of FP and DS within the gait cycle, and pre-
scribed walking (see Supplementary Material 3.2). We found that the EMG patterns corre-
sponding to the prescribed running condition are more similar to each other despite the lack 
of FP in terms of amplitude and pattern compared to the EMG patterns of the walking condi-
tion. 

Number of Synergies 

When employing the NMF algorithm, certain post hoc decisions have to be made, the most 
important being the number of synergies to run the NMF algorithm over. The most common 
methods to determine this number is to either apply a threshold or to calculate the “best-
linear-fit” (e.g., Cheung, d'Avella, Tresch, & Bizzi, 2005; d'Avella, Portone, Fernandez, & 
Lacquaniti, 2006). The thresholds are applied to the centered 𝑅𝑅&-value (e.g., Booth et al., 
2019; Delis, Panzeri, Pozzo, & Berret, 2014; Oliveira et al., 2016; Santuz et al., 2020; Short, 
Damiano, Kim, & Bulea, 2020; Singh, Iqbal, White, & Hutchinson, 2018), the uncentered 𝑅𝑅&-
value (e.g., Kim, Bulea, & Damiano, 2018; Steele, Munger, Peters, Shuman, & Schwartz, 2019; 
Torres-Oviedo, Macpherson, & Ting, 2006), and the RA based on Frobenius norm (Kerkman 
et al., 2020; Zandvoort et al., 2019). Here, we opted for a different approach in that we first 
applied a PCA algorithm to the data as the outcome of the PCA is more likely to converge. 
After applying the PCA with a set threshold of 80% of the variance of the data explained, the 
data was reconstructed and after this, the NMF algorithm was applied. One may argue that 
continuing with the PCA rank-reduced dataset would be sufficient for a muscle synergy anal-
ysis. Following this route, however, may hamper the physiological interpretation of the out-
come due to negative weightings and the interpretation of them. When applying NMF, the 
outcome is constrained to be positive which corresponds to the summation of muscle con-
tractions which by hypothesis are always positive. We confirmed that applying PCA followed 
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by NMF did not greatly influence the amount of signal content lost and as such is a sound 
approach for the determination of muscle synergies during locomotion tasks. 

We hypothesized the muscle synergies for running to “gradually” mature by means of an in-
creased number of synergies. Our data, however, did not reveal this. Instead, we found an 
increase in the number of synergies with age but with a much larger number of synergies 
across children groups compared to the adults with a relatively larger number of synergies in 
the older children compared to the youngest children. Combined with what is known from 
motor learning and the variability we maintain in the data by concatenating across strides, 
the large range of synergies needed across groups and conditions to explain the variance of 
the data seems related to motor learning and optimizing the locomotion pattern. This is also 
visible in the relatively larger percentage of participant sides in the preschoolers and school-
age groups needing more than six synergies in the walking condition and in the same two 
groups in the running condition. The relatively larger number of synergies required to explain 
the same variation could be due to exploration and motor learning where the lack of this 
increase in the toddler group could be due to the use of a “simpler” locomotor strategy to 
manage the tasks (Dominici et al., 2010). Adults have fine-tuned their locomotion patterns 
and thus we see a comparatively low number of synergies across all participant sides and 
conditions. The duration of the peaks of the activation patterns computed using the FWHM 
confirm this finding, that we consider a trend toward activation bursts for all synergies and 
conditions compared to the adults, who have indeed the same number of synergies as the 
toddlers. Another reason for the different number of synergies across groups could be due to 
splitting of synergies, also known as fractionization. It has been found that children aged 3-5 
years, all with the ability to run over ground with a FP, show synergies that later split into 
more synergies for novice adult runners (Cheung et al., 2020). Likewise, the study also showed 
that from sedentary adults to elite adult runners, a merging of synergies occurred, which sug-
gests that with experience, a smaller number of synergies are needed as a larger number of 
muscles is represented in each synergy. That is confirmed with the findings of this study. We 
found an increase in number of synergies from the toddlers to the school-age group, and a 
subsequent decrease of the number of synergies in the adult group. 

Structure of Muscle Synergies 

We focused the analysis on all 15 muscles recorded from the lower limb, trunk, and upper 
limb, but also carried out an analysis on a subset of these muscles in order to confirm the 
findings from the literature where the main focus is often on the lower limb muscles (Supple-
mentary Material 3.1). We found that the number of synergies across groups were much 
lower and comparable to what has previously been found in walking in children and adults 
(e.g., Dominici et al., 2011; Hinnekens, Berret, Do, & Teulier, 2020; Mileti et al., 2020; Oliveira 
et al., 2016; Sylos-Labini et al., 2020) where four synergies is one of the most common 
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findings. The activation patterns and the weighting coefficients were also comparable to what 
has previously been found in literature. The FWHM had smaller variability within groups 
which suggests that the variability we observed in the full-body analysis was due to the larger 
set of muscles and the possible larger contribution of the trunk and arm muscles to the wave-
forms. 

In the synergy results of the full-body analysis there was large variability in the activation 
patterns and the weightings within groups. These large variabilities were participant-specific, 
and we hypothesized that they may be related to motor-learning: children are exploring their 
own abilities to be able to run on a treadmill. In the adult patterns, there were a few outliers 
in every synergy in both activation patterns and weightings, but in general, the results were 
robust across participants. 

There were significant differences in especially the stance duration between groups influenc-
ing the appearance of the muscle synergies. The FWHM of the synergies that appeared not 
significantly different between groups as a function of the full gait cycle might be considered 
different when identifying the relatively longer stance duration in the toddler group as run-
ning. Yet, there were fewer significant differences in the FWHM when expressed as a function 
of the stance duration (see Supplementary Material 3.3). Despite the relative differences in 
the stance duration for especially running, this suggests that the FWHM of the synergies did 
not depend on the duration of the stance phase and that differences between groups did not 
increase when taking the altered stance duration into account. 

In the EMG signals the phase shift of the peak MG muscle activity was significantly smaller in 
the toddler group compared to the other groups. We expected that this would also be visible 
in the synergy analysis. However, we do not find any statistically significant differences in the 
phase shift between groups for the activation pattern (S2), commonly reported to relate to 
the shank muscles. In the walking conditions, the MG muscle activity clearly dominated the 
second synergy. In the running conditions, however, the MG muscle activity was frequently 
split between the first and the second synergy. This might explain why the influence of the 
shift in the single muscle analysis did not come to the fore in the synergy analysis. 

Limitations 

One limitation in this study is the large gap in age between the participant of 40 and 59 
months where, for several reasons, it was not possible to recruit and measure any children. 
We do not expect having this data would have changed the outcomes significantly, but it 
would have given a larger insight into the development of running on a treadmill in this age 
as well. 
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All children in the toddler group were assisted not only with the harness during treadmill 
locomotion but also with handhold from either a researcher or their parent/guardian. This 
did not apply to any children in any of the other groups. We verified with the recorded ground 
reaction forces that there were no added effects of handhold compared to the harness, but 
the effect is present in the arm muscles on the side of the handhold as there will be less 
muscle activity compared to the other side. We indirectly corrected for this in the analysis by 
normalizing the muscle activity, not to the maximum activation for that particular muscle, but 
to the mean activity of that muscle. By normalizing to the mean activity of all muscles, we 
ensured that even muscles with low activity would not dominate the muscle synergy analysis. 

Finally, all conditions referred to in this study are the prescribed conditions. This means, that 
the participant themselves confirmed the recorded speed was comfortable walking or run-
ning speed for them. We confirm in the Froude values that there are only significant differ-
ences between the walking speed for the toddler and adult group and the running speed be-
tween the toddler and school-age group. We also confirm that there are significant differ-
ences between the prescribed walking and running conditions for all groups (𝑝𝑝 = 0.0039, 
𝑝𝑝 = 0.009, 𝑝𝑝 = 3.2·10-5, 𝑝𝑝 = 0.0017, respectively). 

Conclusion 

Children follow a walk-run strategy when learning to run on a treadmill. Older children incor-
porate exploratory muscle synergies when “optimizing” their walking and running pattern on 
the treadmill whereas the youngest children below 3.5 years of age make use of a “simpler” 
motor control pattern trending toward larger bursts of activation. We believe that the in-
crease in the number of muscle synergies for individual participant sides relates to motor 
learning and exploration.  
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Supplementary Material 3.1 

Muscle synergy analysis of the 8 lower limb muscles, tibialis anterior (TA), medial gastrocnem-
ius (MG), biceps femoris (BF), vastus medialis (VMO), rectus femoris (RF), tensor fascia latae 
(TFL), gluteus maximus (GM), and erector spinae (ES). The muscle synergy analysis was carried 
out in a similar fashion to the main text. Briefly, a principal component analysis (PCA) was 
applied to the mean-centered data with a cut-off of 80% of the variance explained. The mean 
was then added back to the now reconstructed rank-reduced dataset. Subsequently a non-
negative matrix factorization (NMF) was applied on this rank-reduced dataset and run for the 
corresponding number of synergies for each participant side. Figure S3.1A shows that on the 
lower limb analysis the chosen threshold led to two-to-five synergies per group and condition. 
The number of synergies per participant side was larger for the walking condition compared 
to the running condition where more participants only required three synergies. Figure S3.1B 
shows that a corresponding reconstruction accuracy (RA) based on the Frobenius norm of the 
output of the NMF on the rank-reduced dataset resulted in a range of 65-75%. Figure S3.1C 
shows that for the number of synergies required for each participant side, result in an average 
of more than 75% reconstruction accuracy for each muscle. 

 

Figure S3.1: Number of synergies based on lower limb analysis and accuracy of the muscle synergy 
analysis. A) Number of synergies needed to account for the cycle-to-cycle variability of the lower limb 
EMG activities during walking and running for each group as determined by principal component anal-
ysis PCA (>80% of variance). B) The corresponding reconstruction accuracy (RA) after rank-reduction 
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with PCA followed by NMF. C) The RA (mean ± SD) for each muscle and condition (blue = walking, red 
= running). Abbreviations TA, tibialis anterior; MG, medial gastrocnemius; BF, biceps femoris; VMO, 
vastus medialis oblique; RF, rectus femoris; TFL, tensor fascia latae; GM, gluteus maximus; ES, erector 
spinae; T, Toddlers; P, Preschoolers; S, School-age; A, Adults. 

The activation waveforms and the weighting coefficients of the muscle synergies of the lower 
limb analysis can be found in Figure S3.2. The waveforms of the first synergy peaked just after 
heel strike, ~5-10% of the gait cycle, and are mostly loaded on VMO, RF, TFL and GM, provid-
ing body support during weight acceptance. The waveform belonging to the second muscle 
synergy peaked around mid-stance for all groups and conditions and due to the relatively 
shorter stance duration for running, the peak is shifted to earlier in the gait cycle. The second 
synergy is mostly loaded by the MG muscle, especially in walking whereas in running, also the 
hamstring (BF) become involved. The peak of the waveform belonging to the third synergy 
peaked just before foot-off in the walking condition and just after in the running condition for 
the older children and adults, and around the foot-off for toddlers. The muscle with the larg-
est contribution to this muscle synergy is TA for foot lift, and ES. The waveform belonging to 
the fourth synergy peaked during swing and was variable in which muscles contribute the 
most. In the case of a fifth synergy, the same applies, with large variability between partici-
pants. 
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Figure S3.2: Muscle synergy structure for the four groups for walking (left in blue) and running (right 
in red). Vertical dotted line in activation timings plots represents the end of the stance phase. Each 
colored line represents a participant side, leading to one line for right side and one line for left side for 
each participant resulting in a total of (n=10) for the toddler group, (n=12) for the preschoolers, (n=24) 
for the school-age group, and (n=14) for the adult group. Black lines represent the mean. Y-axis is in 
arbitrary units. In the weighting plots, each colored bar represents the weighting coefficient for one 
participant side, the weightings are ordered based on their size. The black outlines represent the mean 
for the group. Abbreviations: TA, tibialis anterior; MG, gastrocnemius medialis; BF, biceps femoris; 
VMO, vastus medialis oblique; RF, rectus femoris; TFL, tensor fascia latae; GM, gluteus maximus; ES, 
erector spinae. 

The results of the FWHM analysis of the lower limb analysis can be found in Figure S3.3. We 
found significant differences in the second synergy in the activation duration, where the tod-
dler group had a significant longer activation duration than all other three groups (𝑝𝑝 = 0.0038, 
𝑝𝑝 = 0.00051, 𝑝𝑝 = 6∙10-5, respectively). We also found a significant difference in the third 
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synergy between the toddlers and the adults (𝑝𝑝 = 0.0058). Finally, there were no significant 
differences in the running condition, however, there was a trend towards the toddlers being 
significantly different from the adult group (𝑝𝑝 = 0.0162) in the second waveform. There were 
no significant differences in the phase shift between groups, similarly to the whole-body anal-
ysis. 

 

Figure S3.3: FWHM of consistent activation waveforms and phase shift between walking and running 
activation waveforms. A) FWHM of all waveforms as a function of the percentage of the gait cycle for 
each group. Color-coding refers to the groups. B) Phase shift between walking and running activation 
waveforms as a function of the gait cycle, determined using the cross-covariance between the wave-
forms for walking and running. Means and standard deviations are given per group. Abbreviations: 
FWHM, Full-width half-maximum. * = 𝑝𝑝 < 0.01, ** = 𝑝𝑝 < 0.001, *** = 𝑝𝑝 < 0.0001. 
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Supplementary Material 3.2 

EMG patterns for children participants split into four categories based on the presence of the 
DS or FP in the gait cycle: prescribed running with only FP, prescribed running with only DS, 
prescribed running with both FP and DS present (Mix) in the gait cycle, and prescribed walk-
ing.  

We show that the walking condition is different from the prescribed running conditions inde-
pendent of the behavioral patterns, i.e., flight phase or double support phase or a mix thereof. 

 

Figure S3.4: Ensemble averaged EMG patterns of the children participants split into behavioral pat-
terns. Four patterns are shown: prescribed running with only flight phase (FP in red), prescribed run-
ning with only double support (DS in green), prescribed running with a mixture of FP and DS within the 
gait cycle (Mix in blue) and prescribed walking (black). The shaded areas refer to the standard devia-
tions across participants for the three prescribed running conditions. Abbreviations: TA, tibialis ante-
rior; MG, gastrocnemius medialis; BF, biceps femoris; VMO, vastus medialis oblique; RF, rectus femoris; 
TFL, tensor fascia latae; GM, gluteus maximus; ES, erector spinae; LD, latissimus dorsi; AD, anterior 
deltoid; PD, posterior deltoid; TRAP, trapezius; TB, triceps brachii; BB, biceps brachii; and BR, brachi-
oradialis.  
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Supplementary Material 3.3 

FWHM of synergy one-eight, of the full-body analysis, expressed as a percentage of the mean 
stance phase for each group can be found in Figure S3.5. Data are presented as the group 
means and error bars represent standard deviations. There is only one significant difference 
between the groups in terms of FWHM which are related to synergy three for walking 
(𝑝𝑝 = 0.0086). There is a trend for the FWHM for running to be larger with younger age, 
whereas there is a trend towards the opposite for walking. This could be a factor of the rela-
tively longer stance phase in running for the youngest group compared to the other groups.  

 

Figure S3.5: FWHM of consistent activation waveforms of full-body analysis, expressed as percentage 
of the mean stance phase duration. Color-coding refers to the groups. Means and standard deviations 
are given per group. Abbreviations: FWHM, Full-width half-maximum. * = 𝑝𝑝 < 0.01. 
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Abstract 

Children start to run after they master walking. How running develops, however, is largely 
unknown. We assessed the maturity of running pattern in two very young, typically 
developing children in a longitudinal design spanning about three years. Leg and trunk 3D 
kinematics and electromyography collected in six recording sessions, with more than a 
hundred strides each, entered our analysis. We recorded walking during the first session (the 
session of the first independent steps of the two toddlers at the age of 11.9 and 10.6 months) 
and fast walking or running for the subsequent sessions. More than 100 kinematic and 
neuromuscular parameters were determined for each session and stride. The equivalent data 
of five young adults served to define mature running. After dimensionality reduction using 
principal component analysis, hierarchical cluster analysis based on the average pairwise 
correlation distance to the adult running cluster served as a measure for maturity of the 
running pattern. Both children developed running. Yet, in one of them the running pattern 
did not reach maturity whereas in the other it did. As expected, mature running appeared in 
later sessions (>13 months after the onset of independent walking). Interestingly, mature 
running alternated with episodes of immature running within sessions. Our clustering 
approach separated them. An additional analysis of the accompanying muscle synergies 
revealed that the participant who did not reach mature running had more differences in 
muscle contraction when compared to adults than the other. One may speculate that this 
difference in muscle activity may have caused the difference in running pattern. 
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Introduction 

Independent walking is a major developmental milestone for children. In typically developing 
children it commonly occurs between 9 and 15 months of age (Piper & Darrah, 1994; Storvold, 
Aarethun, & Bratberg, 2013). While most parents can recall at what age their children started 
walking independently, almost none of them can put a finger on when the children started 
running. One reason for this might be the difficulty to tell walking and running apart. This is 
not so in adults’ locomotion, where even a still picture may serve to distinguish walking from 
running. Obviously, the presence of a phase of flight can do the job, i.e., when no leg touches 
the ground. In very young children, discriminating walking from running is often not that 
straight-forward. Early running may appear as fast walking which raises the question on which 
parameters these two locomotory states really differ. 

In a previous work we studied 5-9-year-old children (Bach et al., 2021a). There we realized 
that classical measures for classifying walking and running mostly fail. Neither the presence 
of a flight phase nor the phase relation of energetics was sufficient to distinguish mature from 
immature running patterns in these children. We suggested using a ‘shotgun’ approach 
involving a large set of kinetic and kinematic parameters with subsequent principal 
component analysis (PCA) and hierarchical clustering that allowed for separating the degree 
of maturity of walking and running with great success. 

As it turns out, there is no immediate agreement between the chronological age and the 
maturity of treadmill walking and running patterns (Bach et al., 2021a). Yet, the amount of 
walking experience clearly influences the walking pattern and that improves with practice 
(Cheron, Bouillot, et al., 2001; Forssberg, 1985; Ivanenko et al., 2005; Sutherland, Olshen, 
Cooper, & Woo, 1980). Be it the recovery of mechanical energy, the external work, or the 
inter-segmental kinematic coordination, all these features gradually evolve toward those of 
adults when walking experience increases (Ivanenko, Cappellini, et al., 2007; Ivanenko, 
Dominici, et al., 2004). Not only do joint kinematics and kinetics improve progressively 
(Hallemans, De Clercq, & Aerts, 2006), but also the duration of electromyographic activity of 
the gastrocnemius medialis muscle is reduced (Cappellini et al., 2016). We believe that the 
(gain of) walking experience also influences the development of running which ultimately 
tends toward the mature pattern observed in adults. Very recently, it has been shown that 
the motor control of running is influenced by motor exploration and learning (Bach, 
Daffertshofer, & Dominici, 2021b). As such, it seems quite likely that developmental 
characteristics of walking are also mirrored in the development of running. 

Tackling such commonalities is a challenge, which may fail when following more traditional 
routes in studying locomotion, namely from either a sole neuromuscular (e.g., Ivanenko, 
Poppele, & Lacquaniti, 2006) or a sole biomechanics perspective (e.g., Liu et al., 2022; 
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Rozumalski et al., 2015). We advocate combining both perspectives as several recent studies 
suggest their interdependence during infancy (Bekius et al., 2021; Cappellini et al., 2016; 
Dewolf, Sylos-Labini, et al., 2020; Dominici et al., 2011; Forssberg, 1985). At the onset of 
independent locomotion, walking and running may overlap so strongly for their neural and 
biomechanical control that some consider walking and running in infants not as distinct 
modes of locomotion as they are in adults (Dewolf, Sylos-Labini, et al., 2020; Vasudevan et 
al., 2016). If walking and running are intertwined when infants learn to walk, then at which 
moment will they ‘separate’ as much as in adults? 

Answering the relation between the onset of independent walking and the development of 
running requires longitudinal assessments spanning several years. To quantify the influence 
of time since onset of independent walking, one must assess participants at the very onset of 
independent walking (in fact assesement have to start even before that). And recordings must 
be frequent enough to properly sample the development of running. We monitored two 
typically developing children for about three years after their first independent walking steps. 
We conducted seven experimental sessions during each of which we guaranteed more than 
100 running strides when recording leg and trunk 3D kinematics and electromyography 
(EMG). Using the aforementioned shotgun method that encompasses kinematics and 
neuromuscular data, we investigated the earliest development of running. Possible 
mechanisms underlying the coordinated locomotion were explored through muscle synergy 
analysis and by integrating some of the corresponding outcome parameters in the shotgun 
approach. We expected this approach to allow for determining the degree of maturity also in 
very young children who just learned / are learning to run. We expected the development of 
running maturity to be similar, if not identical, to the onset of independent walking when 
stratifying its time course. 

Methods 

Participants 

We recruited two children and five adults. The two children (1 male / 1 female) were recruited 
before taking their first independent steps as part of a larger study (Zandvoort, Daffertshofer, 
& Dominici, 2022). The adult participants (4 male / 1 female, 30-45 years old) were recruited 
by word-of-mouth as part of a previous study (Cappellini et al. 2006). Both the adults and the 
legal guardians of both children gave written informed consent in compliance with the 
Declaration of Helsinki. The inclusion of the children was approved by The Scientific and 
Ethical Review Board of the Faculty of Behavioural & Movement Sciences, Vrije Universiteit 
Amsterdam, Netherlands (File number: VCWE-2016-082). The inclusion of adults was in 
accordance with the procedures of the Ethics Committee of the Santa Lucia Institute, Rome, 
Italy (Prot. CE-AG4-PROG.99-155). 
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The first recording session of each child participant took place within 9 days of taking at least 
four consecutive steps without support. The time of first indpendent steps were relayed by 
the parents to the researchers. 

Setup 

Seven sessions were recorded from first steps (FS) to ~32 months after onset of independent 
walking for each of the two children (P1 and P2). The initial plan was to record each child 
every three months from their first independent steps until one year after onset of 
independent walking with a follow-up every six months from that timepoint. As this was not 
achieved with the first child, we matched the second child to the spacing of the recordings of 
the first child. As sketched in Figure 4.1, the following sessions were recorded: first steps 
session (FS), 2 months after the FS (denoted +2), as well as 6 months (+6), 9 months (+9), 13 
months (+13), 19 months (+19), and finally 32 months after FS (+32). 

 

Figure 4.1: Overview of age and walking age 
(time since onset of walking) for each 
session/child. A total of seven sessions were 
recorded for each child. At the end, six sessions 
were analyzed for each child, and these were 
matched based on walking age (bottom plot) in 
months. A few weeks separate the different 
sessions between P1 and P2. +2 is hatched as 
not analysed due to poor data quality. FS: First 
steps, +2, +6, +9, +13, +19, +32 refers to the 
number of months since first steps, i.e., time 
since onset of independent walking. 

 

The experiments consisted of locomoting overground and on a pediatric treadmill (N-Mill 
60 × 150 cm, Motek Medical BV, Amsterdam, the Netherlands) with either no support or 
trunk/hand support. During the first session (FS), only walking was recorded. During the 
subsequent sessions, we recorded both walking and fast walking and/or running. Children 
were tasked to move from one end of the lab to the other end. They were instructed to either 
walk or run, sometimes enticed with toys or food. When the child was instructed to run, but 
the speed was between their normal running and walking speed, then the trial was noted as 
“fast walking”. For sessions +6, +9, +13, +19, and +32, only the trials labelled as fast walking 
or running were retained for further analysis. 

0 5 10 15 20 25 30 35
Walking Age [months]

P2

P1

Age [months]
10 15 20 25 30 35 40 45

P2

P1

FS +6 +9 +13 +19 +32+2
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All children sessions, except one, were recorded in the BabyGaitLab of the Department of 
Human Movement Sciences at the Vrije Universiteit Amsterdam, The Netherlands; the 
remaining session was recorded at the clinical gait laboratory of the Department of 
Rehabilitation Medicine at the Amsterdam UMC (location VUmc). The adults were recorded 
in the laboratory of the Santa Lucia Foundation, Rome, and included in a previous publication 
(Cappellini et al., 2006). 

The children were barefoot during all recordings and wore only diapers or underpants. When 
locomoting overground, they were encouraged by researchers/parents to walk/run in a 
straight line. Sometimes they were supported by handhold. When on the treadmill, the speed 
was adjusted to a comfortable speed and type of locomotion (walk or run). On the treadmill, 
the children were supported on trunk or by handhold by the researcher/parent. Adults were 
running at 7 and 9 km/h on a treadmill (EN-MILL, 3446.527, Bonte Zwolle BV, Netherlands) 
wearing shoes. 

Data acquisition 

Toddlers 

During each session for P1 and P2, bilateral 3D kinematics was recorded using reflective 
markers and Vicon motion capture system (Oxford, UK) with 10 (12 for the session recorded 
at VUmc) infrared cameras affixed to the ceiling, sampled at 100 Hz and one (four for the 
session recorded at VUmc) video camera (Vicon camera Oxford, UK) sampled at 100 Hz (50 
Hz for the session recorded at VUmc). Reflective markers (14 mm) were placed bilaterally on 
the acromion (SHO), iliac crest (IL), greater trochanter (GT), lateral femur epicondyle (LE), 
lateral malleolus (LM) and fifth metatarsal (VM). For each session, a static trial was recorded 
where the participant was standing still to be used for correction of the joint angles. We 
recorded electromyography (EMG) bilaterally from the following 16 muscles: tibialis anterior 
(TA), medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus (SOL), rectus femoris 
(RF), vastus medialis oblique (VMO), vastus lateralis oblique (VLO), semitendinosus, biceps 
femoris (BF), tensor fascia latae (TFL), gluteus maximus (GLM), erector spinae level L2 (ES), 
latissimus dorsi, trapezius, deltoid, and biceps brachii. EMG was recorded using mini-golden 
reusable surface EMG disc-electrode pairs (15-mm-diameter electrodes, acquisition area of 4 
mm2), placed at the approximate location of the muscle belly on the cleaned skin, with 
interelectrode spacing of ∼1.5 cm. The placement followed the SENIAM recommendations 
(Hermens et al., 1999), and were sampled at 2 kHz. Movement artifacts were minimized by 
fixating the electrodes and wireless EMG sensors to the leg using elastic gauzes. EMG was 
recorded with a wireless system (Mini wave plus, Zerowire; Cometa, Bareggio,Italy) and saved 
in Nexus software as backup. EMG recordings included an online bandpass filter 10 Hz-1 kHz. 
For each session, we also recorded electroencephalogram (EEG) using pre-gelled caps (ANT 
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neuro, Hengelo, The Netherlands) which could not be included in the analysis due to too many 
artefacts. 

The pediatric treadmill recorded vertical ground reaction forces with a sampling frequency of 
1 kHz. For each session, the anthropometrics of the child was measured and recorded, such 
as the total length, the weight measured by weighing scales 𝑚𝑚, the body weight measured by 
treadmill 𝑏𝑏𝑏𝑏+@)ABCDEE, and the length and circumference of the main body segments 
(Schneider & Zernicke, 1992). The segment lengths estimated from the static trials were used 
to determine leg length. 

When running on the treadmill, children were supported on the trunk or by handhold by the 
researcher/parent. The amount of body weight support (BWS) provided to the children during 
treadmill trials were estimated as the percentage reduction of the mean vertical forces 
compared to 𝑏𝑏𝑏𝑏+@)ABCDEE. More than 30% of BWS may result in altered foot trajectories and 
temporal patterns of the muscle synergies in toddlers walking (Dominici, Ivanenko, & 
Lacquaniti, 2007; Kerkman, Zandvoort, Daffertshofer, & Dominici, 2022). Thus, only strides 
with less than 30% BWS were retained for further analysis (~22 and ~28% of strides were 
removed for P1 and P2, respectively).  

Adults 

Data acquisition has been described previously in Cappellini et al. (2006). In brief, we used 
reflective markers (14 mm) and Vicon motion capture system (Vicon camera Oxford, UK, 
sampling at 100 Hz) with 9 infrared cameras spaced around the treadmill to record bilateral 
3D kinematic. Reflective markers were placed bilaterally on SHO, IL, GT, LE, LM, heel, and VM; 
these are the same anatomical locations as used for P1 and P2 (except for the heel marker). 
The following 32 muscles were recorded unilaterally: TA, flexor digitorum brevis, LG, MG, SOL, 
peroneus longus, VLO, VMO, RF, sartorius, BF, semitendinosus, adductor longus, TFL, GLM, 
gluteus medius, external oblique, internal oblique, latissimus dorsi, iliopsoas, rectus 
abdominis, erector spinae recorded at T1, T9, and L2 (ES), biceps brachii, triceps brachii, 
deltoideus (anterior and posterior portions), trapezius (inferior and superior portions), 
sternocleidomastoid, and splenius using Delsys electrodes (model DE2.1, Delsys, Boston, MA). 
The signals were amplified, filtered (20-450 Hz), and sampled at 1 kHz. Height and weight 
were recorded for all participants. Leg lengths were not recorded but could be inferred from 
the 3D kinematics. 

Data analysis 

Kinematics and gait parameters 

Foot contact and foot-off were manually determined for both sides by visual inspection using 
digitial video recordings and the foot marker trajectories from the Nexus software (Vicon, 
Oxford, UK) in the children. For the adults, foot contact was defined as the local minima of 
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the heel marker and foot off as the lift-off of the VM marker by 2 cm from the minimum 
detected at stance (Cappellini et al., 2006). Strides with jumping, dragging etc. were excluded 
from further analysis as was gait initiation and termination. Flight phases and double support 
phases were determined based on right and left foot contact and foot off. The Froude number 
(Fr) is a dimension-less parameter suitable for the comparison of locomotion in subjects of 
different size (Alexander & Jayes, 1983). The Froude number was computed for all gait cycles 
based on the mean velocity of the horizontal IL marker (𝑣𝑣), leg length (𝑙𝑙), and the gravitational 
constant (𝑔𝑔) using: 𝐹𝐹𝐹𝐹 = 𝑣𝑣& (𝑔𝑔 ∙ 𝑙𝑙)⁄ . Kinematic parameters were calculated based on the 3D 
kinematics of the lower legs and trunk. The body was modeled as an interconnected chain of 
rigid segments: SHO-IL for the trunk, IL-GT for the pelvis, GT-LE for the thigh, LE-LM for the 
shank, and LM-VM for the foot. The main limb axis was defined as the virtual line connecting 
GT and VM. Joint and elevation angles were generated accordingly. A total of 101 parameters 
were estimated for each gait cycle using a custom-written algorithm (Bach et al., 2021a; 
Dominici et al., 2012) to provide a comprehensive quantification of locomotor patterns. They 
can be functionally split into themes such as temporal features, limb endpoint trajectory, 
stability, joint and segment angles, joint and segment angular velocities, intra- and interlimb 
coordination, intersegmental coordination, and pendulum mechanism. Parameters that were 
directly influenced by body size were normalized to leg length. For a detailed list we refer to 
Supplementary Material 4.1. All parameters were visually inspected for outliers due to 
experimental errors (e.g., partially missing markers) and, if the errors were present, the stride 
was removed from further analysis (~4 and ~8% of total recorded strides for P1 and P2, 
respectively). 

Electromyography and muscle synergies 

Of the recorded muscles, the following 11 (bilateral for the children, unilateral for the adults) 
muscles TA, MG, LG, SOL, RF, VMO, VLO, BF, TFL, GLM, and ES were retained for further 
analysis. EMG data were visually inspected, and artifacts were removed using a custom-
written burst-detection algorithm (Bach et al., 2021b; Zandvoort et al., 2022). After high-pass 
(2nd-order bidirectional Butterworth filter at 20 Hz; Bach et al., 2021b; De Luca et al., 2010; 
Willigenburg et al., 2012) and notch filtering (2nd-order bi-directional Butterworth around 
k·50 Hz, k = 1,…,10, with half-bandwidth of 0.5 Hz), the EMG data were rectified using the 
modulus of the analytic signal and finally low-pass filtered (bi-directional 2nd-order 
Butterworth filter at 10 Hz) to obtain the corresponding EMG envelopes (Bekius et al., 2021; 
Dominici et al., 2011; Oliveira et al., 2016). These envelopes were time-normalized to 200 
samples per gait cycle computed relative to the ipsilateral foot contact. 

Before applying the muscle synergy analysis, the amplitude of the EMG activity was 
normalized to the mean activity for each muscle, interpolated in case of missing values (for a 
maximum of 50% of the stride) within one stride, and finally concatenated for each session in 
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a [#strides × #samples] × #muscles matrix ([n × 200] × 11). Post-hoc analysis of the 
interpolation revealed that the mean interpolation was 4.5% for P1 (range: 0.5%-19.5%) and 
4.6% for P2 (range: 0.5%-34%) in approximately 22% and 22.6% of the total number of strides, 
respectively. The gaps were not necessarily consecutive. No interpolation was done on the 
adult data. Muscle synergies were calculated using weighted non-negative matrix 
factorization (WNMF) algorithm (with a maximum of 2×106 iterations, and a completion 
threshold of 10-6) to account for missing strides (Goudriaan et al., 2022; Li & Ngom, 2013). 
There were missing data in few strides where no EMG was recorded for one or two muscles 
(Goudriaan et al., 2022; Li & Ngom, 2013; Shuman, Goudriaan, Desloovere, Schwartz, & 
Steele, 2019). WNMF decomposes the original EMG matrix into a small set of temporal 
activation patterns (𝐶𝐶) and weighting coefficients (𝑊𝑊): 

𝐸𝐸𝐸𝐸𝐸𝐸 = n𝐶𝐶8

F

8G/

∙ 𝑊𝑊8 + 𝜖𝜖, 𝑁𝑁 ≤ #muscles 

With 𝜖𝜖 denoting the residual error. To assess the quality of the reconstruction, the 
reconstruction accuracy (Bach et al., 2021b; Kerkman et al., 2020; Kerkman et al., 2022; 
Zandvoort et al., 2019) was determined using the Frobenius norm of the residuals 

𝑅𝑅𝑅𝑅 = 1 −
‖𝐸𝐸𝐸𝐸𝐸𝐸 − (𝑊𝑊 ∙ 𝐶𝐶)‖!

‖𝐸𝐸𝐸𝐸𝐸𝐸‖!
 

We determined the number of synergies for further analysis via the “best linear fit” proposed 
by Cheung et al. (2005). For this, one computes the mean squared error for each linear fit of 
the reconstruction quality for first 1-10 synergies, then 2-10 until calculated for 9-10 
synergies. When the mean squared error drops below 10-4 the reconstruction quality is said 
to plateau defining the number of synergies to retain. To align the number of synergies across 
sessions, the best linear fit method was applied to each session of the children and the adults, 
respectively, and the median number of synergies across these 13 sessions that fulfilled this 
criterion was chosen, thus avoiding a bias towards the mean in the case of outliers. 

The output of the WNMF is not ranked and as such post-hoc sorting has to be applied to 
compare synergies across sessions. To do so, the weighting coefficients were grouped using 
hierarchical clustering during which we ensured that the maximum number of clusters 
corresponded to the maximum number of synergies (i.e., a maximum of three clusters were 
allowed with a three-synergy solution). For the synergy analysis, the grand average of all 
strides for each synergy was determined per session. 

To quantify differences in the duration of the temporal activation patterns of the muscle 
synergies, we estimated the full width at half-maximum (FWHM) per activation pattern and 
stride. Here we first subtracted the minima of the activity patterns – in the case of several 
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peaks, the FWHM was calculated for the main peak, i.e., the peak with the highest amplitude 
and in case of boundary peaks, an assumption was made that the shape of the peak was 
symmetric (Cappellini et al., 2006). Timing differences were determined via the center-of-
activity (CoA) per activation pattern and stride (Labini, Ivanenko, Cappellini, Gravano, & 
Lacquaniti, 2011; Sylos-Labini et al., 2014; Yakovenko, Mushahwar, VanderHorst, Holstege, & 
Prochazka, 2002). The CoA is particularly useful when multiple peaks are present or when low 
activity does not allow for identifying a single peak. CoA also makes the comparison across 
sessions feasible. Here, we defined it as 

𝐶𝐶𝐶𝐶𝐶𝐶 = tan./ w
∑ (cos 𝜃𝜃9 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸9)&HH
9G/

∑ (sin 𝜃𝜃9 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸9)&HH
9G/

z 

where, 𝜃𝜃 denotes an angle that varies between 0-360° corresponding to 0-100% of the gait 
cycle (𝑡𝑡=200 samples). The FWHM and the CoA for the extracted synergies were retained and 
added to the list of gait parameters for further analysis to have a spatial as well as temporal 
measure for the activation patterns of the muscle synergies (Supplementary Material 4.1). 

PCA and clustering 

We sought to quantify how running develops over time from the first independent steps. 
Strides from trials in which the children were instructed to run (that were labelled either fast 
walking or running) were included. We chose for this ‘blind’ approach as our previous 
research revealed that in very young children the presence of a flight phase is not a solid 
indicator for the presence of running (Bach et al., 2021a). We employed principal component 
analysis (PCA) in combination with clustering of several parameters extracted from the 
kinematics and muscle synergies for all strides (Bach et al., 2021a). PCA served to reduce 
covariation between parameters and clustering to find unbiased classification. 

For every participant, parameters were combined in a [(number of sessions × number of 
strides) × number of parameters] matrix [1730 × 107] and z-scored prior to PCA, see 
Supplementary Material 4.1 for a full overview of the parameters. The z-scoring was applied 
to ensure that all parameters could potentially contribute to the same degree in the PCA (if 
the variance differs between parameters it may cause a bias in the PCA-ranking). We selected 
the three leading principal components (PCs) and included them in the clustering, as this 
turned out sufficient for our classification purposes (Bach et al., 2021a; Courtine et al., 2009; 
Dominici et al., 2012; Friedli et al., 2015; Phinyomark, Hettinga, et al., 2015). The degree to 
which the different parameters influence the first three PCs can be given by their 𝑙𝑙𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝜐𝜐 ∙ √𝜆𝜆, where 𝜐𝜐 denotes the eigenvector of a PC and 𝜆𝜆 its eigenvalue. We considered a 
parameter as a strong contributor if the corresponding loadings exceeded the 95% confidence 

interval 𝐶𝐶𝐶𝐶,- = 1.96 √𝑙𝑙⁄  where 𝑙𝑙 = 107 parameters. 

90

Chapter 4

165404 Bach BNW.indd   90165404 Bach BNW.indd   90 28-03-2023   12:0728-03-2023   12:07



 

Finally, we applied hierarchical clustering with correlation distance (Bach et al., 2021a). We 
first built a dendrogram (Milligan, 1980; Murtagh & Contreras, 2011; Xu & Wunsch, 2005) 
using average links (unweighted pair group method with arithmetic mean). The cophenetic 
correlation coefficient was determined (CCC; Sokal & Rohlf, 1962) to establish the degree of 
fit of the clustering technique. The Calinzki-Harabasz stopping rule (Milligan & Cooper, 1985) 
and visual inspection were utilized in unison to determine the optimal number of clusters, 
with the inspection focusing on categorization of first steps walking and running and the 
classification of mature and immature running. We distinguished mature from immature 
locomotion by computing the average pairwise correlation distance from every stride 
belonging to a distinct cluster to the adults running. Put differently, the average pairwise 
correlation distance served as a measure for gait maturity with the adult gait pattern as 
reference. 

Statistics 

Means and standard deviations are provided unless otherwise specified. To investigate 
whether the dimensionless speed Fr and the FWHM of the muscle activation patterns were 
different between sessions for each participant and comparable to the adults, we used a non-
parametric test, the Kruskal-Wallis test, as the data were not normally distributed, confirmed 
using a Kolmogorov-Smirnov goodness-of-fit hypothesis test. If a statistically significant effect 
was found, a Bonferroni correction was applied to account for multiple comparisons. With 7 
mixed within-between participants (6 sessions for the toddlers and 1 session for the adults), 
the used significance threshold was 𝛼𝛼 = 0.05 7⁄ = 0.007. 

Results 

Our child participants were comparable in terms of age as well as time in months since first 
independent steps. P2 started walking at 10.6 months whereas P1 started walking at 11.9 
months. Both children were relatively early walkers. The median age of independent walking 
lies between 11.4 months (Piper & Darrah, 1994) and 13.0 months (Storvold et al., 2013). The 
different sessions were comparable and within a few weeks of each other in terms of walking 
age. All results were ordered based on the walking age to investigate the influence of walking 
age. 

The first sessions, the FS sessions, were recorded within 9 days of when the children 
performed at least four independent strides, and for these sessions only walking was 
recorded. In the subsequent sessions, the children were instructed to either walk or run, but 
only strides from trials when instructed to run (that were labelled as fast walking or running 
during the experiment, see 2.2 Setup for further details) were analyzed. 
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Six out of the seven sessions for each child were retained for further analysis with the first 
session being the session containing the first independent steps (FS). The +2 months sessions 
were excluded due to insufficient data quality or an insufficient amount of data recorded. See 
Figure 4.1 for an overview of all included sessions and respective ages and walking ages for 
P1 and P2. 

The mean number of strides included per session was (mean ± std) 133 ± 73 strides for the 
toddlers’ sessions and a total of 105 strides for the adults (range 14-24 per participant). The 
FS session for P1 had an exceptionally large number of strides that could be included. To make 
the number of strides more balanced across sessions, only overground strides with a velocity 
of more than 0.5 km/h were retained, reducing the total number of strides from 729 to 254 
strides for this specific session. Several strides with a Froude number exceeding 1.5 were 
excluded from the sessions +19 and +32 for both P1 (~25 strides in total) and P2 (~60 strides 
in total) as they were deemed to be sprinting and as such were not comparable to the other 
data. 

The FS sessions had only strides with double support phases whereas the remaining sessions 
had a mixture of strides with double support and flight phase. The double support and flight 
phases were expressed as a percentage of the gait cycle. Double support phases were present 
in all sessions (after the FS sessions) of P1 and P2, with a tendency towards an increased 
amount of flight phase in the last sessions. The flight phase was shorter than in the adults. 
The linear regression of the double support phase revealed a significant effect of session, no 
effect on participant, and only a small interaction effect between session and participant (cf., 
Figure 4.2 and Supplementary Material 4.2). The linear regression of the flight phase revealed 
a significant effect of both session and participant and an interaction effect as well. The nor-
malized speed (Froude number) of the two FS sessions was significantly different from all 
other sessions for that participant and to that of the adults (𝑝𝑝 < 1	 ×	10./I for all sessions 
for both participants). The normalized speeds ranged between 0.34 and 0.69 for the running 
sessions and three sessions of P1 (+6, +13, and +19, 𝑝𝑝 < 2	 × 10.,) and two sessions of P2 
(+13 and +19, 𝑝𝑝 < 2	 × 10.J) were significantly different from the adults, cf. Figure 4.2. 

 

92

Chapter 4

165404 Bach BNW.indd   92165404 Bach BNW.indd   92 28-03-2023   12:0728-03-2023   12:07



 

 

Figure 4.2: Temporal gait parameters. A) Flight phase and double support phase as a percentage of 
the gait cycle (mean±std). Double support phases are on the top with flight phases being the negative 
percentages below. B) The normalized speed expressed as the Froude number (𝑣𝑣! 𝑔𝑔 ∙ 𝑙𝑙⁄ ) for each ses-
sion and participant (mean±std). † Denotes a significant difference between current session and all 
other sessions for that participant as well as adults (𝑝𝑝 < 0.007). Horizontal lines denote significant 
differences between the Froude numbers for the sessions. FS: First steps, %GC: percentage gait cycle, 
+6, +9, +13, +19, +32 refers to the number of months since onset of independent walking. 

Like the presence of a flight phase, the Froude number might also not be a good indicator of 
whether a child is running. The Froude number, the normalized speed, is useful to determine 
the optimal speed at which to transition from walking to running or vice versa, and in adults 
this transition occurs at a Froude value of 0.5 (Gatesy & Biewener, 2009; Kram, Domingo, & 
Ferris, 1997) which the adults exceeded in this study. The mean of the Froude numbers of the 
toddlers also exceeded 0.5 (P1: 0.58±0.18, 0.55±0.31, 0.53±0.19 for sessions +9, +19, +32 and 
P2: 0.63±0.21, 0.59±0.25, 0.69±0.10 for sessions +6, +9, +32, respectively) except for +6 
(0.34±0.20) and +13 (0.38±0.15) for P1 and +13 (0.42±0.21) and +19 (0.49±0.24) for P2. See 
above and Figure 4.2 for statistics. However, it is possible to walk at a Froude value higher 
than 0.5, it is just not as energetically efficient. 

PCA and Clustering 

The first three principal components (PCs) accounted for >45% of the total variance of the 
data. The scatterplots in Figure 4.3, detail the spread of data in the 3 PC spaces. We observed 
that PC1 can distinguish between the FS sessions and the remaining sessions, whereas PC2 
seemed to distinguish adult running and later sessions from the early sessions. The loadings 
associated with these three PCs (Supplementary Material 4.1 and 4.3) were all within the 𝐶𝐶𝐶𝐶,- 
except for three. The three parameters not contributing were parameters 74, 79, and 88, i.e., 
the phase relationship between the two limbs (a measure for interlimb coordination), 
projection of 1st eigenvector on the shank axis (a measure intersegmental coordination; 
Bekius et al., 2021; Bianchi, Angelini, & Lacquaniti, 1998; Borghese, Bianchi, & Lacquaniti, 
1996; Dominici et al., 2010; Ivanenko, Dominici, et al., 2007), and ratio of left to right leg cycle 
duration (a measure for intersegmental coordination). 
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Figure 4.3: Principal component analysis (PCA). In the two left panels, each dot represents one stride. 
A) PCA results in PC1-PC2 space. B) The outcome of the PCA in PC2-PC3 space. C) The weightings of all 
sessions ordered based on walking age, so not ordered per participant. PC1 distinguishes the FS 
sessions from the other sessions with PC2 distinguishing “mature” from “immature” running. PC: 
Principal component, FS: First steps, +6, +9, +13, +19, +32 refers to the number of months since onset 
of independent walking. 

We found three clusters, see Supplementary Material 4.3 for details. The clustering results 
are depicted in Figure 4.4A. Every node represents strides from a certain session ordered from 
lowest to highest walking age from left to right. The lines connecting the sessions to the 
clusters represent the number of strides larger than ten percent that is present in a certain 
cluster. The cluster nodes are sized based on the number of strides in each cluster. The three-
cluster solution resulted in one cluster that included the adults (“A” on the lower far right of 
the circle) which could be interpreted as the mature running cluster (C1 cluster), one 
containing the immature running strides (C2 cluster) and one that included the “walking” 
strides (C3 cluster). The “walking” cluster contained all strides of the two FS sessions as well 
as a percentage of strides each from the following sessions (session [% strides]): +6 P1 (81%), 
+6 P2 (99%), +9 P1 (31%), +9 P2 (52%), +13 P2 (51%). The “immature running” cluster 
contained some strides from all sessions, except the two FS sessions, +6 P2 and the adults 
running. Finally, the “mature running” cluster contained all strides from the adults, 32% from 
+32 P1, 40% from +19 P1, and 16% of the strides from +13 P1. At first glance, P1 and P2 had 
similar developmental trajectories but a closer look revealed clear differences in that, in 
contrast to P2, P1 did reach mature running while immature running occurred intermintly 
within sessions from 9/13 months from onset of independent walking onwards (cf., Figure 
4.4B). 
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Figure 4.4: Clustering output. A) Output of clustering ordered based on walking age (time since onset 
of walking in months) with the youngest session on the right and increasing in walking age in 
anticlockwise direction. The size of the clusters depends on the number of strides they contain (the 
larger the node the more strides they contain), similarly are the lines from each node to a cluster a 
representation of the number of strides from that session that belongs to each cluster larger than 10%. 
B) Average pairwise correlation distance from each session to those of the adults as a function of 
walking age (months) for P1 and P2, respectively. Sizing of dots follow the sizing of lines in panel A. FS: 
First steps, +6, +9, +13, +19, +32 refers to the number of months since onset of independent walking. 

Muscle synergies 

The differences in the developmental trajectories shown in Figure 4.5 (panel B) may appear 
quantitatively subtle but – in fact – they are of qualitative nature. P2 shows an improvement 
in the running maturity which evolves gradually but does not reach full maturity over the 
observation period. On the other hand, P1 did reach a mature running pattern over the last 
few recording sessions, but apparently the immature pattern coexisted even once mature 
running could be accomplished. In searching for the causes underlying these difference, we 
here dwell more on the result of the analysis of the accompanying muscle synergies.  Before 
going into detail, we would like to note that lateral gastrocnemius (LG) was not analyzed for 
the FS and +6 sessions of P1 and erector spinae (ES) for +6 of P1. This was due to poor data 
quality. 
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The reconstruction accuracy (RA) revealed different numbers of muscle synergies between 
sessions with median of three muscle synergies (IQR: 3:4.5) across all sessions. The RA was 
64.2 ± 1.8, 64.1 ± 2.6, and 66.3 for P1, P2, and the adults, respectively, for three synergies. 
The temporal activation patterns of the first of the three synergies had the most activity at 
foot contact, the weight acceptance phase, with the knee extender muscles (RF, VM, VL, and 
RF muscles) being the predominant influencers both for toddlers and adults with some 
contribution also of the TFL and GLM muscles (cf. Figure 4.5). The second components were 
related to end of stance, the propulsion phase, with the largest contributions of MG, LG, and 
SOL. The third synergy was more variable with activity from TA and ES with most activity at 
swing. Synergies were comparable across sessions for P1 and P2. For P1, the most notable 
development in the muscle synergies in time after onset of independent walking, was the 
increase in amplitude, especially in synergy 1. This increase in amplitude across age/time 
since onset of independent was not clear to the same extent in P2. 

 
Figure 4.5: Muscle synergies for P1, P2, and adults. The top graphs are the grand average temporal 
activation patterns for each session as a function of the gait cycle and the three synergies. Amplitude 
is in arbitrary units. The lower bar graphs are the weighting coefficients for the muscle synergies. The 
naming of the muscles can be seen below. TA: tibialis anterior, GM: gastrocnemius medialis, GL: 
gastrocnemius lateralis, SOL: soleus, RF: rectus femoris, VM: vastus medialis, VL: vastus lateralis, BF: 
biceps femoris, TFL: tensor fascia latae, GLM: gluteus maximus, ES: erector spinae, +6, +9, +13, +19, 
+32 refers to the number of months since onset of independent walking. 

FWHM and CoA mark the ability to quickly contract a muscle and the timing of the muscle 
contraction, respectively. The FWHM of the temporal patterns of the three synergies was 
comparable across sessions with a large variance between strides (cf. Figure 4.6). The most 
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pronounced differences were found between the FWHM of the sessions of P2 and the adults 
(e.g., FS, +6, +13, +19, and +32 all had a 𝑝𝑝<0.0001 for synergy 1, +6, +13, +32 were all 𝑝𝑝<0.001 
for synergy 2) with some in-between significant differences between the sessions within P1 
and P2. Synergy 3 of P2 had a characteristic pattern of a reduction of the FWHM from the first 
running session (+6) to the last running session (+32) with significant 𝑝𝑝-values of 𝑝𝑝<0.0001 for 
the +6 session compared to +19, +32, and adults and 𝑝𝑝=0.0067 for the +6 session compared 
to the +13 session. 

The CoA of the synergies were way more variable in the children than in the adults. In the 
latter the CoAs were within the same 25% of the gait cycle across strides (between 0-25% of 
the gait cycle for synergy 1 and 2, and within 63 and 83% of the gait cycle for synergy 3). For 
the first and third pattern, the range of the CoA for P1 and P2 covered all percentages of the 
gait cycle for all sessions. Most noteworthy is the mean CoA for the second temporal pattern 
which occurred later in the FS sessions (31.6% ± 18.5% and 56.3% ± 18.7% of the gait cycle) 
for P1 and P2, respectively, compared to the mean over the other sessions, which ranged 
from 13.8% to 16.0% for P1 and 13.6% to 20.2% for P2 (𝑝𝑝 < 6 × 10.I and 𝑝𝑝 < 2 × 10./K, 
respectively). Here, the adult patterns were similar with a mean of 13.3% ± 3.6% of the gait 
cycle for the second component. 

 

Figure 4.6: Full-width half-maximum and center-of-activity of muscle synergies. Color notation as to 
the right. (A) The full-width half-maximum (FWHM) was calculated for the main peak of each stride 
for each muscle synergy. It is represented as a percentage of the gait cycle. (B) The center-of-activity 
(CoA) was expressed as the percentage of the gait cycle. The horizontal lines represent a significant 
difference, p < 0.007 within a participant and the adults. The dagger (†) represents a significant differ-
ence between session and all other sessions. A hash (#) represents a significant difference between 
session and all later sessions and adults. GC: gait cycle, FWHM: full-width at half-maximum, A: adults, 
FS: first steps, +6, +9, +13, +19, +32 refers to the number of months since onset of independent walking. 
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Discussion 

PCA and Clustering – Classifying running maturity 

We succeeded to classify the development of running maturity over the span of six recording 
sessions of almost three years in two toddlers matched on walking age. That is, our shotgun 
approach combining PCA and hierarchical clustering enabled us to estimate the maturity of 
very early development of running.1 After walking the first independent steps, our 
participants developed the capacity of running, though to different degrees of maturity. It 
appears that mature running patterns can coexist next to immature ones, which occur earlier 
in the course of developement. 

As said, in particular in P1, several sessions had strides in two different clusters. Since the data 
were collected not only during overground running but also on the treadmill it might have 
been that the more mature strides were recorded overground and the more immature ones 
on the treadmill. A lack of treadmill experience may hence have cause the ‘return’ to the 
immature mode of locomotion . However, analysis of the strides falling into the more mature 
or immature clusters did not reveal such a pattern, see Supplementary Material 4.3. 

Remarkably, the FS session of P1 was relatively close to mature running in terms of the 
average pairwise distance to the adults. While this might hint at shortcomings of our 
clustering approach (see also below), already in PC1-PC2 space the first step session (very 
dark blue) was indeed close to the adults. In a future study we will compare new walkers to 
very experienced runners. There we will also include adult walking, i.e., experienced walking, 
and expect that the FS strides will becloser to this cluster than to adult running. 

In the current two children we cannot pinpoint a moment when the running pattern differs 
from the walking pattern and becomes like the adult running pattern. This is mostly due to a 
substantial variability between and within sessions in the majority of outcome variables. We 
would like to stress anyway that we were able to show that the two toddlers seemingly display 
different paths towards running maturity. 

 

1 While this – in principle – supports the combination of kinetic, kinematic, and electromyographic data in a single ‘shotgun’ 
approach, it leaves the question of which factors or parameters are causing the (differences in) development open. However, 
the parameters dominating the PCA can be readily determined. We briefly illustrate this by investigating whether a reduced 
number of parameters may lead to results similar to the ones reported in the body text. For this sake we retained only 
loadings contributing >0.6 and repeated the cluster analysis. In total 46 parameters were included in the second analysis 
(see Supplementary Material 4.4). These cluster results differed from our main ones in that more sessions/strides were 
considered “mature” running and more strides/sessions were considered “immature” running instead of walking. Thus, 
clustering seems less sensitive to individual differences in the strides with a reduced number of parameters. Put differently, 
parameters not contributing more than 60% to the PCA are still relevant when clustering. 
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Muscle synergies – What underlies running maturity? 

We determined three muscle synergies. This number is smaller than in many other studies on 
running where the number is usually four or more (Bach et al., 2021b; Cappellini et al., 2006; 
Cheung et al., 2020; Santuz, Ekizos, Janshen, et al., 2018). We chose to determine the number 
of muscle synergies based on finding the plateau of the reconstruction accuracy (RA) using 
the linear-fit method introduced by Cheung et al. (2005). Whether or not this explains this 
discrepancy with the literature is unclear. A recently method proposed by Ballarini, Ghislieri, 
Knaflitz, and Agostini (2021) where the consistency and similarity of both activation patterns 
and weighting coefficients were determined may shed light on this. However, most methods 
of determining the number of synergies require setting some threshold which leaves this an 
open issue for future research (Sylos-Labini et al., 2022); see Supplementary Material 4.5 for 
an alternative to the reconstruction accuracy (RA) used here. 

Synergy 2 shows a phase shift as evidenced in the CoA from 30-50% of the gait cycle for the 
FS session to around ~15% of the gait cycle for the later sessions. The phase shift occurs from 
the +6 session and is stable across the running sessions, which indicates that a contraction of 
the foot flexors matching the shorter stance phase is important for even early running 
patterns. 

The analysis of FWHM of the temporal activation patterns of the muscle synergies allowed us 
to quantify the duration of activity of the muscles contributing to this particular synergy. 
FWHM of motor primitives or muscle synergies has previously been hypothesised to be a 
measure for robustness of the motor control (Martino et al., 2015; Martino et al., 2014; Mileti 
et al., 2020; Santuz et al., 2020; Santuz, Ekizos, Eckardt, et al., 2018). For both synergy 1 and 
2, we found the most differences from the adult patterns to the patterns of P2 and not P1, 
which indicates similar widening between P1 and the adult pattern already from an early 
running pattern. It is likely that this trend was indeed an underlying reason for why the 
running patterns of this participant has been considered to mature earlier than P2. It is likely 
that this trend was indeed an underlying reason for why the running patterns of this 
participant has been considered to mature earlier than P2. We also observed that for both 
synergy 1 and 2 that there was first an increase followed by a reduction in the FWHM from 
the +13 session. This is the same timepoint at which the very mature strides appeared. In P2, 
the +6 and +32 sessions for synergy 1 both differed from most of the other sessions with a 
decrease in the FWHM from the +6 session to the +19 session with the +6 and +32 sessions 
being similar. The decrease from 6 months since onset of independent walking until +19 
months could be due to an improved ability to narrow the duration of the activation pattern 
and reduce the overlap of the muscle synergies at the weight acceptance phase, where the 
increase in the FWHM at 32 months could be explained by a possible altered running pattern 
that is not yet finetuned. 
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Methodological choices and Limitations 

The EMG was processed by normalizing the amplitude to the mean of the data across strides. 
According to Besomi et al. (2020), a normalization to the mean can lead to a reduction in the 
inter-individual variation in amplitude. Obtaining a more optimal normalization via maximal 
voluntary contraction may, however, not be feasible, especially in young children. Yet, we 
must admit that normalization to the mean might have resulted in some unwarranted high 
weighting for some muscles (Besomi et al., 2020). 

The main limitation of this study is the lack of power by only having two participants. Without 
a doubt this limits the ability to generalize our results. Despite the lack of generalizability, we 
consider it a valuable starting point, first in methods and – more importantly, in clarifying that 
time since onset of independent walking does not appear to be a solid indicator of the 
maturity of running patterns in very young children. 

The two clusters, C3 “walking” and C2 “immature running” were so close to each other that 
they are just overlapping in terms of our measure of maturity, the mean pairwise correlation 
distance to that of the adults. This may suggest that a cluster solution with three clusters may 
not have been optimal. However, the mean pairwise distance to the adults did not change 
with an altered number of clusters. We are hence convinced that our measure can be used 
for determining the “order of maturity”. On the other hand, the FS session of P1 can be 
considered more mature than +6 and +9, two sessions containing running strides. Apparently, 
the distance measure and linkage method used to create the dendrogram was less optimal 
than in our previous study (Bach et al., 2021a). However, a combination of other distance 
measures and linkage methods did not yield better cophenetic correlation coefficients (CCC). 
The only a Euclidian distance measure with either average (CCC: 0.83) or centroid algorithms 
(CCC: 0.84) showed comparable results but cause problems, e.g., dendrogram with non-
monotonic links. 

Future research should be focused on investigating larger number of children. When doing 
so, we advocate combining many kinematic and neuromuscular parameters to fully 
investigate the development of the running patterns in very young children. 

Conclusion 

Our study is unique in that the development of running was monitored longitudinally over a 
three-years span with highly frequent assessments of kinetics, kinematics, and 
electromyography. It provides a first view on the effect of time since onset of independent 
walking on the development of running. Running development followed different trajectories 
that we quantified ‘blindly’ via a shotgun approach after combining various biomechanical 
and neuromuscular parameters. Evidently, the development of running can take different 
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trajectories including the co-existence of immature and mature running within the same 
session in a child. Muscle synergy analysis may help explaining why the development can 
differ between children, though there is a long way to clarifying this with statistical 
robustness.   
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Supplementary Material 4.1 

List of parameters and their normalizations before being z-scored and included into the PCA. 

Table S4.1: Included parameters in the principal component analysis. 

PARAM DETAILED EXPLANATION 
   UNIT 
[NORM] 

PARAM DETAILED EXPLANATION 
   UNIT 
[NORM] 

TEMPORAL FEATURES 56 Main-leg elevation angle (Amp) deg 

1 Stride duration s 57 Hip joint angle (Amp) deg 
2 Froude velocity  58 Knee joint angle (Amp) deg 
3 Stance duration s 59 Ankle joint angle (Amp) deg 
4 Percentage swing duration % GC 60 Main-leg medio-lateral angle (Amp) deg 

5 Percentage stance duration % GC LEG/JOINT ANGULAR VELOCITY 

6 Percentage double support % GC 61 Main-leg velocity (Min) deg/s 
7 Percentage flight phase % GC 62 Hip joint velocity (Min) deg/s 
8 Stride length (1D) [1/l] 63 Knee joint velocity (Min) deg/s 
9 Stride length (3D) [1/l] 64 Ankle joint velocity (Min) deg/s 

LIMB ENDPOINT (VM) TRAJECTORY 65 Main-leg velocity (Max) deg/s 

10 Step length [1/l] 66 Hip joint velocity (Max) deg/s 
11 Step height [1/l] 67 Knee joint velocity (Max) deg/s 
12 Maximum backward position  [1/l] 68 Ankle joint velocity (Max) deg/s 
13 Maximum forward position  [1/l] 69 Main-leg velocity (Amp) deg/s 
14 Maximum velocity during swing m/s 70 Hip joint velocity (Amp) deg/s 
15 Relative timing of max velocity during swing % GC 71 Knee joint velocity (Amp) deg/s 
16 Acceleration at swing onset m/s2 72 Ankle joint velocity (Amp) deg/s 

17 Endpoint velocity m/s INTRA-LIMB COORDINATION 

18 Orientation of velocity vector at swing onset rad 73 Correlation between the two limbs AP direction  
19 Position of ankle with respect to hip at FC [1/l] 74 Phase relationship between the two limbs  

20 Position of ankle with respect to hip at FO [1/l] INTERSEGMENTAL COORDINATION 

21 Position of ankle with respect to hip at SE [1/l] 75 Percentage of variance (1st 𝑢𝑢)   

STABILITY 76 Percentage variance (2nd 𝑢𝑢)  

22 Lateral displacement of foot during swing [1/l] 77 Percentage variance (3rd 𝑢𝑢)   
23 Step length [1/l] 78 Projection of 1st 𝑢𝑢 on thigh axis  
24 Step width (ML) [1/l] 79 Projection of 1st 𝑢𝑢 on shank axis  
25 Hip midpoint variability (ML)  80 Projection of 1st 𝑢𝑢 on foot axis  
26 Hip midpoint variability (vert)  81 Projection of 2nd 𝑢𝑢 on thigh axis  
27 Variability of sagittal trunk oscillations  82 Projection of 2nd 𝑢𝑢 on shank axis  
28 Variability in vel. of sagittal trunk oscillations  83 Projection of 2nd 𝑢𝑢 on foot axis  
29 Variability of Medio-lateral hip rotations   84 Projection of 3rd 𝑢𝑢 on thigh axis  
30 Amplitude of trunk Medio-lateral movement deg 85 Projection of 3rd 𝑢𝑢 on shank axis  
31 Amplitude of trunk Vertical movement deg 86 Projection of 3rd 𝑢𝑢 on foot axis  
32 Variability of Medio-lateral trunk movement  87 Area of the gait loop deg2 
33 Variability of Vertical trunk movement  88 Ratio of left to right leg cycle duration  

JOINT AND SEGMENTAL ANGLES INTERLIMB COORDINATION 

34 Hip elevation angle (min) deg 89 Phase difference hip and thigh elev. angles  
35 Thigh elevation angle (Min) deg 90 Phase difference thigh and shank elev. angles  
36 Shank elevation angle (Min) deg 91 Phase difference shank and foot elev. angles  
37 Foot elevation angle (Min) deg 92 Max r (hip and thigh elevation angles)  
38 Main-leg elevation angle (Min) deg 93 Max r (thigh and shank elevation angles)  
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39 Hip elevation angle (Max) deg 94 Max r (shank and foot elevation angles)  
40 Thigh elevation angle (Max) deg 95 Max r (hip and knee joint angles)  
41 Shank elevation angle (Max) deg 96 Max r (knee and ankle joint angles)  

42 Foot elevation angle (Max) deg PENDULUM/SPRING MECHANISM 

43 Main-leg elevation angle (Max) deg 97 Amplitude of vertical hip displacement m 
44 Hip joint angle (Min) deg 98 Amplitude of ML hip displacement m 

45 Knee joint angle (Min) deg TRUNK SEGMENTAL AND JOINT ANGLES 

46 Ankle joint angle (Min) deg 99 Trunk elevation angle (Min) deg 
47 Main-leg abduction (Min) deg 100 Trunk elevation angle (Max) deg 
48 Hip joint angle (Max) deg 101 Trunk elevation angle (amp) deg 

49 Knee joint angle (Max) deg MUSCLE SYNERGIES 

50 Ankle joint angle (Max) deg 102 Full-width half-maximum – Synergy 1 % GC   
51 Main-leg abduction (Max) deg 103 Full-width half-maximum – Synergy 2 % GC 
52 Hip elevation angle (Amp) deg 104 Full-width half-maximum – Synergy 3 % GC 
53 Thigh elevation angle (Amp) deg 105 Center of activity – Synergy 1 % GC 
54 Shank elevation angle (Amp) deg 106 Center of activity – Synergy 2 % GC 
55 Foot elevation angle (Amp) deg 107 Center of activity – Synergy 3 % GC 

Param: parameter; Norm: normalization; l, leg-length; FC: foot contact, FO: foot off, SE: swing end; AP: anterior-posterior; ML: medio-lateral, 
W: body weight; SS: single support; d: stride length; min: minimum; max: maximum; amp: amplitude; 𝑢𝑢: eigenvector.  
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Supplementary Material 4.2 

To quantify the influence of the session and participants on the ability to run with either a 
double support (DS) phase or a flight phase (FP), a linear regression model was fitted to all 
data with either DS or FP as the response variable and the session, participant and the inter-
action between session and participant as predictors. p < 0.05 were considered significant for 
this purpose. We fitted a least squares exponential function of the dependence of Froude on 
the ability to run with a flight phase and double support phase, respectively and report the 
adjusted 𝑅𝑅& values. A two-sample t-test was performed on the Froude values for the treadmill 
strides and overground strides for each session. 

Table S4.2: Statistics on double support phase and flight phase 

  FFaaccttoorr  EEssttiimmaattee  SSEE  𝒕𝒕  pp--vvaalluuee  

DDSS  Intercept 42.62 1.70 25.11 < 2	 ×	10)*+ 
  Session -4.84 0.35 -13.98 < 2	 ×	10)*+ 
  Participant -1.83 1.09 -1.68 0.09 
  Session:Participant -0.47 0.20 -2.31 0.02 
FFPP  Intercept 3.42 0.65 5.29 < 2	 ×	10), 
  Session -1.27 0.13 -9.61 < 2	 ×	10)*+ 
  Participant -3.31 0.42 -7.98 < 2	 ×	10)*+ 
  Session:Participant 1.45 0.08 18.64 < 2	 ×	10)*+ 

DS: Double support phase, FP: Flight phase, SE: Standard error, t: t-statistics 

The Froude value for strides on the treadmill were in all cases significantly lower than the 
Froude value for strides recorded while locomoting overground as can be seen in Table S4.3. 
Not all sessions contained strides recorded during both modalities. 

Table S4.3: Comparisons of the Froude values for treadmill and overground strides  

PPaarrttiicciippaanntt  FFrroouuddee  ––  OOVVGG  FFrroouuddee  --  TTMM  pp--vvaalluuee  

FFSS  PP11  0.04  < 2	 ×	10)*+ 
FFSS  PP22  0.02 0.04 9.5	 ×	10)+ 
++66  PP11  0.34   
++66  PP22  0.63   
++99  PP11  0.58   
++99  PP22  0.65 0.45 1.7	 ×	10)- 
++1133  PP11  0.59 0.32 < 2	 ×	10)*+ 
++1133  PP22  0.51 0.25 3.3		 ×	10)*+ 
++1199  PP11  0.86 0.41 1.5	 ×	10)*- 
++1199  PP22  1.04 0.40 < 2	 ×	10)*+ 
++3322  PP11  1.06 0.50 < 2	 ×	10)*+ 
++3322  PP22  1.03 0.68 < 2	 ×	10)*+ 
AA   0.62  

Missing values are due to no strides recorded for that modality for that session. A: Adults, OVG: Over-
ground, TM: Treadmill, FS: First steps 
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There was a strong inverse relationship between the Froude value and the DS phase 
(𝑅𝑅& = 0.79) meaning that the lower the Froude value, the more DS was present (cf., Figure 
S4.1). However, there no significant relationship (𝑅𝑅& = 0.27) between the Froude value and 
the amount of FP and there is almost no flight phase present with a Froude value between 0 
and 0.4. The strong presence of a relationship between the double support phase and the 
normalized speed, but the lack of the same relationship between the flight phase and the 
normalized speed indicates that for running the ability to run with a flight phase is not merely 
a function of running at a certain speed, but more factors influence this ability. 

 
Figure S4.1: Relationship between Froude and DS and FP. A) Relationship between double support expressed as 
a percentage of the gait cycle as a function of the Froude value. A least-squares exponential function was fitted 
and resulted in an adjusted 𝑅𝑅! = 0.79 which means a decrease in double support is correlated to an increase in 
dimensionless speed. B) Relationship between flight phase expressed as a percentage of the gait cycle as a func-
tion of the Froude value. A least-squares exponential function was fitted and resulted in an adjusted 𝑅𝑅! = 0.27 
which means no relation between the amount of flight phase and dimensionless speed. DS: Double support, FP: 
Flight phase, %GC: percentage gait cycle, +6, +9, +13, +19, +32 refers to the number of months since first steps, 
i.e., the walking age. 
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Supplementary Material 4.3 

Loadings explaining the contribution to each PCA. First parameter to the right, parameter 107 
on the left. See Supplementary Material 4.1 for overview of the different parameters. The 
darker the color (red or blue) the higher the contribution to the relevant PC. 

 
Figure S4.2: Loadings for PC1-PC3. Color coding refers to the contribution of each loading. The darker the color 
the higher the contribution. See Table S4.1 for overview of all 107 parameters. 

We first built a dendrogram using average links (unweighted pair group method with 
arithmetic mean) of the first three PCs. The cophenetic correlation coefficient (CCC) for the 
correlation distance measure with average links was 0.84 which was comparable or higher 
than other combinations of distance measure and linkage methods. Combining a visual in-
spection of the dendrogram with the Calinzki-Harabasz stopping rule, resulted in three clus-
ters. The Calinzki-Harabasz stopping rule run from 1-10 clusters revealed a cluster solution of 
two to be the most optimal, however the visual inspection resulted in three clusters to also 
allow for a possible separation, not only between walking in the FS sessions and the running 
in the other sessions but also between immature and mature running. 

Dendrogram describing the split of clusters. The y-axis is a measure for the distance between 
clusters as measured by the correlation distance. The taller the links between two lead nodes, 
the longer the leaf nodes (or clusters) are located from each other in 3D space. 
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Figure S4.3: Dendrogram for clustering results. 

Table S4.4 represents the strides that belong to each cluster for treadmill and overground 
locomotion, respectively. What is clear in this overview is that the modality (treadmill or over-
ground locomotion) does not account for the maturity of the strides. 

Table S4.4: Overview of overground and treadmill strides for each cluster 

PPaarrttiicciippaanntt  CClluusstteerr  11  CClluusstteerr  22  CClluusstteerr  33  TToottaall  ssttrriiddeess  
OVG TM OVG TM OVG TM  

FFSS  PP11      254  254 
FFSS  PP22      77 22 99 
++66  PP11    9  38  47 
++66  PP22    1  108  109 
++99  PP11  1  19  9  29 
++99  PP22  2 5 31 29 64 8 139 
++1133  PP11  1 15 16 63 6 1 102 
++1133  PP22    35 43 68 14 160 
++1199  PP11  13 29 18 45 2  107 
++1199  PP22   2 12 78 1  93 
++3322  PP11  9 69 6 163   247 
++3322  PP22   23 5 209 2  239 
AA   103  2   105 

Missing values are due to no strides recorded for that modality for that session. Red values represent strides that are not 
included in the cluster results as they account for less than 10% of the total number of strides. A: Adults, OVG: Overground, 

TM: Treadmill, FS: First steps 
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Supplementary Material 4.4 

To investigate if a smaller number of parameters lead to similar results as the full analysis a 
second analysis was done with the loadings contributing >0.6 to either of the three PCs. This 
reduced number of loadings means that 46 parameters were analyzed in total. See Table S4.5 
below for parameters. 

Table S4.5: List of parameters included into PCA in reduced analysis. 

PARAM DETAILED EXPLANATION 
   NEW 
PARAM 

PARAM DETAILED EXPLANATION 
   NEW 
PARAM 

TEMPORAL FEATURES 50 Ankle joint angle (Max) 25 

1 Stride duration 1 53 Thigh elevation angle (Amp) 26 
2 Froude velocity 2 54 Shank elevation angle (Amp) 27 
3 Stance duration 3 55 Foot elevation angle (Amp) 28 
4 Percentage swing duration 4 56 Main-leg elevation angle (Amp) 29 
5 Percentage stance duration 5 58 Knee joint angle (Amp) 30 

6 Percentage double support 6 LEG/JOINT ANGULAR VELOCITY 

8 Stride length (1D) 7 61 Main-leg velocity (Min) 31 
9 Stride length (3D) 8 62 Hip joint velocity (Min) 32 

LIMB ENDPOINT (VM) TRAJECTORY 65 Main-leg velocity (Max) 33 

10 Step length 9 67 Knee joint velocity (Max) 34 
12 Maximum backward position  10 69 Main-leg velocity (Amp) 35 
13 Maximum forward position  11 70 Hip joint velocity (Amp) 36 
14 Maximum velocity during swing 12 71 Knee joint velocity (Amp) 37 

18 Orientation of velocity vector at swing onset 13 INTRA-LIMB COORDINATION 

19 Position of ankle with respect to hip at FC 14 73 Correlation limb-arm AP direction 38 

20 Position of ankle with respect to hip at FO 15 INTERSEGMENTAL COORDINATION 

21 Position of ankle with respect to hip at SE 16 75 Percentage of variance (1st 𝑢𝑢)  39 

STABILITY 76 Percentage variance (2nd 𝑢𝑢) 40 

23 Step length 17 78 Projection of 1st 𝑢𝑢 on thigh axis 41 
24 Step width (ML) 18 82 Projection of 2nd 𝑢𝑢 on shank axis 42 
28 Variability in vel. of sagittal trunk oscillations 19 83 Projection of 2nd 𝑢𝑢 on foot axis 43 

JOINT AND SEGMENTAL ANGLES 84 Projection of 3rd 𝑢𝑢 on thigh axis 44 

36 Shank elevation angle (Min) 20 INTERLIMB COORDINATION 

37 
Foot elevation angle (Min) 

21 91 Phase difference shank and foot elev. an-
gles 

45 

38 Main-leg elevation angle (Min) 22 TRUNK SEGMENTAL AND JOINT ANGLES 

43 Main-leg elevation angle (Max) 23 101 Trunk elevation angle (amp) 46 
49 Knee joint angle (Max) 24  

Param: parameter; Norm: normalization; l, leg-length; FC: foot contact, FO: foot off, SE: swing end; AP: anterior-posterior; ML: me-
dio-lateral, W: body weight; SS: single support; d: stride length; min: minimum; max: maximum; amp: amplitude; 𝑢𝑢: eigenvector. 

The three PCs explained more than 70% of the variance of the original dataset (PC1: 48%, 
PC2: 14%, and PC3: 10%). All parameters included contributed more than the 95%CI. PC1 dis-
tinguished the first sessions from the other sessions with no clear effect of PC2 and PC3. 
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Figure S4.4: Output of Principal Component Analysis (PCA) on 46 parameters. A) PC1-PC2 space. B) PC2-PC3 
space. Color coding as to the right. Each dot represents one stride. 

 
Figure S4.5: Loadings for PC1-PC3. Color coding refers to the level of contribution with the darkest colors provid-
ing the highest loadings. For information on which parameters are which, refer to Table S4.5. 

The loadings for the three PCs were all high for PC1 and they all contributed more than 0.6 to 
any of the three PCs. 

The clustering was done in similar way as the original analysis with a correlation distance and 
average linkage. A dendrogram was created and the cophenetic correlation coefficient was 
0.80 for this cluster solution, see Figure S4.6.  
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Figure S4.6: Dendrogram for reduced analysis. Colors represent each their cluster. The y-axis of the plot refers 
to the correlation distance. Cluster 1 (C1) and cluster2 (C2) are closest to each other with C3 being on the far 
right. 

The Calinzki-Harabasz rule resulted in an optimal number of 2 clusters, however, the visual 
inspection of the dendrogram revealed that three clusters resulted in the least inconsistent 
links and so the three-cluster solution was used – this also made the supplemental analysis 
comparable to the main analysis. 

The cluster solution with only a subset of the parameters resulted in a slightly different solu-
tion of the clusters than the main analysis. More sessions are now clustered in the adult clus-
ter, i.e., the “mature running” cluster (c.f., Figure S4.7A). This applies to +19 of P2 and more 
strides from +13 of P1 also now fall in the mature cluster. Similarly, are there fewer 
strides/sessions falling into the “walking” cluster such as the two +6 and +9 sessions. This 
indicates that a reduced number of parameters means that the clustering is less sensitive to 
the individual differences in the strides. The trend that P1 has a faster development toward a 
mature pattern than P2 is still present in this analysis. 
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Figure S4.7: Output of clustering. A) Output of clustering ordered based on walking age (months) with the young-
est session on the right and increasing in walking age in anticlockwise direction. The size of the clusters depends 
on the number of strides they each contain (the larger the cluster node the more strides they contain), similarly 
are the lines from each node to a cluster a representation of the number of strides from that session that belongs 
to each cluster larger than 10%. B) Calculated average pairwise correlation distance from each session to those 
of the adults as a function of walking age (months). Sizing of dots follow the sizing of lines in panel A. C) calculated 
average pairwise correlation distance to the adults as a function of maturity. Note that some sessions contribute 
to more than one cluster and thus are repeated on the upper x-axis. The color notation is similar as in (A) and 
(B). D) Output of clustering based on maturity of the gait patterns with the most immature gait pattern on the 
far right with increasing maturity in anticlockwise direction. FS: First steps 

That all parameters contributed more than 0.6 to the PCA indicates that they are all relevant 
for the analysis and thus are a good starting point if one wants to pinpoint the exact param-
eters influencing the maturity of gait patterns in very young children. 
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Supplementary Material 4.5 

The reconstruction accuracy (RA) has the advantage of exploiting the Frobenius norm which 
is the optimization method also used for the (W)NMF. However, the VAF method is more 
widely used, so we also compared the RA to the VAF for the chosen number of synergies. We 
determined VAF as the mean-uncentered VAF. 

𝑉𝑉𝑉𝑉𝑉𝑉 = 1 −
‖𝐸𝐸𝐸𝐸𝐸𝐸 −𝑊𝑊 ∙ 𝐻𝐻‖&

‖𝐸𝐸𝐸𝐸𝐸𝐸‖&  

where 𝑊𝑊 and 𝐻𝐻 represent the weighting coefficients and activation patterns of the synergies, 
respectively. When using VAF, a common method to determine the number of synergies 
needed is that they should explain a minimum of 80-90% of the data. Three synergies explain 
a mean of 87.16% ± 1.29%, 87.07% ± 1.89%, and 88.66% for P1, P2, and adults, and the next 
added synergies only add 3.34% ± 0.40%, 3.79% ± 1.04%, and 3.14%, respectively. Thus, de-
spite the number of synergies being lower than in other studies, the three synergies still ex-
plain a large portion of the original data and adding another synergy does not add any sub-
stantial variance to the data. 
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Abstract 

Accelerometers are low-cost measurement devices that can readily be used outside the lab. 
However, determining isolated gait events from accelerometer signals, especially foot-off 
events during running, is an open problem. We outline a two-step approach where machine 
learning serves to predict vertical ground reaction forces from accelerometer signals, fol-
lowed by force-based event detection. We collected shank accelerometer signals and ground 
reaction forces from 21 adults during comfortable walking and running on an instrumented 
treadmill. We trained one common reservoir computer using segmented data using both 
walking and running data. Despite being trained on just a small number of strides, this reser-
voir computer predicted vertical ground reaction forces in continuous gait with high quality. 
The subsequent foot contact and foot off event detection proved highly accurate when com-
pared to the gold standard based on co-registered ground reaction forces. Our proof-of-con-
cept illustrates the capacity of combining accelerometry with machine learning for detecting 
isolated gait events irrespective of mode of locomotion. 

  

116

Chapter 5

165404 Bach BNW.indd   116165404 Bach BNW.indd   116 28-03-2023   12:0828-03-2023   12:08



 

Introduction 

Estimating the presence of a step using mobile devices can be realized with fair accuracy and 
relative ease (de Ruiter, van Oeveren, Francke, Zijlstra, & van Dieen, 2016; Moe-Nilssen & 
Helbostad, 2004; Norris, Kenny, & Anderson, 2016; van Oeveren, 2021; van Oeveren, de 
Ruiter, Beek, Rispens, & van Dieen, 2018). Yet, many details of the stepping cycle remain 
opaque such as foot contact and foot off moments, but also more detailed gait characteristics, 
such as loading responses in (ambulant) clinical contexts. In most of the current literature on 
wearables, event estimations are rule-based and often require searching for an area of inter-
est (Pérez-Ibarra, Williams, Siqueira, & Krebs, 2018; Prasanth et al., 2021). This is true for data 
from inertial measurement units but also for data derived from only accelerometers. Algo-
rithms are optimized for either walking (Ben Mansour, Rezzoug, & Gorce, 2015; Greene et al., 
2010; Gurchiek, Garabed, & McGinnis, 2020; Mico-Amigo et al., 2016; Pacini Panebianco, Bisi, 
Stagni, & Fantozzi, 2018; Rueterbories, Spaich, & Andersen, 2014; Selles, Formanoy, 
Bussmann, Janssens, & Stam, 2005; Trojaniello et al., 2014) or running (Bergamini et al., 2012; 
Khandelwal & Wickstrom, 2017; Lee, Mellifont, & Burkett, 2010; McGrath, Greene, 
O’Donovan, & Caulfield, 2012; Mitschke, Heß, & Milani, 2017; Mo & Chow, 2018; Purcell, 
Channells, James, & Barrett, 2006; Sinclair, Hobbs, Protheroe, Edmundson, & Greenhalgh, 
2013) and vary depending on sensor location and type, and on speed. As it stands, they may 
not generalize to other settings. 

Machine learning approaches may provide welcome alternatives. They have been employed 
to predict stepping moments and gait phases by extracting different features recorded from 
inertial measurement units (Abaid, Cappa, Palermo, Petrarca, & Porfiri, 2013; Chen, Qi, Guo, 
& Yu, 2017; Mannini, Genovese, & Maria Sabatini, 2014; Mannini & Sabatini, 2011; Martinez-
Hernandez & Dehghani-Sanij, 2018; Meng, Martinez-Hernandez, Childs, Dehghani-Sanij, & 
Buis, 2019; Prado, Cao, Robert, Gordon, & Agrawal, 2019; Robberechts et al., 2021; Su, Smith, 
& Gutierrez Farewik, 2020; Taborri, Rossi, Palermo, Patane, & Cappa, 2014; Taborri, Scalona, 
Palermo, Rossi, & Cappa, 2015; Tan, Aung, Tian, Chua, & Yang, 2019; Vu et al., 2018; Yang et 
al., 2019), 3D marker data (Aung et al., 2013; Kidzinski, Delp, & Schwartz, 2019; Osis, Hettinga, 
& Ferber, 2016; Osis, Hettinga, Leitch, & Ferber, 2014), electromyography (Morbidoni et al., 
2021), pressure sensors (Crea et al., 2012), and textile sensors (Rezaei, Ejupi, Gholami, 
Ferrone, & Menon, 2018). Across the board, though, these approaches required a priori fea-
ture extractions and are, hence, potentially jeopardized by selection bias. 

Stepping instants can readily be identified using (the shape of) ground reaction forces (GRFs), 
typically obtained from force plate signals (Borghese et al., 1996; Roerdink et al., 2008). With 
these, one can specify single/double support and flight phases and, correspondingly, the 
mode of locomotion, i.e., walking or running. As such it seems obvious to first seek to estimate 
the GRF’s shape from wearable sensors and to subsequently use these predicted waveforms 
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to determine gait events. Also here, machine learning has been successful. GRFs during the 
stance phase, for instance, has been estimated using only acceleration (Davidson, Virekunnas, 
Sharma, Piche, & Cronin, 2019; Leporace, Batista, & Nadal, 2018; Lim, Kim, & Park, 2019; 
Ngoh, Gouwanda, Gopalai, & Chong, 2018), a combination of acceleration and angular veloc-
ity (Lee & Park, 2020; Pogson, Verheul, Robinson, Vanrenterghem, & Lisboa, 2020; Sharma, 
Davidson, Muller, & Piche, 2021; Wouda et al., 2018), or marker-based kinematics (Johnson 
et al., 2021; Komaris et al., 2019). The GRFs during double stance phase could be estimated 
via marker-based kinematics (Choi, Lee, & Mun, 2013; Oh, Choi, & Mun, 2013) and the GRFs 
during the full gait cycle using accelerometers placed on the torso (Guo et al., 2017). Yet, 
these approaches often appeared tailored to the data under study rendering their generali-
zability questionable, but more importantly, in almost all cases, they only managed to predict 
GRFs for the stance phase, whereas the (duration of the) swing phase is of great importance 
when investigating running. 

A recent review revealed that the shape of the GRF can most accurately be estimated from 
accelerometry (Horsley et al., 2021) and another found neural networks as a promising tool 
to do so (Ancillao et al., 2018). This triggered the idea of estimating vertical GRF waveforms 
from acceleration signals of the lower extremities via reservoir computers, more specifically 
via echo state networks (ESNs) (Goodfellow, Bengio, & Courville, 2016; Jaeger & Haas, 2004; 
Maass, Natschlager, & Markram, 2002). ESNs are ‘minimal’ forms of recurrent neural net-
works. Thanks to the reservoir’s ‘complex’ structure, they may come with great computa-
tional capacities (Lukoševičius & Jaeger, 2009; Pathak, Hunt, Girvan, Lu, & Ott, 2018). In the 
absence of feedback, one can train them with a very simple and robust rule: optimizing output 
weights by mere linear regression. This is particularly appealing when considering that typical 
datasets on gait are fairly limited in size and that any implementation of machine learning in 
wearable devices should come with low computational costs. 

In the following, we conceptually prove that a single reservoir computer can accurately pre-
dict vertical GRF waveforms from shank accelerometer signals, which allows for detecting gait 
events during walking and running with particularly high precision. 

Methods 

Participants 

We included data of 21 healthy young adults (13 male / 8 female) in the analysis with a mean 
± standard deviation age, height, and weight of 20.8 ± 1.0 years, 181.7 ± 10.3 cm, 71.1 ± 9.8 
kg, respectively. The recorded speeds were 1.24 ± 0.12 m/s for walking and 2.20 ± 0.14 m/s 
for running. The participants provided written informed consent in compliance with the Dec-
laration of Helsinki. The experimental design was approved by The Scientific and Ethical 
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Review Board of the Faculty of Behavioural & Movement Sciences, Vrije Universiteit Amster-
dam, Netherlands (File number: VCWE-2022-008R1). 

Experimental protocol 

Participants walked and ran at their preferred speeds on an instrumented dual-belt treadmill 
(Motek Medical BV, Culemborg, Netherlands) in tied-belt mode wearing their own shoes. The 
preferred walking and running speeds were determined for each participant followed by a 
familiarization. The preferred speeds were determined by starting at either 2 km/h or 6.5 
km/h for walking and running, respectively, and slowly increasing the speed by 0.1 km/h until 
the participant felt it was comfortable (Jordan, Challis, & Newell, 2007). Subsequently, the 
same process was repeated at a speed 1.5 km/h above this by now slowly decreasing the 
speed by 0.1 km/h until a new or the same preferred speed was reached. If the two speeds 
differed more than 0.4 km/h from each other, a third iteration was done, and irrespective of 
two or three iterations, the mean of the determined preferred speeds was used. The partici-
pants were instructed to step with each foot on a separate belt to be able to record the time 
series of the ground reaction forces from one leg. For each participant a walking and a running 
trial were recorded of each five minutes in length. Only consecutive strides absent of artefacts 
(stepping on the wrong belt) were retained leaving an average of 72 strides per trial for anal-
ysis (range: 49-116 strides). 

 

Figure 5.1: A reservoir computer was implemented to predict the vertical ground reaction forces. Tri-axial 
accelerometer data were recorded from the shank. The accelerometer data were re-oriented using a principal 
component analysis (PCA). The first prinicipal component (â) was integrated to obtain the velocity (𝑣𝑣#) and 
position (�̂�𝑝) data. The input 𝒙𝒙 consisting of the normalised accelerometer (𝑎𝑎(), velocity (�̅�𝑣), and position (�̅�𝑝) data 
were subsequently mapped onto the sparsely, randomly connected reservoir 𝒒𝒒. This reservoir generated the 
output 𝒚𝒚, the predicted normalised vertical ground reaction forces (in red), via output weights 𝑾𝑾. When training, 
the output was compared to the target 𝒛𝒛, i.e. the measured vertical ground reaction forces (in black). Minimising 
the difference between generated output and target served to adjust the weights (denoted here as 𝑊𝑊"#). For 
training, data were segmented into strides, here represented by hatched and unhatched areas. Testing was 
conducted on continuous data. Data from walking and running were pooled. 

Tri-axial accelerometers, built into the probe of the wireless bipolar surface electromyogra-
phy system (Mini wave plus, Zerowire; Cometa, Bareggio, Italy), were mounted on the right 
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and left tibia, respectively (see Figure 5.1). The accelerometers were not placed in the same 
exact position due to inexperienced researchers. Accelerometer data were sampled at 
2,000/14 Hz (=142.86 Hz) which in the following will be referred to as ~143 HZ, with a sensi-
tivity of ± 16g, which was sufficient to avoid clipping. The vertical GRFs were sampled at 1 kHz 
and re-sampled to ~143 Hz. 

A single reservoir computer was trained to predict ipsilateral continuous vertical ground re-
action forces based on the shank accelerometer data recorded during walking and running. 
Figure 5.1 contains a schematic of the pre-processing steps and the implemented machine 
learning approach. Further details are presented in the following. 

Data processing 

Accelerometer signals 𝑎𝑎 were first ‘standardized’ to their principal axes using principal com-
ponent analysis (PCA) (Moe-Nilssen, 1998; Rispens et al., 2014): 

𝑎𝑎 = @𝑎𝑎; , 𝑎𝑎M , 𝑎𝑎NA
OPQ
Ñ⎯Ü𝑎𝑎á 

with 𝑎𝑎á along the direction of maximum variance and being the only principal component that 
was retained. 𝑎𝑎á was integrated twice over time (after a bi-directional high pass Butterworth 
filter with cut-off at 1 Hz, 2nd order) to generate likewise standardized velocities 𝑣𝑣á and posi-
tional data �̂�𝑝: 

𝑣𝑣á = \ 𝑎𝑎á ∙ 𝑑𝑑𝑑𝑑
9

H
			and			�̂�𝑝 = \ 𝑣𝑣á ∙ 𝑑𝑑𝑑𝑑

9

H
 

Per subset (trial) these signals were normalized (Halilaj et al., 2018) by means of 

𝑎𝑎á → 𝑎𝑎â =
𝑎𝑎á

range(𝑎𝑎á) 			and			𝑣𝑣á → �̅�𝑣 =
𝑣𝑣á

range(𝑣𝑣á) 			and			�̂�𝑝 → �̅�𝑝 =
�̂�𝑝

range(�̂�𝑝) 

before combining them as three-dimensional input data 

𝑥𝑥 = (𝑎𝑎â, �̅�𝑣, �̅�𝑝) ∈ ℝR×T  

with 𝑇𝑇 indicating the number of samples in time. Vertical ground reaction forces 𝐹𝐹N were nor-
malized. With this, the target signal for our machine learner (see below) could be defined as 
z-score (Halilaj et al., 2018) 

𝑧𝑧 = 𝐹𝐹âN = @𝐹𝐹N − 𝜇𝜇(𝐹𝐹N)A 𝜎𝜎(𝐹𝐹N)⁄ ∈ ℝ/×T  

with 𝜇𝜇 and 𝜎𝜎 denoting the mean and standard deviation over time per trial. 
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Stepping moments (foot contact and foot off events) were identified based on the measured 
𝐹𝐹N through mere thresholds: First, the 𝐹𝐹N was scaled to a range [0 1], then weakly filtered with 
a polynomial Savitzky-Golay filter (1st order, ± 30 ms = in total 9 samples) (Savitzky & Golay, 
2002). The foot contact was defined as the last point below a threshold (12.5% of the maxi-
mum of the data) nearest the ascend of the 𝐹𝐹N of the stance phase; similarly, the foot off was 
defined as the first point crossing the same threshold nearest the descending 𝐹𝐹N (Borghese et 
al., 1996; Ghoussayni, Stevens, Durham, & Ewins, 2004). 

Data were split according to the defined foot off events for further analysis. We considered 
36 samples in time on either side of the foot off as transients when correcting for learning 
errors in the beginning or end of the data. These transients also served to ensure that data 
were independent of the true events as 36 samples represent different percentage of the 
stride for walking and running, respectively. 

Reservoir computer 

We adopted the leaky ESN implementation by (see also Jaeger, 2001; Jaeger, 2002); Jaeger 
and Haas (2004). In brief, we built a reservoir of 𝑁𝑁 nodes 𝑞𝑞 = (𝑞𝑞/, 𝑞𝑞&, … , 𝑞𝑞F) ∈ ℝF×T  that 
received an input 𝑥𝑥 = (𝑥𝑥/, 𝑥𝑥&, … , 𝑥𝑥U) ∈ ℝU×T  and generated output 𝑦𝑦 = (𝑦𝑦/, 𝑦𝑦&, … , 𝑦𝑦V) ∈
ℝV×T. During the supervised training mode output was compared with target 𝑧𝑧 =
(𝑧𝑧/, 𝑧𝑧&, … , 𝑧𝑧V) ∈ ℝV×T  by means of the L2-norm (Lukoševičius, 2012); cf. Figure 5.1. 

The reservoir dynamics can be written as 

𝑑𝑑𝑞𝑞 = 𝜏𝜏./[−𝛾𝛾𝑞𝑞 + tanh(𝐶𝐶𝑞𝑞 + 𝐹𝐹𝑥𝑥)]𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑	

where 𝐶𝐶 ∈ ℝF×F denotes the connectivity of the reservoir. Here, 	𝐶𝐶 was set as a sparse, ran-
dom matrix specified by a sparseness parameter; its weights were normalised for a given 
spectral radius (the relative magnitude of the leading eigenvalue of 𝐶𝐶). 𝐹𝐹 ∈ ℝF×U  was set to 
be a dense matrix allowing for an optional scaling of the input values when mapping them 
onto the reservoir. The quantity 𝑑𝑑 stands for uniformly distributed, uncorrelated noise, i.e., 
𝑑𝑑 ∈ 𝑑𝑑𝒰𝒰(−1,1), with 𝑑𝑑 being reasonably small. The output is given by 

𝑦𝑦 = 𝑊𝑊𝑞𝑞	

with 𝑊𝑊 ∈ ℝV×F, which is the matrix of the to-be-learned output weights. 

Learning was realized by ridge regression, i.e. 

‖𝑧𝑧 − 𝑞𝑞‖ = ‖𝑧𝑧 −𝑊𝑊𝑞𝑞‖& → min ⇒ 𝑊𝑊 = 𝑄𝑄./𝑧𝑧	
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where 𝑄𝑄 = [𝑞𝑞/, … , 𝑞𝑞T] and (∙)./ denotes the pseudo-inverse. In the case of multiple time 

series, i.e. 𝑆𝑆 steps (see below), we defined 𝑄𝑄 = ù𝑞𝑞/
(/), … , 𝑞𝑞T$

(/); 𝑞𝑞/
(&), … , 𝑞𝑞T%

(&); … ; 𝑞𝑞/
(W), … , 𝑞𝑞T&

(W)ü 

and accordingly we used 𝑧𝑧 = †𝑧𝑧(/); … ; 𝑧𝑧(W)°. 

The network parameters were set as follows: 𝑁𝑁 = 1000, spectral	radius	 = 	0.5, 𝐹𝐹 =
[0.1; 0.5], 𝜏𝜏 = 1, 𝛾𝛾 = 0.5 and 𝜀𝜀 = 10.I. The noise was primarily added to minimize the risk 
of overfitting and we put 𝜀𝜀 = 0 after learning. 

Stepping moments from the predicted vertical ground reaction forces 

Stepping moment identification of the predicted vertical ground reaction force waveforms 
was implemented in the same way as for the measured vertical ground reaction forces (see 
above). 

Estimation of gait events such as foot contact and foot off from vertical GRF waveforms are 
considered the gold standard in movement analysis. An example of the detection algorithm 
during walking and running can be found in Figure 5.2. One sample difference between the 
events based on the measured and predicted vertical GRF waveforms equaled ~7 ms due to 
the relatively low sampling frequency, common to wearable accelerometers. 

 

Figure 5.2: Example of the estimation of foot 
contact and foot off events from measured and 
predicted ground reaction forces. Top: walking, 
bottom: running. Left side: Measured vertical 
GRF waveforms are depicted in black and the 
predicted ones in red. The vertical dashed lines 
represent foot contact (black: measured, red: 
predicted) and the dotted lines represent foot off 
(black: measured, red: predicted). Right side: Dif-
ferences in samples between events based meas-
ured and predicted vertical GRF. One sample 
equal ~7 ms. Abbreviations: MAE: mean abso-
lute error, FC: Foot contact, FO: Foot off. 

Statistical evaluation 

The normalized root mean square error 𝜖𝜖 and the coefficient of determination 𝑅𝑅& served for 
quality assessment of the predicted vertical ground reaction forces. We defined them as fol-
lows: 

𝜖𝜖 =
〈‖𝑧𝑧 − 𝑦𝑦‖&〉
range(𝑧𝑧) 			and			𝑅𝑅& = 1 −

〈‖𝑧𝑧 − 𝑦𝑦‖&&〉
〈‖𝑧𝑧 − 〈𝑧𝑧〉‖&&〉

 

Prediction of stepping moments were validated using the mean absolute error defined as 
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/
9
n •𝐸𝐸+A@X)+,8 − 𝐸𝐸Z@)BD[+D\],8•

9

8G/
 

where, 𝐸𝐸+A@X)+,8  and 𝐸𝐸Z@)BD[+D\],8 refer to target and prediction events 𝑖𝑖 = 1,… , 𝑡𝑡, respectively. 

We evaluated the training via cross-validation with 50% of the data segmented and subse-
quently used for training, 25% continuous data for validation, and the remaining 25% contin-
uous data for testing. We performed 100 repetitions with a random draw each time. A con-
tinuation rule was used, such that if the 𝑅𝑅& of the validation data were all positive, the testing 
could be employed, and the training was satisfactory. A maximum of 100 repetitions were 
allocated for validation and in cases where the validation criteria was not satisfied, the train-
ing was stopped. In all cases, the number of strides used from each trial during training was 
reduced to 25 to ensure a balanced design. 

Two scenarios served to assess the robustness of the reservoir computer as sketched in Figure 
5.3. 

 

Figure 5.3: Schematic of the different testing scenarios used for validating the robustness of the reservoir com-
puter. A random trace of a walking trial is shown here. The input data (𝑎𝑎#, 𝑣𝑣#, �̂�𝑝) were first segmented into strides 
(we considered 36 samples in time on either side of the foot off as transients when correcting for any learning 
errors in the beginning or end of the data). The first scenario, the training is performed on segmented data and 
the testing on continuous data. The continuous data (in red) represents the output of the reservoir, the vertical 
GRF waveforms. Secondly, the training was performed on segmented data, testing was done on continuous, but 
a leave-M-out cross-validation (LMO CV) was employed (split: 50/25/25% for training, validation, and testing, 
respectively). The vertical GRF in red represents the output of the trained reservoir during testing. Abbreviations: 
LMO CV: Leave-M-out cross-validation. 

Training on segmented data – validating and testing on continuous data  

The applicability of our machine learning approach on continuous data were verified by train-
ing the reservoir computer on single strides and subsequent testing on continuous data from 
each trial (see Figure 5.3). First, we extracted a random 50% of continuous data from each 
trial before segmenting the remaining data into strides. The continuous data was split in two 
so 25% of the data were used for validation and testing, respectively. The segmented data 
were pooled across trials and conditions before being used for training. Training was validated 
by verifying the mean R2 over the validation set to be positive (see above for definition). 
Whenever validation did not pass with success, training was repeated using the same subset 
but other randomly chosen initial conditions (here in all cases validation was passed on first 
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attempt). The entire process was repeated 100 times to allow for statistical evaluation as 
mentioned earlier. 

Additionally, we estimated the minimum amount of data needed to secure a good reconstruc-
tion quality (𝑅𝑅& > 0.95), so the training data were reduced. We repeated the training 100 
times from 4% of the total dataset to 50% of the total dataset. The validation and test sets 
remained 25% each for all runs (here the smaller training set sizes required re-learning but 
eventually validation was passed with success). 

Leave-M-out cross-validation 

To test the machine learner’s ability to work as a classifier across participants, it was first 
trained and validated on a subgroup of participants and then tested on others that was un-
known to the machine learner. The cross-validation split was performed based on trials. 𝑀𝑀 
trials were held out and the remaining 42-M trials were split 75/25% of the total dataset for 
training and validation. A total of 42 repetitions were performed. In the main text we report 
the result for 𝑀𝑀 = 1 while the range 𝑀𝑀 = 1,2… ,6 is depicted in Supplementary Material 5.2. 

Unless specified otherwise, means and standard deviations are provided and were calculated 
as either the grand averages or the standard deviations across the 100 repetitions. 

Results 

A total of 3020 strides were included from 42 trials (1249 walking strides [21 trials] and 1771 
running strides [21 trials]). Here, we would like to note that we only show results of the right-
side analysis, as the left-side results were very similar. Given this similarity one may pool data 
across sides to increase the sample size but, as will become clear, this was not needed. 

The performance of 100 repetitions in predicting GRF waveforms exceeded 95% when com-
bining walking and running data. The coefficients of determination 𝑅𝑅& were 0.96 ± 0.00 and 
the normalized root-mean squared errors 𝜖𝜖 were 6.8 ± 0.3% (mean ± SD); cf. Figure 5.4. On 
average, the subsequently extracted foot contact and foot off events deviated from those 
based on the measured vertical GRF waveforms by 3 and 4 samples. This corresponds to mean 
absolute errors of 21.9 ± 6.5 ms and 29.1 ± 16.0 ms for foot contact and foot off events, re-
spectively. Here we would like to add that the likewise convincing results when training the 
network on only walking or on only running are provided as Supplementary Material 5.1. 
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Figure 5.4: Output of reservoir computer trained on segmented data and validated and tested on continuous 
data pooled over conditions. (A) Vertical ground reaction force (GRF) waveforms of four randomly selected strides 
from each condition from a random trial and a random selected training run out of the 100, with the measured 
vertical GRF waveforms in black and predicted in red. The vertical dashed lines represent the foot contact events 
(black: measured, red: predicted), the vertical dotted lines the foot off events (black: measured, red: predicted). 
(B) Normalized root-mean squared error (𝝐𝝐), coefficient of determination (𝑅𝑅!), mean absolute error of foot con-
tact and foot off. The white dots in the violin-plots illustrate the medians. Black horizontal lines represent the 
mean and vertical black lines the 1st and 3rd quartiles. Every dot represents one of the 100 training runs, and 
the width of the violins is determined by the frequency. Abbreviations: GRF: ground reaction forces, FC: foot 
contact, FO: foot off. 

To estimate the smallest number of strides needed for a mean reconstruction accuracy above 
95%, we changed the size of the training set from 4 to 50% for the total dataset size (again 
with maximum 25 strides per trial for the training); cf. Figure 5.5. The size of the validation 
and test sets were kept fixed at 25% each to guarantee identical accuracy demands. An aver-
age of approximately 222 strides, ~17% of the total dataset sufficed to reach 𝑅𝑅& = 0.95 ± 0.01 
with 𝜖𝜖 = 7.2 ± 0.3% and a mean absolute error of the foot contact (foot off) of 26.4 ± 9.3 ms 
(35.8 ± 15.8 ms). 
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Figure 5.5: Output of reservoir computer with training data ranging from 4-50% of the total dataset and vali-
dating and testing with 25%, respectively. Upper left panel: normalized root-mean squared error (𝝐𝝐), upper right 
panel: coefficient of determination (𝑅𝑅!), lower left panel: mean absolute error of foot contact, and lower right 
panel: mean absolute error of foot off. Upper x-axes show the percentage of the total dataset used for training 
and the lower x-axes the corresponding mean number of strides. Each dot represents the mean value for 100 
repetitions. The vertical error-bars and colored areas represent the standard deviation of the corresponding 
measure.  The horizontal error-bars represent the standard deviation in the number of strides across the 100 
repetitions. Abbreviations: FC: foot contact, FO: foot off. 

Finally, to test whether our approach allows for predicting vertical GRFs in trials that in their 
entirety were not part of the learning set, we performed a leave-M-out cross-validation. 
Training was realized in the held-in trials using a 75%-25% split of learning and validation (in 
the training set we used a maximum number of 25 strides per trial). For 𝑀𝑀 = 1, the mean 𝑅𝑅& 
reached 0.91 ± 0.12, with an error 𝜖𝜖 of 9.1 ± 3.6%. One trial was a clear outlier in the leave-
one-out analysis, and when re-calculating the means without this trial, the mean 𝑅𝑅& and the 
error 𝜖𝜖 were 0.93 ± 0.04 and 8.6 ± 2.3%, respectively. The corresponding mean absolute er-
rors for foot contact and foot off were 63.7 ± 167.1 ms and 140.9 ± 224.3 ms for all included 
trials and 49.0±138.9 ms and 129.8 ± 215.1 ms when not taking the outlier trial into account. 
For an overview of the results of 𝑀𝑀 = 1 to 𝑀𝑀 = 6, we refer to Supplementary Material 5.2. 
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Discussion 

Reservoir computers are a promising tool to predict vertical GRF waveforms based on accel-
erometer data measured at the shank during walking and running. Accurately predicted GRF 
waveforms facilitate the detection of gait phases and events. We showed that this ‘simple’ 
machine learning approach has excellent prediction accuracy of continuous vertical GRF 
waveforms independent of the type of locomotion. Put differently, reservoir computers can 
be used for predicting vertical GRF waveforms for gait of unknown type with excellent per-
formance. This has great potential for uses outside the lab and for collecting large amounts 
of data. Without a doubt the growing amount of data available for biomechanical analysis in 
running will greatly drive the field forwards (Novacheck, 1998). Machine learning combined 
with wearable sensors may be the solution to increase the amount of data recorded. 

Using machine learning for activity recognition and gait phase recognition based on gait fea-
tures extracted from biomechanical data, which may be measured with wearable sensors 
(Farrahi, Niemela, Kangas, Korpelainen, & Jamsa, 2019; Figueiredo et al., 2018) has become 
increasingly popular. The most common techniques to classify gait events or predict GRF 
waveforms using machine learning are hidden Markov models (Abaid et al., 2013; Chen et al., 
2017; Chen, Salim, & Yu, 2015; Crea et al., 2012; Guenterberg et al., 2009; Mannini et al., 
2014; Mannini & Sabatini, 2012; Taborri et al., 2014; Taborri et al., 2015; Yuwono, Su, Guo, 
Moulton, & Nguyen, 2014), neural networks such as deep neural networks (more than 1 hid-
den layer) (Davidson et al., 2019; Prado et al., 2019; Rezaei et al., 2018; Vu et al., 2018; Wouda 
et al., 2018; Yang et al., 2019); feed-forward neural networks (Choi, Jung, Lee, Lee, & Mun, 
2019; Choi, Jung, & Mun, 2019; Choi et al., 2013; Komaris et al., 2019; Lee & Park, 2020; Lim 
et al., 2019; Ngoh et al., 2018; Oh et al., 2013); long short-term models (Choi, Jung, Lee, et al., 
2019; Choi, Jung, & Mun, 2019; Kidzinski et al., 2019; Robberechts et al., 2021; Sharma et al., 
2021; H. X. Tan et al., 2019); convolutional neural networks (Johnson et al., 2021; Su et al., 
2020); support vector machines (Morbidoni et al., 2021; Nutakki et al., 2020; Rezaei et al., 
2018); (multilayer) perceptron models (Leporace et al., 2018; Mijailovic, Gavrilovic, Rafajlovic, 
Ðuric-Jovicic, & Popovic, 2009; Morbidoni et al., 2021; Pogson et al., 2020; Robberechts et al., 
2021), as well as random forest classifiers (Morbidoni et al., 2021; Rezaei et al., 2018; Yang et 
al., 2019), K-nearest neighbors (Chu, Jiang, & Menon, 2017; Morbidoni et al., 2021; Sharma 
et al., 2021), and other types of machine learning using, e.g., Bayesian models (Martinez-
Hernandez & Dehghani-Sanij, 2018; Meng et al., 2019; Nutakki et al., 2020; Yuwono et al., 
2014), Gaussian mixture model (Aung et al., 2013), and principal component analysis (Osis et 
al., 2016; Osis et al., 2014; Pogson et al., 2020; Yuwono et al., 2014). Reservoir computers 
have the great advantage of low computational costs while still showing excellent perfor-
mance. They merely require a handful of time series for training and avoid any a priori feature 
extraction. Reservoir computers even seem to be promising as a tool to successfully 
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reproduce locomotor patterns observed during walking and running (de Graaf, Mochizuki, 
Thies, Wagner, & Le Mouel, 2022). 

There have been several studies conducted on predicting GRFs based on wearables, the vast 
majority for the stance phase only. Utilizing these machine learning techniques properly re-
quires foot contact and foot off to be known. This, however, can only be accomplished by 
either co-registering footswitches or ground reaction forces, or by implementing a rule-based 
detection of the gait events. This is exactly what we sought to circumvent. Rule-based detec-
tions based on accelerometers during running, searching for a specific peak or valley in some 
area of interest, are not as precise as an event detection based on vertical ground reaction 
forces. 

We did not restrict the prediction to only the stance phase – we included the entire gait cycle 
and showed that this worked well on continuous data. We also did not time-normalize the 
gait cycles and did not impose any other constraints into the timing of the signals. As such, 
our predictions are robust against variations in speed and stride durations/lengths as well as 
the type of locomotion. For training the reservoir computer, data were segmented based on 
the ground truth events, though when these are unknown, the data could be segmented in 
any way, or they may not be segmented at all; cf. Figure 5.4. We are convinced that our ap-
proach is suitable for lab as well as outdoor use. One very recent study (Alcantara, Edwards, 
Millet, & Grabowski, 2022) predicted continuous vertical GRFs from trunk accelerations using 
a long short-term model network with good accuracy during sloped running. The pre-pro-
cessing involved several filtering and feature extraction steps. By contrast, here we succeeded 
to reduce the number of pre-processing steps and applied only very weak filtering, i.e., the 
inputs are by and large the time series (derived from) vertical acceleration. 

We validated the use of accelerometer data to estimate the vertical GRF waveform. We used 
accelerometer data collected by a sensor that could, in fact, also be used for electromyogra-
phy data collection. The sensors were not aligned in the same way for all participants, which 
Tan, Chiasson, Hu, and Shull (2019) found can negatively affect the precision of the detection 
of GRFs using machine learning. However, variability in orientation and position is likely to 
occur if participants mount their own devices or in large-scale studies. By correcting the ori-
entation of the accelerometers using principal component analysis we circumvent these po-
tential problems and underline the robustness of our method and its applicability in many 
settings. 

Even a small number of strides sufficed to achieve a high reconstruction accuracy. While 
strides from all participants were pooled for this analysis, it is unlikely that the strides ran-
domly drawn into the training sets were representative for all trials/conditions and that this 
was also the case for the test sets. We evaluate this via leave-M-out cross-validation, as the 
test-set should be unknown to the machine (Halilaj et al., 2018). Admittedly, the 
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reconstruction accuracy was not as high, but we consider it still satisfactory. The resulting 
event detection of the leave-M-out cross-validation, did not perform satisfactorily because of 
an introduction of jitter into the swing phase of the GRF which led many events to be detected 
too early or too late. We trust that a revision of the event detection algorithm can result in 
an improved FS and FO estimation compared to the gold standard. 

We would like to note that we did not optimize the machine learner to perform the absolute 
best it can do. Our primary aim was to show that even in its ‘simplest’ form, a reservoir com-
puter with ridge-regression-based output weights can perform well. Apparently, this (off-line) 
approach has its limits as, during learning, one must store all network states which can put 
pressure on computer memory. The alternative online learning may be realized via recursive 
least squares regression (Haykin, 2014), that has recently be adopted by Sussillo and Abbott 
(2009). Along these lines one may add online feedback and change the reservoir’s connectiv-
ity for the network’s dynamics to reach the chaotic regime (currently we used a spectral 
radius of 0.5 but values larger than 1 may accelerate online learning; Sussillo & Abbott, 2009; 
Yildiz, Jaeger, & Kiebel, 2012). For our proof-of-concept, however, fine-tuning the reservoir 
might be considered overfitting, which let us decide not to progress along this direction. The 
most optimal settings will probably depend on the dataset under study. 

Our accelerometers had a relatively low sampling rate (2000/14 Hz » 143 Hz), which prevents 
better estimation than 7 ms (i.e., one frame equals 7 ms). An accelerometer with higher sam-
pling frequency will arguably lead to higher accuracy of the predicted events compared to the 
ground truth. A sampling frequency of 60-200 Hz is not uncommon when recording kinemat-
ics (Fellin, Rose, Royer, & Davis, 2010; Hreljac & Marshall, 2000; O'Connor, Thorpe, O'Malley, 
& Vaughan, 2007; Zeni, Richards, & Higginson, 2008) and the accuracy is not worse than the 
accuracy one could obtain using kinematic data. A frequently employed detection algorithm 
for kinematic gait event detection is the coordinate-based detection algorithm where the dis-
tance between the sacrum and foot is used to predict foot contact and foot off events (Zeni 
et al., 2008, currently cited >800 times). A review on this and other detection algorithms 
(Fellin et al., 2010) during running revealed that the coordinate-based detection algorithm 
has an absolute error of 29 ms for foot contact and 98 ms for foot off (sampling frequency: 
200 Hz) whereas the best performing algorithms has an accuracy of 24 ms for foot contact 
(the foot vertical position (Alton, Baldey, Caplan, & Morrissey, 1998, >600 citations)) and 6 ms 
for foot off (the peak knee extension algorithm (Dingwell, Cusumano, Cavanagh, & Sternad, 
2001, >600 citations)). For comparison, the best estimation possible with a sampling fre-
quency of 200 Hz is 5 ms, i.e., current algorithms have an accuracy between one and 
~ 20 samples. Our approach is comparable to or exceeding this accuracy. Being cheap and 
easy to collect, being usable outside the lab and for long time-periods are, hence, not the only 
advantages of accelerometers – they also come with formidable accuracy in step detection 
when properly combined with reservoir computers. 
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Our machine learning approach performs well for a dataset comprised of both walking and 
running data despite a relatively small number of participants and a relatively small number 
of strides. To investigate its ability for each condition separately, we refer to Supplementary 
Material 5.1, where we show that training and testing on only one type of locomotion im-
proves the already excellent reconstruction accuracy. The outputs of the reservoir computer 
can easily be modified to provide other outputs such as other components of the GRF or the 
center-of-pressure. By including all three components of the GRF, energetics of the center-
of-mass can be estimated during overground/track running which in turn can provide even 
more information about the locomotion type. Of course, the energetics will be in arbitrary 
units given our GRF prediction rely on normalize (z-scored) values. To expand the prediction 
from z-scored GRF to GRF containing information about the body weight of the participant, a 
more diverse group of participants are needed for training data. However, despite this short-
fall, we believe that this is feasible. All data for this study were recorded on the treadmill. The 
next step will be to apply reservoir-based prediction to accelerometer data (or gyroscope 
data) obtained at other parts of the body, e.g., hip mounted (e.g., activity trackers), arm 
mounted (e.g., sport watches, smartphones) or head mounted (e.g., augmented/virtual real-
ity glasses) to broaden applicability in daily living contexts as well as in clinical populations as 
machine learning algorithms might perform worse on clinical gait (Bastien, Gosseye, & Penta, 
2019). This certainly calls for expanding the current dataset with overground/outdoor loco-
motion. We expect our findings to be transferable to overground settings. A large meta-anal-
ysis suggests that neither vertical ground reaction forces, nor peak tibial accelerations are 
significantly different between treadmill and overground running (Van Hooren et al., 2020). 
However, this might not be true when accelerations, decelerations, turns, etc. are considered. 

As a final note we would like to recall that our reservoir computer did not include a feedback 
loop. Adding feedback may allow for not only predicting the GRF accompanying tibial accel-
erations but eventually also the GRF in forthcoming strides. We trust that future studies will 
pursue this generalization as it is beyond the scope of our proof-of-concept study. Given our 
prediction results, however, we can stress that all the information needed for predicting (ver-
tical) ground reaction forces seems to be present in the (principal component of) accelerom-
eter signals. The use of the latter, hence, provides more opportunities than commonly 
thought. 

Our data and code are made freely available and are ready to use on other datasets and can 
be extended for use in experiments and clinic. 

Conclusion 

Reservoir computers are an excellent candidate to correctly predict vertical ground reaction 
force waveforms from accelerometer signals for a small number of participants and strides. 

130

Chapter 5

165404 Bach BNW.indd   130165404 Bach BNW.indd   130 28-03-2023   12:0828-03-2023   12:08



 

The predicted time series can serve to estimate stepping moments with particularly high ac-
curacy. The ease in training procedure, which requires only a (very) limited number of steps 
and without prior knowledge about the type of locomotion lets us advocate this machine 
learning approach to be further expanded to be applied on future applications in both re-
search and clinic.  
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Supplementary Material 5.1 

To investigate if training the reservoir computer on each condition separately resulted in even 
better prediction values, we trained and validated on stride-segmented data and tested its 
prediction capacity for continuous gait data for each condition separately. For each trial, 25% 
of the continuous data was selected for testing, another 25% of the continuous data was se-
lected for validation and the remaining 50% was segmented into strides (with a maximum of 
25 strides per trial) and subsequently pooled across all trials and used for training totaling a 
50/25/25% split for training, validation, and testing respectively. For both walking and run-
ning the quality of performance of predicting vertical GRF waveforms exceeded 97%: the co-
efficients of determination 𝑅𝑅& were 0.97 ± 0.00 and 0.97 ± 0.02, respectively, and the nor-
malized root-mean squared errors 𝜖𝜖 were 5.9 ± 0.4% and 5.6 ± 0.3%, respectively 
(mean ± SD); cf. Figure S5.. On average, the subsequently extracted foot contact (foot off) 
events deviated from those based on the measured vertical GRF waveforms by 2.4 (2.5) sam-
ples for walking and 1.9 (2.3) samples for running. This corresponds to mean absolute errors 
of 17.3 ± 12.2 ms (17.5 ± 11.3 ms) for walking and 13.5 ± 3.9 ms (16.1 ± 8.5 ms) for running.  

 

Figure S5.1: Output of the reservoir computer trained on segmented data and validated and tested on 
continuous data. a: Walking condition, b: Running condition. Left panels: Vertical ground reaction force 
(GRF) waveforms of four randomly selected strides from a random trial and a random selected iteration 
out of the 100, with the measured vertical GRF waveforms in black and predicted in red. The vertical 
dashed lines represent the foot contact events (black: measured, red: predicted), and the vertical 
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dotted one the foot off events (black: measured, red: predicted). Right side panels: Normalised root-
mean squared error (𝜖𝜖), coefficient of determination (𝑅𝑅!), mean absolute error of foot contact and 
foot off. The white dots in the violin-plots illustrate the medians. Black horizontal lines represent the 
mean and vertical black lines the 1st and 3rd quartiles. Every dot represents one of the 100 iterations. 
Abbreviations: GRF: ground reaction forces, FC: foot contact, FO: foot off. 

As a final test of the validity of the machine learner, we ran the leave-M-out cross-validation 
for M = [1,2…6]. The leave-M-out iterations were all repeated 42 times to ensure no bias in 
the random selection of trials. The results can be found in Figure S5.2. The poor results found 
in the leave-one-out cross-validation stems from one trial with particularly large errors, here 
indicated as outliers. 

 

Figure S5.2: Result of the leave-M-out cross validation. A leave-M-out cross-validation with M ranging 
from 1 to 10 was carried out. Upper left panel:  normalised root-mean squared error (𝜖𝜖), upper right 
panel: coefficient of determination (𝑅𝑅!), lower left panel: mean absolute error of foot contact, and 
lower right panel: mean absolute error of foot off. Red horizontal lines indicate the median, the boxes 
represent the 25th and 75th percentile. Outliers are indicated with red plus. Note the large outliers in 
the M=1. 
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The understanding of the development of running in children is limited, specifically the un-
derlying mechanisms of the motor control. In this thesis I studied the motor control of the 
development of running in children by combining neuromuscular and biomechanical 
measures using novel techniques and state of the art statistics. Hereby, I introduced a frame 
of reference for the factors underlying the development of running in children. 

The cross-sectional study in Chapter 2 was my attempt to understand whether the most com-
mon classifiers for running can be used in children. I also sought to unravel how to determine 
the degree of maturity in children while locomoting on a treadmill. This study was entirely 
focused on the biomechanical aspects of locomotion. It shows that neither flight phase nor 
the in-phase oscillations of kinetic and potential energies of the center-of-mass (CoM) are 
proper indicators of running in children. This implies that these two measures cannot be used 
in (young) children despite their prevalence in classifying types of locomotion in adults. With 
the adult walking and running patterns defined as the mature ones, children locomotion can 
sometimes not be linked to either of them, at least not in a unique fashion. As such they are 
also not sensitive enough to distinguish between immature and mature locomotory patterns, 
especially in the children older than 3.5 years. That is, having a flight phase or in-phase oscil-
lations of the kinetic and potential energies are not valid determinants of the degree of ma-
turity in the gait patterns of children. 

My next objective was to investigate the development of neuromuscular control of locomo-
tion in children and to correlate this control to the ability to run with a flight phase. In Chapter 
3 I assessed muscle activity and in particular the number and structure of muscle synergies 
and related them to the ability to run with a flight phase. Despite my expectations we only 
found a weak correlation between age and the duration of the contraction of the medial gas-
trocnemius muscle. Significant differences in the phase shift of this muscle across the four 
groups were absent. There was an increase in the number of muscle synergies related to the 
ability to run with a flight phase and in this case, the oldest children, while the number of 
synergies was lowest for the adults. My interpretation is that this increased number of syner-
gies in older children compared to younger children is related to motor learning and explora-
tion. 

To further detail the development of locomotion, I investigated the running in a longitudinal 
design assessing two children from their first independent steps until ~32 months of walking 
experience. In chapter 4 I combined both biomechanics and neuromuscular control of loco-
motion. By using a similar method as in Chapter 2 and comparing the running development 
of the two toddlers to a group of adults, I was able to determine that the development of 
running can take different trajectories including the co-existence of immature and mature 
running within the same session in a child. 
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Recording large amounts of data is simple to do on a treadmill and most of the experimental 
data in this thesis were also recorded on a treadmill. However, a treadmill does not neces-
sarily represent natural locomotion, so in Chapter 5 I explored avenues to record outside of 
the lab. We employed recursive neural networks (reservoir computers) to predict vertical 
ground reaction force data from shank accelerometer data in adults with high accuracy which 
in turn lead to a high accuracy in the gait event detection. The machine learner was able to 
handle a combination of running and walking data.  

Implications 

The purpose of this thesis was to attempt to elucidate the motor control of the development 
of running in children. To achieve that goal, several research questions were posed that I will 
answer below. 

Q1. How suitable are the common classifiers in running for children learning to run? 

I found that it cannot be determined whether a (young) child is running based on the presence 
of a flight phase or the in-phase oscillations of the energetics of the CoM. A new definition 
should be investigated and agreed upon. 

Whitall and Getchell (1995) found the use of a walk-run strategy in all four newly runners they 
investigated, despite the visual appearance of the children running. The authors speculated 
that this pattern might have been due to faster development of the ability of generating 
speed compared to the ability to control the vertical displacement of the center-of-mass. We 
found the same walk-run strategy in this thesis in a group of children aged 1-9 years old. Chil-
dren investigated for this thesis either only use a double support phase, a flight phase, or use 
a combination of a flight phase and a double support phase. This walk-run strategy is statisti-
cally different from walking in its amount of double support phase as well as in discernable 
amplitudes and patterns of muscle activity. The work in this thesis highlights that the pres-
ence of a flight phase should not be used to determine whether a gait pattern is walking or 
running in children.  

The relative recovered energy of the CoM and the in-phase oscillations of kinetic and poten-
tial energy of the CoM are both considerably larger in children compared to adults and as 
such, can also not directly be used as a proxy for when a child is running. Some research that 
includes running in children make it a point to exclude data when children do not show a flight 
phase (Cheung et al., 2020; Kratschmer, Bohm, & Doderlein, 2019) or when the exchange of 
energy exceeds a set threshold (Legramandi, Schepens, & Cavagna, 2013; Schepens et al., 
1998). Yet, excluding these data points can mean excluding data relevant for the understand-
ing of development and emergence of the mature running pattern. 
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Since children do not seem to have a flight phase or in-phase oscillations of the kinetic and 
potential energies while running, they cannot be making full use of the spring-mass model 
(c.f., Chapter 1). This finding corresponds to the hypothesis put forth by Whitall and Getchell 
(1995) that the vertical displacement of the CoM does not follow that of the adult. Overall, it 
implies that children make use of either a combination of the inverted pendulum model (i.e., 
the walking model) and the spring mass model (i.e., the running model) or a modified spring 
mass model with less compression during the stance phase of the stance leg. 

Running using a walk-run strategy during development is useful to explore the degrees of 
freedom that is available to the child within boundaries that are already well-explored, i.e., 
having a (shorter than normal) double support phase. As development is not linear, the ability 
to run with a flight phase is also not static and sometimes the child makes use of the flight 
phase and other times not. We saw this not only within sessions in Chapters 2, 3, and 4 but 
also across sessions in the longitudinal study in Chapter 4. 

The following two questions are interlinked and are thus answered together. 

Q2. How to determine the degree of maturity in locomotory patterns in children? 

Q3. What is the longitudinal development of running in very young children? 

To determine the degree of maturity in gait in children, advanced statistical methods should 
be combined with many parameters to capture the subtle differences across development. 
These analyses should be performed on a cross-sectional group as well as longitudinally. 

The words ‘development’ and ‘maturation’ may be used interchangeably. In this thesis how-
ever, I use them in different contexts. Development is continuous whereas maturity implies 
an end-goal: you reach a stage of maturity. Broadly speaking, the development in the context 
of the motor control of running in children implies the general development of running. I used 
maturity as the preferred term when discussing gait patterns because the end-goal is a gait 
pattern corresponding to that of the healthy young adult. The degree of maturity is therefore 
indicative for the developmental stage. 

Determining the degree of maturity requires understanding the mechanisms behind what 
constitutes a mature pattern. Several attempts have been made to qualify when a mature 
gait pattern has been established. Walking is thought to reach maturity between 7 and 12 
years of age depending on the gait parameters investigated. Sutherland et al. (1980) argued 
that a combination of growth and maturation altered the spatiotemporal parameters of the 
walking pattern until around four years of age, whereas mostly growth accounted for the 
changes in the following years. The peak positive acceleration of the shank during walking 
was considered mature around 7 years of age (Tirosh, Orland, Eliakim, Nemet, & Steinberg, 
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2017), whereas the muscle activity patterns most likely does not mature until the age of 12 
years at fast and slow walking (Tirosh et al., 2013). Maturity in running is only reached around 
12 years in terms of the peak positive acceleration of the shank (Tirosh et al., 2017). Finding 
a common denominator that encapsulates all facets of the gait pattern seems to remain a 
challenge. And, maturity within one gait pattern may not correspond to maturity in another. 

While much research has been carried out in adults to establish the differences between 
walking and running in e.g., knee angles (Nilsson, Thorstensson, & Halbertsma, 1985; 
Novacheck, 1998; Sasaki & Neptune, 2006) or muscle synergies (Cappellini et al., 2006; Santuz 
et al., 2020; Yokoyama et al., 2016), this effort does not necessarily cover all facets of the 
differences between the two patterns. So, when determining the maturity, it was clear that 
all aspects should be considered. 

My hypothesis was that not one parameter was sufficient to determine the degree of ma-
turity and thus, I utilized a shotgun approach where we used unsupervised learning to deter-
mine patterns in the data. The results of this work highlight that maturity of the gait pattern 
is influenced by many parameters and with high probability too subtle to discriminate with 
the naked eye. Since most strides were recorded on the treadmill, one may argue that tread-
mill locomotion influenced the results negatively. For instance, impacting the finding that a 
mature running pattern seems to precede a mature walking pattern in some children aged 40 
to 106 months when locomoting on the treadmill as shown in Chapter 2. In new runners, i.e., 
children with between 6 and 32 months of walking experience in Chapter 4, there is a ten-
dency to increased maturation with an increased walking age. Yet, when investigating on a 
stride-to-stride basis, the tendency is less clear arguably due to large variability within each 
session that is not dependent on whether locomotion is on treadmill or overground. 

Treadmill locomotion is indeed a new experience for most children, especially those younger 
than nine years and of course treadmill locomotion may have an influence on the results. 
Adult treadmill and overground locomotion differ in some kinematic measures but with such 
small magnitudes that it cannot be considered relevant (Van Hooren et al., 2020). In a group 
of 24 children aged 6-18 years, joint kinematics were similar between overground and tread-
mill running whereas the joint moments were significantly different for knee, hip, and ankle. 
Some children may naturally alter their gait pattern(s) due to their unfamiliarity with the 
treadmill. 

Regardless of whether treadmill running affected the results or not in Chapters 2 and 4, it is 
important to move away from a paradigm where only a few parameters are considered when 
wanting to understand healthy development and move towards more comprehensive and 
advanced statistical methods in very young as well as older children. 
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Q4. What is the neuromuscular control of running in children? 

The expectation that children fine-tune their neuromuscular control linearly over time could 
not be confirmed in Chapter 3. In fact, what I observed was an inverted u-shape in terms of 
the number of synergies they employ. I will interpret this finding in the context of the degrees-
of-freedom “problem” first introduced by Bernstein (1967). 

It is commonly believed that there is a certain number of degrees-of-freedom available to 
control movements as the central nervous system cannot control all possible combinations 
of movements without computational overload. When children learn to run, they not only 
have to comply with the biomechanical constraints available to them but also the neuromus-
cular constraints. Thus, it is straightforward to hypothesize that the relatively small number 
of muscle synergies in the youngest children (2-3.5 years) is due to an attempt to limit the 
number of degrees of freedom available to them. Perhaps, they are constraining the neuro-
muscular space to better control and explore the biomechanical space, whereas when chil-
dren get older, they have finetuned their biomechanical constraints and are now exploring in 
the neuromuscular space to find the most optimal control strategy. It is not clear in that case 
how the control strategy is determined. In adulthood, the most optimal control strategies are 
found, and exploration is no longer needed to keep the system(s) optimized. Thus, an inverted 
u-shape of the number of synergies could support the hypothesis of a reduction of the de-
grees-of-freedom with both inexperience and with expertise. 

A newer interpretation of the work of Bernstein is that there is not talk of redundant degrees-
of-freedom, however it is a matter of a “principle of abundance” meaning that having some 
flexibility or variability in movement patterns make them more robust to perturbations and 
secondary tasks (Latash, 2012). Additionally, it has been argued that the elimination of redun-
dant degrees-of-freedom is a primitive and inconvenient method only used at the beginning 
of mastering a motor skill (Loeb, 2021; Whiting, 1983). When applying this way of thinking 
about motor control to the findings in Chapter 3 one could argue that there is indeed some 
elimination of the redundant degrees of freedom in the beginning of mastering a skill in the 
young children which can be evidenced in the reduced number of synergies. However, this 
thinking does not explain why there is an equally low number of synergies in the adults with 
an increased number of synergies in the older children. The increased number of synergies in 
the older children could perhaps instead be explained by flexibility to withstand the pertur-
bations of the unfamiliar movements on (or of) the treadmill. 

Whether the inverted u-shape of the number of synergies can be explained by exploration, a 
larger number of muscle synergies was found in novice runners that decreased with increased 
running experience (Cheung et al., 2020) or in gymnasts walking a narrow beam (Sawers, 
Allen, & Ting, 2015). However, in rowing and cycling the number of muscle synergies did not 
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change with skill level (Park & Caldwell, 2022; Turpin, Guevel, Durand, & Hug, 2011; Zych, 
Rankin, Holland, & Severini, 2019). These differing findings indicate that the number of syn-
ergies may not be the sole indicator for learning. 

Q5. How can ground-reaction forces be estimated from shank accelerometer data? 

By combining a recurrent neural network and shank accelerometer data it is possible to ac-
curately predict the shape of vertical ground reaction forces. From these, the gait events can 
be determined in a data set combining walking and running data. 

Almost all running data recorded in children are recorded in a lab and often on a treadmill. 
Most labs do not stimulate natural movement in children, thus, there is a great need to move 
research out of the lab into a more naturalistic environment. Machine learning combined with 
accelerometers seems to be a great first step to achieve that goal. Accelerometers are cheap 
and easy to mount. This means that investigating running in children could be done, e.g., in a 
playground or on a football pitch. 

Future research 

To further elucidate which parameters are responsible for the maturity of the gait pattern in 
very young children, new methods could be used to extract the exact parameters underlying 
the clustering. Either by statistical analyses such as bootstrapping or by utilizing new methods 
where other advanced statistical methods are being used. What the research in this thesis 
highlights, is that many parameters as well as advanced statistical methods are necessary to 
further push the field forwards. 

To improve our understanding of development of gait in children, the amount of available 
data should be clearly increased. We cannot rely on only one piece of the puzzle to explain 
development of motor control in children and thus by combining already collected data and 
the knowledge developed, our understanding will improve. With new methods being devel-
oped to record outside the lab we need to record children in more realistic environments 
such as playgrounds etc. By capturing natural(istic) movements, the understanding of the de-
velopment will improve. 

There are no good solutions at this stage on how to define running in (very) young children 
since the presence of a flight phase does not seem ideal. One could use the prescribed type 
of locomotion to separate walking from running which is not a very reliable measure and is 
not a generalizable entity. My suggestion would be to use the dimensionless speed instead, 
i.e., the Walking Froude value to separate walking from running. In adults, the transition from 
walking to running takes place at around 0.5 Froude on earth (Alexander, 1989; Gatesy & 
Biewener, 2009; Hreljac, 1995; Kram et al., 1997). In children over 10 years of age, the 
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transition speed is similar, between 0.43 and 0.47 (Kung, Fink, Legg, Ali, & Shultz, 2019), and 
does not seem to be dependent on being as energetically efficient as possible (Tseh, Bennett, 
Caputo, & Morgan, 2002). The transition speed is to my knowledge not investigated in 
younger children. The underlying mechanisms for the transition from walking to running is 
minimizing the metabolic cost of locomotion by improving mechanical efficiency and the mus-
cle activity levels (Kung, Fink, Legg, Ali, & Shultz, 2018). An alternative to the Froude value 
could be the cadence with which the walk-run transition occurs. This cadence might be in-
formative about classification of gait in children and adolescents (Ducharme et al., 2021). 
Whether the Froude number or the cadence are sensitive enough to be able to discriminate 
walking from running in very young children warrants further investigations. 

The findings in this thesis are a snapshot of typical running development in healthy and typi-
cally developing (very) young children. When a good definition for running has been estab-
lished, the next steps would be to investigate whether running in children with developmen-
tal diseases are also affected in their running patterns. Here, I am thinking of children such as 
children with developmental coordination disorder (DCD), cerebral paresis (CP), and Du-
chenne muscular dystrophy. In fact, gait asymmetries that are not present during walking may 
be present during running in children with CP (Bohm & Doderlein, 2012) while for some chil-
dren with cerebral paresis, some gait parameters improve when running compared to walking 
(Kratschmer et al., 2019). In children with DCD, running kinematics do not change between 
overground and treadmill running (Chia, Licari, Guelfi, & Reid, 2014), and their kinematics do 
not differ significantly from typically developing children (Chia, Licari, Guelfi, & Reid, 2013). 
However, children with DCD are generally slower and perform worse in timed running tests 
compared to typically developing children (Smith, Ward, Williams, & Banwell, 2021). This in-
dicates that running could be interesting to further investigate in a group of neurologically 
deficient children. 

Likewise informative could be to investigate children with obesity or overweight. Over-
weight/obese children have altered running patterns such as increased ground reaction 
forces combined with unscaled joint moments and they spend longer time in the stance phase 
(Bowser & Roles, 2021). Children who are obese/overweight are slower than normal weight 
children and the distance they can cover in nine minutes is even a predictor for overweight 
(Silva et al., 2020). The slower paces and longer stance phases may indicate a more immature 
pattern. In that case, finding the causality between the overweight and the delayed maturity 
of the running patterns might give insights into the risk factors of overweight in children. 

Closing remarks 

Circling back to the overarching question of this thesis: The work in this thesis supports the 
notion that development of running in children is not a linear process. Generally, I believe 
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that children at a very young age constrain the degrees of freedom available to them which 
results in a reduced space for movement, both in terms of biomechanics and neuromuscular 
control. The older a child becomes, the more it makes use of exploration. Here, I mean that 
the child has homed in on the most basic patterns but are now exploring new patterns to find 
the most optimal locomotory pattern. What this optimization depends on, e.g., whether it is 
the cost of transport, the computational cost or something else, is not possible to discern 
from the work in this thesis. 

Based on my findings I must conclude that it is not possible to distinguish biomechanical con-
straints from neuromuscular constraints. They work in interplay and are equally important to 
elucidate the motor control of running in children. Development of motor control is subtle 
and – as such – it cannot be determined with just a few parameters. 

To get a grip on abnormal development, we must understand normal development. The work 
in this thesis highlights that normal development is not only highly variable between children 
but is also not linear within one child when starting to run. Running is a very important daily 
task for most children and mastering running is important for participation in daily life. Chil-
dren with disabilities might not be able to participate in these tasks but by understanding 
what normal development is, we can faster identify the children who do not develop normally 
and facilitate their next steps. 

Traditional measures for defining running do not discriminate running in children.  

To conclude on the title of this thesis. There is indeed more to the story than flight phase, 
which may indeed be the end point, but is not the starting point.
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The current understanding of the development of running in children is limited, specifically 
the underlying mechanisms of the motor control. In this thesis I study the development of 
running in young children by combining neuromuscular and biomechanical measures using 
novel techniques and state of the art statistics. Hereby, I introduce a frame of reference for 
the factors underlying the development of running in children which the other chapters of 
this thesis are built upon. Chapter 1 introduces muscle synergies and clustering techniques 
which are integral to the results in this thesis. 

The study in Chapter 2 focuses on the biomechanics of walking and running on a treadmill of 
children aged 2-9 years old in a cross-sectional design. Clustering of kinetic and kinematic 
parameters across strides revealed that there was no direct agreement between chronologi-
cal age and maturity in young children walking and running when comparing their gait pat-
terns to those of adults. When learning to run, young children made use of a “walk-run-strat-
egy”. This strategy is characterized by the ability to run with a combination of strides with 
double support and flight phase causing in-phase oscillations of potential and kinetic energies 
of the center-of-mass. 

The study in Chapter 3 focuses on the neuromuscular control of locomotion in children aged 
2-9 years old again on a treadmill and in a cross-sectional design. To that end, I assessed the 
muscle activity and in particular the number and structure of muscle synergies. Children in 
this study also used a walk-run strategy when learning to run on a treadmill. Older children 
incorporated exploratory muscle synergies when “optimizing” their walking and running pat-
tern on the treadmill whereas the youngest children below 3.5 years of age made use of a 
“simpler” motor control pattern trending toward larger bursts of activation. I believe that the 
increase in the number of muscle synergies for individual participants was related to motor 
learning and exploration. 

To further detail the development of locomotion, I investigated the running in a longitudinal 
design assessing two children from their first independent steps until about 32 months after 
onset of independent walking. In Chapter 4 I combined both biomechanics and neuromuscu-
lar control of locomotion. Using a method like the one used in Chapter 2 and comparing the 
running development of the two toddlers to a group of adults, I was able to determine that 
the development of running can proceed along different trajectories including the co-
existence of immature and mature running within the same session in a child. 

Collecting large amounts of data is easy to achieve on a treadmill and most of the experi-
mental data presented in this thesis were therefore collected on a treadmill. However, a 
treadmill does not necessarily represent natural locomotion. So, in Chapter 5 I explored ave-
nues to record outside of the lab. I employed recursive neural networks (reservoir computers) 
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to predict vertical ground reaction force data from shank accelerometer data in adults with 
high accuracy which in turn lead to a high accuracy in the gait event detection. 

In Chapter 6 I reflected on the findings of this thesis and put these into a broader context of 
what is known about running in children. I showed that neither flight phase nor the in-phase 
oscillations of kinetic and potential energies of the center-of-mass were proper indicators of 
running in children from onset of independent walking to 9 years of age. I proposed some 
aspects of future research such as not focusing on the presence of a flight phase to determine 
running in children and to apply methods requiring advanced statistics to get proper insights 
into running in children. 

The work in this thesis supports the notion that development of running in children is not a 
linear process. Generally, I have come to understand that children limit the degrees of free-
dom available to them resulting in a reduced range of movement, both in terms of biome-
chanics and neuromuscular control. Based on my findings, I conclude that it is not possible to 
distinguish biomechanical constraints from neuromuscular constraints. They interact and are 
equally important in understanding the motor control of running in children. The develop-
ment of motor control is a subtle process and as such it cannot be characterized with just a 
few parameters. 
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Het huidige inzicht in de ontwikkeling van hardlopen bij kinderen is beperkt, vooral wat be-
treft de onderliggende mechanismen van de motorische sturing. In dit proefschrift onderzoek 
ik de ontwikkeling van hardlopen bij jonge kinderen door neuromusculaire en biomechani-
sche metingen te analyseren met nieuwe technieken en geavanceerde statistiek. Hiertoe pre-
senteer ik een theoretische kader voor de factoren die ten grondslag liggen aan de ontwikke-
ling van hardlopen bij kinderen. De overige hoofdstukken in het proefschrift zijn hierop geba-
seerd. In Hoofdstuk 1 beschrijf ik in het bijzonder de spiersynergieën en clusteringstech-
nieken, die integraal deel uitmaken van de in dit proefschrift gepresenteerde resultaten. 

De studie in Hoofdstuk 2 richt zich op de biomechanica van wandelen en hardlopen op een 
loopband bij kinderen van 2 tot 9 jaar in een cross-sectioneel design. Clustering van kinetische 
en kinematische parameters over meerdere stappen bracht geen directe overeenkomst aan 
het licht tussen chronologische leeftijd en rijpheid bij jonge kinderen, wanneer hun looppa-
tronen worden vergeleken met die van volwassenen. Bij het leren hardlopen maken jonge 
kinderen gebruik van een "loop-ren-strategie". Deze strategie kenmerkt zich door een com-
binatie van passen met dubbele steun- en vluchtfase, waardoor in-fase-oscillaties optreden 
van potentiële en kinetische energieën van het zwaartepunt. 

De studie in Hoofdstuk 3 betreft de neuromusculaire sturing van de voortbeweging bij kin-
deren van 2 tot 9 jaar, andermaal op de loopband en in een cross-sectioneel design. Daartoe 
analyseerde ik de spieractiviteit en met name het aantal en de structuur van de aanwezige 
spiersynergieën. Kinderen bleken ook in deze studie een loop-ren strategie te hanteren bij 
het leren hardlopen op een loopband. Oudere kinderen maakten gebruik van verkennende 
spiersynergieën bij het "optimaliseren" van hun wandel- en hardlooppatroon op de loopband, 
terwijl de jongste kinderen onder de 3,5 jaar gebruik maakten van een "eenvoudiger" moto-
risch sturingspatroon dat neigde naar grotere uitbarstingen van activering. Ik veronderstel 
dat de toename van het aantal spiersynergieën voor individuele deelnemers verband houdt 
met motorisch leren en exploratie. 

Om de ontwikkeling van de motoriek verder te detailleren, onderzocht ik het hardlopen in 
een longitudinale studie waarin twee kinderen vanaf hun eerste zelfstandige stapjes tot on-
geveer 32 maanden na het begin van het zelfstandig kunnen lopen werden gevolgd. In Hoofd-
stuk 4 richtte ik mij op zowel de biomechanica als de neuromusculaire sturing van de moto-
riek. Door een soortgelijke methode te gebruiken als in Hoofdstuk 2 en de hardloopontwik-
keling van twee peuters te vergelijken met een groep volwassenen, kon ik vaststellen dat de 
ontwikkeling van het hardlopen langs verschillende trajecten kan verlopen, waaronder het 
naast elkaar bestaan van onrijp en rijp lopen binnen dezelfde sessie bij hetzelfde kind. 

Het verzamelen van grote hoeveelheden meetgegevens is eenvoudig te realiseren op een 
loopband en de meeste experimentele in dit proefschrift gepresenteerde meetgegevens zijn 
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dan ook verzameld op een loopband. Hardlopen op een loopband kan echter afwijken van de 
natuurlijke hardloopbeweging. In Hoofdstuk 5 heb ik daarom wegen verkend om het hardlo-
pen buiten het lab te bestuderen. Ik gebruikte daartoe recursieve neurale netwerken (reser-
voircomputers) om de verticale grondreactiekracht uit versnellingsmeterdata van de schacht 
bij volwassenen met een hoge nauwkeurigheid te voorspellen, wat op zijn beurt leidde tot 
een hoge nauwkeurigheid in de detectie van ganggebeurtenissen. 

In Hoofdstuk 6 reflecteer ik op de bevindingen van dit proefschrift en plaats deze in een bre-
dere context van wat er momenteel bekend is over hardlopen bij kinderen. Ik toon aan dat 
noch de vluchtfase, noch de in-fase-oscillaties van kinetische en potentiële energieën van het 
zwaartepunt goede indicatoren zijn voor het lopen bij kinderen vanaf het begin van het zelf-
standig lopen tot de leeftijd van 9 jaar. Ik stel enkele aspecten van toekomstig onderzoek 
voor, zoals het niet focussen op de aanwezigheid van een vluchtfase om het hardlopen bij 
kinderen te bepalen en het toepassen van geavanceerde statistische methoden die geavan-
ceerde statistiek vereisen om goede inzichten te krijgen in het hardlopen bij kinderen. 

Het onderzoek in deze dissertatie ondersteunt het inzicht dat de ontwikkeling van hardlopen 
bij kinderen geen lineair proces is. In het algemeen ben ik tot het inzicht gekomen dat kin-
deren op zeer jonge leeftijd de voor hen beschikbare vrijheidsgraden beperken, wat resul-
teert in een verminderde bewegingsruimte, zowel in termen van biomechanica als neuromus-
culaire sturing. Op basis van mijn bevindingen concludeer ik dat het niet goed mogelijk is bi-
omechanische beperkingen te onderscheiden van neuromusculaire beperkingen. Ze werken 
in wisselwerking en zijn even belangrijk om de motorische sturing van hardlopen bij kinderen 
te doorgronden. De ontwikkeling van motorische sturing is een subtiel proces en kan als zo-
danig niet worden gekarakteriseerd aan de hand van slechts enkele parameters.
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