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SUMMARY
Tissues in the human body, and especially the brain, are heterogeneous and consist of many 
different cell types. Cell types can be defined by the genes expressed in a cell, and these 
expressions are controlled by unique cell-type-specific (post-)transcriptional mechanisms. 
Diseases can perturb these control mechanisms, and thus affect cell types differently. 
Consequently, understanding which cell type is affected by a disease is crucial information 
when developing new drugs or treatments. Single nucleotide polymorphisms (SNPs) in the 
DNA can be associated with diseases, but approximately 95% of such SNPs fall in the non-
coding region of the DNA. Usually, it is unknown whether these variants are causal, and which 
gene and cell type they affect. Studying gene expression at the single-cell level could reveal 
such disrupted mechanisms.

Current advances in single-cell RNA sequencing have greatly improved our understanding of 
heterogeneous tissues and led to the discovery of many new cell types. However, this new 
technology also presents computational challenges. For example, when comparing datasets 
from different cohorts (e.g., across many different individuals) it is important to annotate cells 
consistently. To ensure such consistency, it is essential to annotate cells using classification 
methods instead of currently practiced clustering methods that are subjective and time-
consuming. To facilitate this transition, in this thesis, we benchmarked cell-type classification 
methods and developed computational methods to automatically build reference atlases 
using multiple already labeled single-cell datasets. We show how such reference atlases can 
be deployed to automatically annotate new (unlabeled) single-cell datasets, as well as how 
they can be updated continuously using new labeled single-cell datasets. 

Having established a more consistent cell-type annotation across single-cell datasets, we 
return to establishing a relationship between mutations and their effect on gene expression. 
Hereto, we study sequence-to-expression models that can predict an alteration in expression 
when a mutation is observed. Given that gene expression mechanisms are cell-type specific, 
we introduce sequence-to-expression models based on single-cell data to make cell-type-
specific predictions. We use these models to show that certain mutations are indeed changing 
gene expression, increasing our understanding of transcriptional regulation.

Next to differences in gene expression between cell types, cell types might express different 
isoforms of a gene (i.e., different combinations of exons included in an mRNA molecule). 
Again, this can be altered by mutations in the DNA. Advances in single-cell long-read 
sequencing enabled measuring which cell types express which isoforms. We leveraged this 
data and propose a novel approach in which we adapted our sequence-to-expression models 
to predict cell-type-specific isoform usage. This opens a new avenue for looking at cell-type-
specific alterations.

Taken together, we introduce a variety of computational methods to enhance single-cell RNA 
sequencing data to improve our understanding of cellular heterogeneity. 

7
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SAMENVATTING
Weefsels in het menselijk lichaam, in het bijzonder de hersenen, zijn heterogeen en bestaan 
uit veel verschillende celtypen. Celtypen kunnen worden gedefinieerd door de genen die tot 
expressie komen in een cel, wat gecontroleerd wordt door unieke celtypespecifieke (post-)
transcriptionele mechanismen. Ziekten kunnen deze controlemechanismen verstoren en dus 
een verschillend effect hebben op celtypes. Begrijpen welk celtype wordt beïnvloed door 
een ziekte is daarom cruciaal bij het ontwikkelen van nieuwe medicijnen. Single-nucleotide-
polymorfismen (SNPs) in het DNA kunnen geassocieerd worden met ziekten, maar ongeveer 
95% van de SNPs maakt deel uit van het niet-coderende DNA. Meestal is het onbekend of een 
SNP de oorzaak van een ziekte is en welk gen en celtype wordt beïnvloed. Het bestuderen van 
genexpressie op celniveau zou zulke verstoorde mechanismen kunnen onthullen.

De vooruitgang in single-cell RNA sequencing heeft ons begrip van heterogene weefsels sterk 
verbeterd en geleid tot de ontdekking van veel nieuwe celtypes. Deze nieuwe technologie 
brengt echter ook computationele uitdagingen met zich mee. Bij het vergelijken van datasets 
van verschillende cohorten (bijvoorbeeld van veel verschillende individuen) is het belangrijk 
om cellen consistent te annoteren. Om deze consistentie te garanderen, is het essentieel om 
cellen te annoteren met behulp van classificatiemethoden in plaats van de huidige cluster-
methoden, die subjectief en tijdrovend zijn. Om deze overgang te vergemakkelijken, hebben 
we in dit proefschrift classificatiemethoden voor celtypen gebenchmarkt en computationele 
methoden ontwikkeld om automatisch referentie-atlassen te bouwen met behulp van meer-
dere reeds gelabelde single-cell datasets. We laten zien hoe dergelijke referentie-atlassen 
kunnen worden ingezet om automatisch nieuwe (ongelabelde) single-cell datasets te annote-
ren en hoe ze continu kunnen worden bijgewerkt met behulp van nieuwe single-cell datasets. 

Met de meer consistente annotatie van celtypen in single-cell data, gaan we terug naar de 
relatie tussen mutaties en hun effect op genexpressie. Hiertoe bestuderen we sequentie-
naar-expressie modellen die een verandering in expressie kunnen voorspellen wanneer een 
mutatie wordt waargenomen. Aangezien genexpressie celtypespecifiek is, introduceren 
we sequentie-naar-expressiemodellen getraind op single-cell data om celtypespecifieke 
voorspellingen te doen. We gebruiken deze modellen om aan te tonen dat bepaalde mutaties 
inderdaad genexpressie veranderen, wat ons begrip van transcriptionele regulatie vergroot.

Naast verschillen in genexpressie tussen celtypen, kunnen celtypen ook verschillende 
isovormen van een gen tot expressie brengen (d.w.z. verschillende combinaties van exonen 
in een mRNA-molecuul). Ook dit kan worden veranderd door mutaties in het DNA. Single-cell 
long-read sequencing maakt het mogelijk om expressie van isovormen in celtypes te meten. 
We gebruiken deze data en stellen een nieuwe aanpak voor waarbij we onze sequentie-naar-
expressiemodellen gebruiken om celtypespecifiek isovormgebruik te voorspellen. Dit opent 
een nieuwe weg voor het bekijken van celtypespecifieke veranderingen.

Alles bij elkaar introduceren we een scala aan computationele methoden om single-cell RNA 
sequencing data te gebruiken om ons begrip van cellulaire heterogeniteit te verbeteren.

9
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In the 17th century, Robert Hooke discovered something fascinating when analyzing a piece 
of cork under a microscope: the cork consists of tiny pores. This reminded him of the cells 
in a monastery and therefore he called these pores ‘cells’ [1]. Almost two centuries later, 
Matthias Jakob Schleiden and Theodor Schwann formulated the first concept of cell theory: 
every organism consists of either one or multiple cells, and cells are the building blocks of life 
[2,3]. We estimate that the human body consists of ~3.7e13 cells [4].

Looking at our own human body, we know that cells have different functions. For example, 
immune cells fight against pathogens, skeletal muscle cells help us move, and sensory nerve 
cells receive information from the outside world. How is it possible that all these cells share 
the same DNA yet execute such a variety of functions? To explain this, we must understand 
the central dogma of molecular biology that describes the genetic flow of information in a 
cell (Figure 1) [5,6]. In every cell, there are chromosomes, very long DNA molecules, that 
provide the genetic code for an organism. Some parts of the DNA sequence, called genes, 
are transcribed into RNA molecules. Even though many different types of RNA exist with all 
important functions, we will focus on messenger RNA (mRNA) here. As the name already 
suggests, these mRNA molecules come from protein-coding genes and are translated into 
proteins. The resulting protein has a specific function in a cell. 

Except for some somatic mutations, however, every cell in an organism has the same DNA. 
How could a cell know which genes have to be transcribed? Different control mechanisms 
tightly regulate transcription and translation to ensure the expression of the correct genes 
and proteins in a cell. For instance, transcription of protein-coding genes starts when RNA 
polymerase II and auxiliary factors bind the promotor region, the DNA sequence around the 
transcription start site (TSS) (Figure 2). A group of proteins, transcription factors (TFs), can bind 
parts of the DNA sequence, called enhancers and silencers, and either activate or repress the 
binding of RNA polymerase II or the auxiliary factors. This way, transcription factors control 

Figure 1. The central dogma of molecular biology. DNA is transcribed into mRNA, which is translated into proteins. 
[7]
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which genes are transcribed in a cell and to which extent. Since humans have approximately 
1,400 TFs [9] that can also act combinatorially, the exact regulation mechanisms for each 
gene are incompletely understood. Understanding transcriptional regulation is important 
since a mutation in a TF, aberrant expression of a TF, or a mutation in a TF binding site can 
cause diseases and disorders ranging from cancer, autoimmune diseases, and diabetes to 
neurological disorders [10-14]. 

Humans have approximately 20,000 protein-coding genes [15,16]. Some genes, however, 
can produce different proteins with different functions [17,18]. How can the same mRNA 
molecule encode different proteins? After transcription, the resulting mRNA molecule has 
to be processed and spliced before the mature mRNA is transported to the nucleus and 
translated into a protein (Figure 3A). During the processing, the head and tail are modified to 
promote stability and export to the nucleus. Splicing, on the other hand, can lead to different 
proteins. The pre-mRNA molecule consists of exons, the coding regions, and introns. During 
splicing, the spliceosome, an RNA-protein complex, binds the RNA and catalyzes the removal 
of the introns. Exons from the same gene can be joined in different combinations, which 
we call alternative splicing (Figure 3B). Multiple forms of alternative splicing are recognized 
(Figure 3C). For instance, exons can be included or skipped completely, but alternative splice 
sites can be used as well. In humans, approximately 90-95% of the genes are alternatively 
spliced [19,20], which occurs most often in the brain [21]. 

We can draw a parallel between the regulation of (alternative) splicing and transcription. 
Where TFs binding the DNA sequence regulate transcription, RNA binding proteins (RBPs) 
regulate splicing. RBPs can either activate or repress the binding of the spliceosome and 
thereby control the splicing of exons or introns [22]. Aberrant splicing, for instance, caused by 
mutations in RBP binding sites, is a hallmark of many neurological diseases [23,24].

Figure 2. Transcriptional regulation. RNA polymerase II and co-factors must bind to the promoter region to start 
transcription. Other proteins, called activators, can bind enhancer regions and stimulate this process. The opposite 
can happen as well. Repressors can bind a silencer region and prevent the RNA polymerase II complex from binding 
and thus inhibit transcription. [8]
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Figure 3. mRNA processing and splicing. A) The 5’ cap is added, the tail is polyadenylated, and the introns are spliced 
out. Afterwards, the mRNA can be transported to the nucleus and translated into a protein. [25] B) Alternative 
splicing. The pre-mRNA can be spliced in different ways. Different combinations of exons can be included in the 
mRNA molecule which will result in different proteins after translation. [25,26] C) Overview of different mRNA 
splicing types. [27]
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1.1 Measuring transcription 
To increase our understanding of cells in health and disease, we quantify which genes are 
expressed. RNA sequencing is a high-throughput technique to measure the number of 
mRNA molecules in a sample. This is often done using next-generation sequencing (NGS) 
technologies such as Illumina and Ion Torrent [28]. The general workflow consists of the 
following steps: 1) isolating the RNA from the cells, 2) fragmenting the RNA, 3) converting the 
mRNA into cDNA using reverse transcription, 4) ligating sequence adapters, 5) sequencing 
using a sequencing platform, 6) mapping the reads to the reference transcriptome, 7) 
constructing a count matrix (Figure 4). The final count matrix indicates how often a gene was 
measured in a sample.

NGS technologies generate relatively short reads. For instance, the read length is only 150 
bp for most Illumina platforms. This short read length makes it impossible to study complete 
isoforms since the average length of human protein-coding transcripts is approximately 2.8kb 
[29]. Some reads map to splice junctions, so from such reads, we can extract whether exons 
are skipped or if alternative 3’ or 5’ splice sites are used. 

1.1.1 Single-cell RNA sequencing 

NGS techniques have been developed to measure transcription in groups of cells. This has the 
downside that the signal is evened out. If a gene’s expression differs between two samples, it 
is impossible to know whether the sample consists of the same cells with altered expression 
or whether the cell-type composition changed (Figure 5A). This is especially disadvantageous 
when analyzing heterogeneous tissues, such as the brain. 

In 2009, a new revolution began: single-cell RNA sequencing (scRNA-seq) [30]. Using scRNA-
seq, the tissue is dissociated and the gene expression of individual cells can be measured 

Figure 4. Overview of next-generation sequencing. [36]
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instead [31-35] (Figure 5B). The process is quite similar to sequencing in bulk, except that 
the cells are physically separated from each other and a barcode is attached to every cDNA 
molecule after reverse transcription. This barcode informs which reads originated from the 
same cell during the mapping step later. After barcoding, all material is pooled and sequenced 
together using an NGS platform. During the mapping step, the reads are split into the barcode 
and cDNA sequence. Based on the barcode, we know which cell the molecule came from, 
and based on the cDNA we know which gene was expressed. 

In general, the data generated by all scRNA-seq protocols is sparse  -around 90% of the 
values in the count matrix are zeros. Furthermore, when more cells are measured during 
an experiment, the sparser the data becomes [38]. Both biological and technical limitations 
explain this sparsity. Even essential genes will not always be expressed in a cell. Transcriptional 
bursting is the phenomenon in which genes are actively transcribed for a short period 
followed by a longer period of silence, which causes temporal fluctuation in gene levels [33]. 
Furthermore, since the mRNA content in a cell is low, it is difficult to capture all molecules. 

Broadly, scRNA-seq methods can be split into two groups: either the full transcript is 
sequenced, which is similar to bulk analysis (e.g., using Smart-Seq2 [34]), or only the 3’ or 

Figure 5. Single-cell RNA sequencing. A) The disadvantage of bulk RNA sequencing. Multiple scenarios can explain 
the decreased expression of gene A in sample 2. For instance, the expression of gene A decreased in the green cell 
type, or the cell-type composition changed which resulted in fewer green cells in sample 2. B) The general pipeline 
of single-cell RNA sequencing. This is similar to bulk RNA sequencing, except that cells are physically separated and 
cellular barcodes are attached to the cDNA. [36,37]
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5’ end of the molecule can be captured and counted (e.g., using 10x Chromium [35]). An 
advantage of Smart-Seq2 is that the cells are sequenced deeper, which results in less sparse 
data. Furthermore -similar to bulk RNA sequencing - the reads can cover splice junctions. On 
the other hand, 10x optimized their pipeline for sequencing many cells simultaneously at a 
low cost. Up to hundreds of thousands of cells can be sequenced per experiment compared 
to thousands with Smart-Seq2. However, 10x only captures the 3’ or 5’ end of the mRNA 
molecule and ~100 nucleotides are measured. This short part of the sequence is enough to 
differentiate between all genes but lacks information about splice sites.

1.1.2 Long-read single-cell sequencing

To study alternative splicing, one would ideally sequence the whole mRNA molecule instead 
of looking at short fragments. Two technologies facilitate this nowadays: Oxford Nanopore 
[39,40] and PacBio [41]. Using Oxford Nanopore either the RNA molecule or the cDNA passes 
through a pore, which creates a changing electrical current. A base caller deciphers the order 
of nucleotides that generated these currents. PacBio uses single-molecule real-time (SMRT) 
sequencing which means that the cDNA molecule of interest is replicated using DNA poly-
merase. The incorporated new nucleotides are all fluorescent, with the four different bases 
each having a different fluorescent tag. When a nucleotide is incorporated, the fluorescent 
tag is cut off and a detector detects the fluorescent signal to decode the order of nucleotides. 

Many different human tissues have been sequenced using such long-read protocols, which 
enhanced the discovery of more than 70.000 new transcripts [42]. This, however, is all 
in bulk. These protocols have been applied to single cells as well, but initially, only up to 
a hundred cells could be sequenced [43,44]. Several protocols have been developed to 
increase the throughput of long-read single-cell sequencing methods [45–47]. For example, 
some protocols combine short- and long-read sequencing (Figure 6) [48,49]. The single cells 
are barcoded using the 10x approach. After amplification, the cDNA is split into two pools. 
One pool is sequenced using Illumina and the other using Oxford Nanopore or PacBio. Due to 

Figure 6. Schematic overview of long-read single-cell sequencing. The pooled barcoded cDNA is split into two pools. 
The first part is sequenced using short-read technologies, which can be used for cell-type identification. The second 
part is sequenced using long-read technologies. Since the barcodes of the short- and long-read data are similar, the 
data can be combined to study cell-type-specific isoforms. Figure adapted from Joglekar et al. (2021) [50].
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the high costs of long-read sequencing, the coverage of the short reads generated by Illumina 
is usually higher, which results in better gene quantification and can be used to group the 
cells into specific cell types (see Section 1.2.1). The short-read barcodes are also present in 
the long-read data and can assign a cell and a cell type to every long-read. The long reads can 
be grouped per cell type and be used to study cell-type-specific isoform usage.

1.2 Cell types
Studying individual cells in scRNA-seq data is challenging since the data is sparse. Therefore, 
cells are grouped into cell types, which greatly reduces the complexity of the analysis, espe-
cially for organisms with as many cells as humans. But what is a cell type? How do we define 
them? The concept of a cell type might seem intuitive, but a clear definition is still missing. 

In the past, cells were mainly studied under the microscope, so cell types were defined 
based on morphology. Camillo Golgi, for instance, developed a staining technique to visualize 
neurons that could later be used to classify them based on their dendritic patterns [51]. 
Nowadays, more and more features are measured, which changes our groupings of cells into 
cell types. With these new techniques, we can define a cell type based on which genes or 
proteins are expressed in a cell [52].

Even though the definition of cell types is dynamic, Cell Ontology [53] attempts to structure 
all identifiable cell types into a hierarchy. Most cells can be classified at different levels. 
For instance, a cell can be a blood cell, a lymphoid cell, a T cell, and so on (Figure 7). This 
hierarchical structure is inherent to cell types since all cells develop from the same cell and 
become gradually more specialized. The hierarchy shows that some cell types are more similar 
to one another. However, the cell-type hierarchy does not always align with development. 

Figure 7. Example of a cell-type hierarchy for blood cells. Figure adapted from Monga et al. (2022) [54]
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1.2.1 Discovering cell types in scRNA-seq data

In scRNA-seq data, the cell type of a cell is defined based on which genes are measured in 
a cell. Because the data is sparse, we cannot determine the cell type of individual cells by 
looking only at the expression of marker genes. As a solution, we first group cells with a 
similar gene expression profile and annotate these groups based on the expression of the 
marker genes (Figure 8A). The standard pipeline from a raw (short-read) scRNA-seq count 
matrix consists of different preprocessing, clustering, and visualization steps to annotate the 
clusters, which we will discuss in more detail below [55,56]. Several computational toolkits, 
such as Scanpy [57] and Seurat [58], have been developed to analyze scRNA-seq data, and all 
steps discussed below can be performed with these tools. After annotating the cells, other 
downstream analysis tasks, such as testing for differentially expressed genes between cell 
types, can be applied. 

1.2.1.1 Preprocessing scRNA-seq data

Preprocessing starts with quality control to ensure that only high-quality, viable cells are 
in the data. Here, for instance, we filter out apoptotic cells based on the high content of 
mitochondrial genes [59,60]. Next, we normalize the data to remove differences in read 
depth between the cells. Most often, the data is normalized using library size normalization 
and log-transformed. After these steps, the dimensionality of the count matrix is still huge 
since ~20.000 genes are measured. Some of these genes are uniformly expressed across all 
the cells and uninformative for downstream tasks. We select 1000-5000 genes that show 

Figure 8. Annotating cell types in single-cell RNA-sequencing data. A) Mystery cells are grouped based on their 
expression pattern and these groups are annotated. B) Clusters are annotated by visualizing the expression of 
marker genes in two dimensions using t-SNE or UMAP.
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the most variance in the dataset. Usually, the genes with the highest variance-to-mean ratio 
are selected. Next, we reduce the dimensions to 30-50 using principal component analysis 
(PCA). PCA is a linear dimensionality reduction method that reduces the data to a new set 
of features that is a linear combination of the old features that explain most of the variance. 
Instead of linear dimensionality reduction methods, non-linear methods can be applied as 
well. For instance, scVI [61], a variational autoencoder, can map the cells to a latent space of 
10-50 dimensions. 

1.2.1.2 Identifying cell types in scRNA-seq data

After preprocessing, the data is ready for downstream analysis such as cell-type identification. 
First, we cluster the data into groups of similar cells. We construct a k-nearest-neighbor graph 
in which every cell is connected to the k cells with the most similar gene expression pattern. 
Next, we detect clusters in this graph using Louvain [62] or Leiden [63] community detection. 
Here, the resolution parameter influences the number of clusters found. The resulting 
clusters can be visualized in two dimensions using t-SNE [64] or UMAP [65] (Figure 8B). To 
annotate the clusters, we visualize the expression of marker genes in, for instance, the two-
dimensional space or a dot plot. However, marker genes might be unknown or not clearly 
expressed in scRNA-seq data, which makes annotating some clusters challenging.

1.3 Supervised learning for scRNA-seq data
In scRNA-seq data, cells are commonly annotated using clustering methods, an example of 
unsupervised learning. Unsupervised learning means that the data itself is unlabeled (i.e., 
the cell types are unknown) and the goal is to find groups in the data. However, unsupervised 
methods have drawbacks: they are subjective and time-consuming. Different parameters 
yield different clusterings, and the number of clusters or cell types discovered in scRNA-seq 
data is even correlated with the number of sequenced cells [66-68]. 

A shift towards supervised methods is needed to overcome this subjectiveness. Supervised 
models learn the relation between input data (e.g., the measured gene expression) and the 
label (e.g., the cell type). The trained model can annotate new, unlabeled data automatically. 
In this example, we predict the cell types that are discrete categories (classification), but 
supervised models can also be used to predict continuous outcomes (regression). 

Many different types of supervised methods exist. Some rely on relatively simple principles 
and try to find a linear decision boundary between different groups, such as linear discriminant 
analysis or the linear support vector machine (SVM) (Figure 9A). Other methods, such as a 
k-nearest neighbor (kNN) or nearest mean classifier, look at which samples of the different 
groups of samples are closest and transfer the closest-group label to the new, unlabeled 
sample (Figure 9B). Deep learning models, such as neural networks, convolutional neural 
networks (CNN), and recurrent neural networks (RNN), can learn more complex relationships 
between the input features and the label (Figure 9C). Deep learning models have the 
disadvantage that much training data is needed and the models are difficult to interpret. 
With the linear models, we can easily see which input features guided the decision while 
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this is impossible to know exactly for deep learning models. Approximation methods, such as 
Shapley values, exist though [69,70].

Automatic cell-type identification is one example of applying supervised models on scRNA-seq 
data. In this thesis, we will focus on two types of models: either we use the measured gene 
expression to predict the cell-type label (Section 1.4), or we know the cell-type label and use 
a generic input (e.g., the DNA sequence) to predict gene expression or splicing (Section 1.5). 

1.4 Part I  - Learning cell identities in scRNA-seq data
Ideally, we want to annotate the cells in a new scRNA-seq dataset automatically and con-
sistently by using a classifier trained on an annotated dataset to transfer the labels to this 
new dataset. Several methods have been developed for this task, each varying considerably 
in their underlying principles. Some rely on relatively simple machine learning techniques 
such as a kNN classifier [71,72], SVM [73,74], or random forest (RF) [75–77], while others 
rely on more complex deep learning architectures [78,79]. We can also categorize methods 
by whether their approach is flat or hierarchical. Hierarchical methods exploit the inherent 
hierarchical structure of cell types; instead of learning the differences between all cell types 
in one go, they split the problem into smaller subproblems. Flat classifiers, on the other hand, 
do not benefit from this advantage. Another notable example of classifiers is methods that 
leverage the Cell Ontology [80,81]. Leveraging this ontology might be beneficial in the future, 
but currently, many newly discovered cell types are still missing in their hierarchy.

1.4.1 Challenges for cell-type identification

Even though many classification methods exist, we still face several challenges when 
automatically annotating cells. 

Figure 9. Supervised learning. A) Linear classifiers learn a linear decision boundary between the class 1 and class 2 
samples. B) The k-nearest neighbor classifier looks at the neighboring samples and classifies new samples, for ex-
ample, using a majority vote. In this case, the gray unlabeled sample would be classified as class 1. C) Deep learning 
models can learn complex decision boundaries. 
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1.4.1.1 Choosing the training dataset

An enormous amount of scRNA-seq datasets is publicly available, but it remains unclear 
which one is most optimal to train the classifier. Even datasets from the same tissue will 
contain different cell types since these datasets are annotated using unsupervised methods. 
Most research groups are interested in different cell compartments. Their cells of interest 
might be annotated at a fine-grained resolution, while the other cells are annotated at a low 
resolution -again relating to the inherent hierarchy of cell types. Comparing the annotations 
of different datasets can be challenging since a naming convention is missing. 

An extra challenge is that most individual studies are incomplete. Rare cell types might be 
missing completely, or more difficult to discover when looking at one study only. Therefore, 
multiple datasets should be combined into a reference atlas, as demonstrated by initiatives 
like the Human Lung Cell Atlas [82]. Here, scRNA-seq data from 14 studies, 107 individuals, 
and different anatomical locations of the respiratory system is combined into one reference 
atlas. The cell-type labels of the datasets were manually harmonized using a group of experts, 
which is very time-consuming. Ideally, annotated datasets from the same tissue could be 
automatically combined to create a reference atlas. 

1.4.1.2 Batch effects between datasets

Unwanted technical variations between datasets pose a second challenge for automatic 
cell-type identification. These batch effects are caused by variations in sequencing depths, 
handling of the cells, protocols, laboratories, etc. Consequently, batch effects between 
datasets should be removed before a classifier can be trained (Figure 10). 

Removing batch effects is a trade-off between removing technical variation and preserving 
biological variation. Methods developed for this task can be categorized into three groups: 
1) methods that correct the original gene space, 2) methods that project the data to a 
corrected latent space, and 3) methods that construct a batch-corrected graph. Methods in 
the second group usually yield the most optimal performance [83,84]. Another grouping of 
the current methods depends on whether they adjust all input datasets or allow users to pick 
one reference and project the query datasets onto it [72,85]. Even though the latter is more 
difficult, it has the advantage that the reference remains unchanged. As such, a classifier 

Figure 10. Schematic showing A) unintegrated and B) integrated scRNA-seq data. In the integrated data, the cells 
from datasets 1 and 2 overlap. 
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trained on this reference dataset can be used to annotate any query dataset. Combining these 
reference mapping methods with an accurate classifier would thus yield a more consistent 
annotation of the query datasets. 

1.4.1.3 Identifying unknown cells

The third challenge for current classifiers is classifying cells as ‘unknown’ when the label 
is uncertain. This can be achieved by implementing a rejection option in the classifier. A 
correctly working rejection option is important for two reasons. First, the border between 
two cell types might not always be very distinct (Figure 11A). If a cell is close to the decision 
boundary, the label might be ambiguous and we prefer to keep it unlabeled. A low posterior 
probability of the classifier is a good indicator of this. Second, some datasets contain new or 
rare cell types that are not in the training data (Figure 11B). Here, the posterior probability 
might not work since this only indicates which cell types look most similar to the new cells, 
but not how similar they are. In this case, a distance metric is required. To correctly identify 
unknown cells in both scenarios, a classifier needs to use both the posterior probability and 
a distance metric to reject cells. 

1.4.2 Learning cell identities across species

Model organisms, such as mice and rats, are often used to provide insights into biological 
mechanisms inside a cell or test the effect of new drugs or treatments. Knowing what aspects 
are similar or different between model organisms and humans is crucial for understanding 
how results translate. Comparing and matching cell types across species is one fundamental 
step in this process. Some cell types might be well conserved, while others might be species-
specific. Matching cell types is thus interesting from an evolutionary point of view as well and 
aids in understanding cell-type evolution. 

Besides the batch effects described in Section 1.4.1.2, an extra challenge during cross-species 
comparisons is that the measured gene sets are different. Throughout evolution, genes have 
been duplicated, deleted, and modified, which results in complex many-to-many relations. 
Relations between genes of different species are established based on their protein sequence 
similarity, with the underlying idea that proteins with a similar amino acid sequence will 
probably execute a similar function [86]. Traditionally, BLAST [87] is used for this task. 
However, a disadvantage of BLAST is that the whole protein sequence is weighed equally, while 
certain domains are more important for a specific function. More recently, large language 

Figure 11. Examples of cells that should remain unlabeled. 
A) The gray cell is close to the decision boundary and 
therefore it is unclear whether it should be labeled a 
green or orange. The posterior probability of, for instance, 
the kNN classifier will be ~0.5, since about half of the 
neighbors are green and half are orange. B) The gray cell 
is far from the other cell types, which could indicate that 
it is a new cell type. The closest cells, however, are all 
orange so the posterior probability will be around one. In 
this case, a distance metric is needed to reject this cell. 
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models, such as SeqVec [88] and ProtBERT [89], have been trained to learn a representation 
of proteins in a lower dimensional space. These embeddings capture functional similarities 
between proteins and could be used to define homologous genes [90-92]. 

After matching the genes across species, only one-to-one orthologous genes, which are genes 
with exactly one match, are commonly used to compare cell types. The scRNA-seq methods 
developed for same-species data can be applied, which eases downstream analysis. A down-
side, however, is that much information is ignored. Some methods have been developed for 
cross-species analysis and use the many-to-many relationships between genes [93,94]. How-
ever, these methods currently all rely on the BLAST similarity. Using many-to-many orthologs 
defined by the protein embeddings would thus greatly enrich the cell type matches made.

1.5 Part II - Using scRNA-seq data to understand (post-) 
transcriptional regulation
(Post-)transcriptional regulation ensures that every cell expresses the correct genes and 
isoforms. Since a cell’s gene expression level determines its cell type, these regulation 
mechanisms must be cell-type specific. Which TF or RBP binding sites are used on the DNA or 
RNA sequence will thus differ per cell type.

Understanding cell-type-specific regulation aids in understanding the underlying fundamental 
biological processes in a cell, which is, amongst others, essential for drug development. 
Furthermore, this enables us to predict the effect of mutations in non-coding regions. 
Mutations in a TF or RBP binding site will only affect gene expression or splicing if that binding 
site is normally used in that cell type. Knowing which mutations affect which cell types and 
how, will help to find new targets for drugs or therapies. 

1.5.1 Genomic feature prediction models

Training genomic feature prediction models can help to unravel (post-)transcriptional 
regulation. These models use a generic input, such as the DNA sequence, to predict genomic 
features, such as gene expression or splicing, that were measured in a sample using RNA-seq. 
Why is it interesting to train these models though? The model cannot be extrapolated to new 
genes, as the expression of all genes was measured in the RNA-seq experiment. However, if 
a model can accurately predict the measured gene expression, interpreting why the model 
makes a high or low prediction for a gene improves our understanding of regulation. Current 
genomic feature prediction models can be divided into two groups: 1) feature-extraction-
based and 2) sequence-based methods. 

1.5.1.1 Feature-extraction-based models

Feature-extraction-based models extract features from the DNA sequence around the TSS 
of a gene or the RNA sequence around the splice site. These extracted features are used to 
train a relatively simple model, such as a linear regressor, to predict expression or splicing 
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(Figure 12A) [95–97]. Examples of extracted features are the gene length, GC content of 
the gene, and measured or predicted TF or RBP binding sites. The coefficients in the linear 
regressor directly inform us which features were most important for the predictions, which 
makes these models easy to interpret. However, we need prior knowledge about extracted 
features to train a model. If the preferred binding motif for a TF or RBP is unknown, we cannot 
incorporate it into our models either. Furthermore, evaluating how individual variants affect 
the prediction is more complicated since the sequence is not directly fed into the model.

1.5.1.2 Sequence-based models

Rapid developments in the deep learning field enabled a shift towards sequence-based 
methods. Sequence-based methods directly use the (one-hot encoded) DNA or RNA 
sequence as input to predict gene expression or splicing (Figure 12B) [98–100]. Depending 
on the task, a window varying from 400bp to 100kb around the TSS or the splice site is 
used as input. This input is unbiased towards known TFs, RBPs, or other extracted features. 
More complex models, such as CNNs, RNNs, or transformers, are used to learn the relation 
between the sequence and expression or splicing. 

Training these deep learning models can be challenging since they tend to have millions of 
free parameters, and the sample size of the training data is limited. The training data size 
cannot be increased since the number of genes per organism is limited. As a solution, models 
can be trained on multiple species simultaneously, assuming that the regulatory mechanisms 
are at least partially conserved [101].

Figure 12. Schematic of A) feature-extraction-based and B) sequence-based models to predict genomic features. In 
this example, the DNA sequence is used to predict gene expression, but the RNA sequence could be used to predict 
splicing similarly. 
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A second challenge is interpreting these black-box models. Model interpretation methods 
can give insights into what the model learned. One example is examining the initial layer 
of a CNN. The weights learned by these convolutional weight matrices are comparable to 
position-weight matrices, which indicate which sequences a TF or RBP prefers to bind [102]. 
Another option is using in-silico saturation mutagenesis (ISM) to systematically predict how 
nucleotide substitutions in the input sequence affect the predicted value [103,104]. Doing 
this for many input sequences can reveal interesting patterns that can be detected using TF-
MoDISco [105]. TF-MoDISco discovers motifs that are predicted to positively or negatively 
affect the prediction.

1.5.1.3 Tissue-specific models

In the past, these models were trained using data from cell lines and only learned the basic 
principles of regulation. The models became more specific by training them, for instance, 
on bulk RNA-seq data from different tissues. In such cases, either a model per tissue or a 
multitask model can be trained. The regulation mechanisms, however, are cell-type-specific. 
Thus, there is a need for training these models on scRNA-seq data instead. 

1.6 Contributions of this thesis
In this thesis, we address several challenges regarding identifying cell types in scRNA-seq data 
(Part I, Chapters 2-5) and using scRNA-seq datasets to improve our understanding of (post-)
transcriptional regulation (Part II, Chapters 6-7). 

Part I - Learning cell identities in scRNA-seq data

Chapter 2: In Chapter 2, we benchmark sixteen cell-type identification methods designed for 
scRNA-seq data and six off-the-shelf Python classifiers. We compare their performance on 27 
scRNA-seq datasets of different sizes, number of cell types, species, and technologies. Almost 
all methods perform well on most datasets, but their performance correlates negatively with 
the complexity of the data. Most classifiers suffer if a dataset contains many or very similar 
cell types. Overall, the linear SVM, one of the off-the-shelf Python classifiers, outperforms 
the methods designed for scRNA-seq data. Furthermore, when benchmarking the rejection 
options of the classifiers, we noticed that designing a proper rejection option is challenging 
and that relying on the posterior probability alone is not optimal. 

Chapter 3: In Chapter 3, we present single-cell Hierarchical Progressive Learning (scHPL). 
scHPL combines multiple labeled scRNA-seq datasets into one classifier. We exploit the 
unharmonized labels of the input datasets to automatically create a cell-type hierarchy 
by matching the cell types of the different datasets. This hierarchy can either be updated 
progressively using new, labeled datasets or used as a classifier to annotate the cells in an 
unlabeled dataset. For every node in the hierarchy, we train a linear SVM since this performed 
best in the benchmark in Chapter 2. Furthermore, we implemented two rejection options 
using the posterior probability to reject cells between two cell types and the reconstruction 
error of the PCA to identify new cell types. We show that scHPL can accurately construct the 

Thesis_LM_final.indd   26Thesis_LM_final.indd   26 24-04-2024   18:54:0424-04-2024   18:54:04



11

Introduction

27

cell-type hierarchy for PBMC and brain datasets and that scHPL outperforms the flat linear 
SVM when annotating an unlabeled dataset.

Chapter 4: In Chapter 4, we combine scHPL and scArches [84] into a computational pipeline 
called treeArches. Before running scHPL, we require datasets to be batch-corrected. A 
downside of most batch-correction tools is that the complete alignment has to be repeated 
when adding a new dataset to update the hierarchy. Consequently, the complete hierarchy 
has to be rebuilt in the new integrated space. Since scArches is a reference-mapping 
method, it projects a new dataset on top of the reference, which ensures that the reference 
and corresponding hierarchy do not change. treeArches thus facilitates easy building and 
extending of reference atlases and the corresponding cell-type hierarchy.
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Chapter 5: In Chapter 5, we propose a model to transfer and align cell types in cross-species 
analysis (TACTiCS). TACTiCS matches genes of different species using protBERT [89], an NLP 
model, while allowing for many-to-many matches. Next, it employs a neural network to train 
species-specific cell-type classifiers. Afterwards, it cross-predicts the other species’ labels and 
compares the predicted to the original labels. TACTiCS outperforms state-of-the-art methods 
when matching human, mouse, and marmoset cell types in the primary motor cortex. 

Part II - Using scRNA-seq data to understand (post-)transcriptional regulation

Chapter 6: In Chapter 6, we extend Xpresso, a tool to predict gene expression in bulk RNA-
seq samples, to scXpresso which is a multitask model trained on scRNA-seq data to predict 
cell-type-specific gene expression. We show that cell-type-specific predictions are especially 
useful in heterogeneous tissues. In all experiments, cell-type-specific models outperform the 
tissue-specific models. The difference becomes most apparent when the gene expression of 
a cell type and the corresponding tissue are dissimilar. Furthermore, we show that scXpresso 
learns TF binding sites and envision that it will be useful for unraveling cell-type-specific 
transcriptional regulation mechanisms. 

Chapter 7: In Chapter 7, we leverage long-read single-cell data to predict exon inclusion in 
glia and neurons in the human hippocampus and frontal cortex. We show that splicing is 
more difficult to predict in neurons than glia. Comparing RBP binding sites for exons with high 
and low exon inclusion between variable and non-variable exons, we found that these differ 
more in neurons than in glia, indicating that splicing mechanisms in variable exons in neurons 
diverged more from the standard mechanisms. Furthermore, we could pinpoint interesting 
RBPs regulating alternative splicing between glia and neurons. 

Chapter 8: Finally, we discuss the contribution of our work in both research directions. First, 
we discuss how consistent cell-type classification can be improved. Next, we discuss the 
limitations of current genomic feature prediction models and suggest how these could be 
tackled. 
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Single cell transcriptomics is rapidly advancing our understanding of the cellular composition of 
complex tissues and organisms. A major limitation in most analysis pipelines is the reliance on 
manual annotations to determine cell identities, which are time-consuming and irreproducible. 
The exponential growth in the number of cells and samples has prompted the adaptation 
and development of supervised classification methods for automatic cell identification. Here, 
we benchmarked 22 classification methods that automatically assign cell identities including 
single cell-specific and general-purpose classifiers. The performance of the methods was 
evaluated using 27 publicly available single cell RNA-sequencing datasets of different sizes, 
technologies, species, and levels of complexity. We used two experimental setups to evaluate 
the performance of each method for within dataset predictions (intra-dataset) and across 
datasets (inter-dataset) based on accuracy, percentage of unclassified cells, and computation 
time. We further evaluated the methods’ sensitivity to the input features, number of cells per 
population, their performance across different annotation levels and datasets. We found that 
most classifiers performed well on a variety of datasets with decreased accuracy for complex 
datasets with overlapping classes or deep annotations. The general-purpose SVM classifier 
has overall the best performance across the different experiments. In conclusion, we present 
a comprehensive evaluation of automatic cell identification methods for single cell RNA-
sequencing data. All the code used for the evaluation is available on GitHub (https://github.
com/tabdelaal/scRNAseq_Benchmark). Additionally, we provide a Snakemake workflow to 
facilitate the benchmarking and to support extension of new methods and new datasets. 

2.1 Background
Single-cell RNA-sequencing (scRNA-seq) provides unprecedented opportunities to identify 
and characterize the cellular composition of complex tissues. Rapid and continuous 
technological advances over the past decade has allowed scRNA-seq technologies to scale 
to thousands of cells per experiment [1]. A common analysis step in analyzing single cell 
data involves the identification of cell populations presented in a given dataset . This task is 
typically solved by unsupervised clustering of cells into groups based on the similarity of their 
gene expression profiles, followed by cell population annotation by assigning labels to each 
cluster. This approach proved very valuable in identifying novel cell populations and resulted 
in cellular maps of entire cell lineages, organs and even whole organisms [2–7]. However, 
the annotation step is cumbersome and time-consuming as it involves manual inspection of 
cluster-specific marker-genes. Additionally, manual annotations, which are often not based 
on standardized ontologies of cell labels, are not reproducible across different experiments 
within and across research groups. These caveats become even more pronounced as the 
number of cells and samples increases, preventing fast and reproducible annotations. 

To overcome these challenges, a growing number of classification approaches are being 
adapted to automatically label cells in scRNA-seq experiments. scRNA-seq classification 
methods predict the identity of each cell by learning these identities from annotated training 
data (e.g. a reference atlas). scRNA-seq classification methods are relatively new compared 
to the plethora of methods addressing different computational aspects of single cell analysis 
(such as normalization, clustering, and trajectory inference). However, the number of 
classification methods is rapidly growing to address the aforementioned challenges [8,9]. 
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While all scRNA-seq classification methods share a common goal, i.e. accurate annotation 
of cells, they differ in terms of their underlying algorithms and the incorporation of prior 
knowledge (e.g. cell type marker gene tables). 

In contrast to the extensive evaluations of clustering, differential expression, and trajectory 
inference methods [10–12], there is currently one single attempt comparing methods to 
assign cell type labels to cell clusters [13]. The lack of a comprehensive comparison of scRNA-
seq classification methods leaves users without indications as to which classification method 
best fits their problem. More importantly, a proper assessment of existing approaches in 
comparison to baseline methods can greatly benefit new developments in the field and 
prevent unnecessary complexity.

Here, we benchmarked 22 classification methods to automatically assign cell identities 
including single cell-specific and general-purpose classifiers. The methods were evaluated 
using 27 publicly available single cell RNA-sequencing datasets of different sizes, technologies, 
species, and complexity. The performance of the methods was evaluated based on their 
accuracy, percentage of unclassified cells, and computation time. We performed several 
experiments to cover different levels of challenge in the classification task, and to test 
specific features or tasks such as the feature selection, scalability and rejection experiments. 
We evaluated the classification performance through two experimental setups, 1) intra-
dataset in which we applied 5-fold cross-validation within each dataset, and 2) inter-dataset 
involving across datasets comparisons. The inter-dataset comparison is more realistic and 
more practical, where a reference dataset (e.g. atlas) is used to train a classifier which can 
then be applied to identify cells in new unannotated datasets. However, in order to perform 
well across datasets, the classifier should also perform well using the intra-dataset setup 
on the reference dataset. The intra-dataset experiments, albeit artificial, provide an ideal 
scenario to evaluate different aspects of the classification process (e.g. feature selection, 
scalability and different annotation levels), regardless of the technical and biological 
variations across datasets. In general, most classifiers perform well across all datasets in 
both experimental setups (inter- and intra-dataset), including the general-purpose classifiers. 
In our experiments, incorporating prior knowledge in the form of marker-genes does not 
improve the performance. We observed large variation across different methods in the 
computation time and classification performance in response to changing the input features 
and the number of cells. Our results highlight the general-purpose support vector machine 
(SVM) classifier as the best performer overall.

2.2 Results
2.2.1 Benchmarking automatic cell identification methods (intra-
dataset evaluation)

We benchmarked the performance and computation time of all 22 classifiers (Table 1) 
across 11 datasets used for intra-dataset evaluation (Table 2). Classifiers were divided into 
two categories: 1) supervised methods which require a training dataset labeled with the 
corresponding cell populations in order to train the classifier, or 2) prior-knowledge methods, 
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Table 1. Automatic cell identification methods included in this study.

Name Version
Lan-
guage Underlying classifier

Prior 
knowledge

Rejection 
option Ref.

Garnett 0.1.4 R Generalized linear model Yes Yes [14]

Moana 0.1.1 Python SVM with linear kernel Yes No [15]
DigitalCell-
Sorter

Github version: 
e369a34 Python

Voting based on cell type 
markers Yes No [16]

SCINA 1.1.0 R
Bimodal distr. fitting for 
marker-genes Yes No [17]

scVI 0.3.0 Python Neural Network No No [18]
Cell-Blast 0.1.2 Python Cell-to-cell similarity No Yes [19]

ACTINN
GitHub version: 
563bcc1 Python Neural Network No No [20]

LAmbDA
GitHub version: 
3891d72 Python Random Forest No No [21]

Scmapcluster 1.5.1 R Nearest median classifier No Yes [22]
Scmapcell 1.5.1 R kNN No Yes [22]
scPred 0.0.0.9000 R SVM with radial kernel No Yes [23]
CHETAH 0.99.5 R Correlation to training set No Yes [24]

CaSTLe
Github version: 
258b278 R Random Forest No No [25]

SingleR 0.2.2 R Correlation to training set No No [26]
scID 0.0.0.9000 R LDA No Yes [27]
singleCellNet 0.1.0 R Random Forest No No [28]
LDA 0.19.2 Python LDA No No [29]
NMC 0.19.2 Python NMC No No [29]
RF 0.19.2 Python RF (50 trees) No No [29]
SVM 0.19.2 Python SVM (linear kernel) No No [29]
SVMrejection 0.19.2 Python SVM (linear kernel) No Yes [29]
kNN 0.19.2 Python kNN (k = 9) No No [29]

Dataset No. of 
cells

No. of 
genes

No. of cell 
populations 

(>10 cells)

Description Protocol Ref.

Baron (Mouse)a 1,886 14,861 13 (9) Mouse Pancreas inDrop [30]
Baron (Human)a,b 8,569 17,499 14 (13) Human Pancreas inDrop [30]
Muraroa,b 2,122 18,915 9 (8) Human Pancreas CEL-Seq2 [31]
Segerstolpea,b 2,133 22,757 13 (9) Human Pancreas SMART-Seq2 [32]
Xina,b 1,449 33,889 4 (4) Human Pancreas SMARTer [33]
CellBench  
10Xa,b 3,803 11,778 5 (5) Mixture of five human 

lung cancer cell lines 10X Chromium [34]

CellBench  
CEL-Seq2a,b 570 12,627 5 (5) Mixture of five human 

lung cancer cell lines CEL-Seq2 [34]

Table 2. Overview of the datasets used during this study.
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TMa 54,865 19,791 55 (55) Whole Mus musculus SMART-Seq2 [6]

AMBa 12,832 42,625 4/22/110 
(3/16/92)

Primary mouse visual 
cortex SMART-Seq v4 [35]

Zheng sorteda 20,000 21,952 10 (10) FACS sorted PBMC 10X Chromium [36]
Zheng 68Ka 65,943 20,387 11 (11) PBMC 10X Chromium [36]
VISpb (Mouse) 12,832 42,625 3/36 (3/34) Primary Visual Cortex SMART-Seq v4 [35]

ALMb (Mouse) 8,758 42,461 3/37 (3/34) Anterior Lateral Motor 
Area  SMART-Seq v4 [35]

MTGb (Human) 14,636 16,161 3/35 (3/34) Middle Temporal Gyrus SMART-Seq v4 [37]
PbmcBench 
pbmc1.10Xv2b 6,444 33,694 9 (9) PBMC 10X version 2 [38]

PbmcBench 
pbmc1.10Xv3b 3,222 33,694 8 (8) PBMC 10X version 3 [38]

PbmcBench 
pbmc1.CLb 253 33,694 7 (7) PBMC CEL-Seq2 [38]

PbmcBench 
pbmc1.DRb 3,222 33,694 9 (9) PBMC Drop-Seq [38]

PbmcBench 
pbmc1.iDb 3,222 33,694 7 (7) PBMC inDrop [38]

PbmcBench 
pbmc1.SM2b 253 33,694 6 (6) PBMC SMART-Seq2 [38]

PbmcBench 
pbmc1.SWb 3,176 33,694 7 (7) PBMC Seq-Well [38]

PbmcBench 
pbmc2.10Xv,b 3,362 33,694 9 (9) PBMC 10X version 2 [38]

PbmcBench 
pbmc2.CLb 273 33,694 5 (5) PBMC CEL-Seq2 [38]

PbmcBench 
pbmc2.DRb 3,362 33,694 6 (6) PBMC Drop-Seq [38]

PbmcBench 
pbmc2.iDb 3,362 33,694 9 (9) PBMC inDrop [38]

PbmcBench 
pbmc2.SM2b 273 33,694 6 (6) PBMC SMART-Seq2 [38]

PbmcBench 
pbmc2.SWb 551 33,694 4 (4) PBMC Seq-Well [38]

for which either a marker-genes file is required as an input or a pre-trained classifier for 
specific cell populations is provided. 

The datasets used in this study vary in the number of cells, genes and cell populations 
(annotation level), in order to represent different levels of challenges in the classification task 
and to evaluate how each classifier performs in each case (Table 2). They include relatively 
typical sized scRNA-seq datasets (1,500–8,500 cells), such as the five pancreatic datasets 
(Baron Mouse and Human, Muraro, Segerstolpe and Xin), which include both mouse and 
human pancreatic cells and vary in the sequencing protocol used. The Allen Mouse Brain 
(AMB) dataset is used to evaluate how the classification performance changes when dealing 

a: used for intra-dataset evaluation 
b: used for inter-dataset evaluation
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with different levels of cell population annotation as the AMB dataset contains three levels 
of annotations for each cell (3, 16 or 92 cell populations), denoted as AMB3, AMB16, and 
AMB92. The Tabula Muris (TM) and Zheng 68K datasets represent relatively large scRNA-
seq datasets (>50,000 cells), and are used to assess how well the classifiers scale with large 
datasets. For all previous datasets, cell populations were obtained through clustering. To 
assess how the classifiers perform when dealing with sorted populations, we included the 
CellBench dataset and the Zheng sorted dataset, representing sorted populations for lung 
cancer cell lines and PBMC, respectively. Including the Zheng sorted and Zheng 68K datasets, 
allows the benchmarking of four prior-knowledge classifiers, since the marker-genes files or 
pre-trained classifiers are available for the four classifiers for peripheral blood mononuclear 
cells (PBMCs).

2.2.2 All classifiers perform well in intra-dataset experiments 

Generally, all classifiers perform well in the intra-dataset experiments, including the general-
purpose classifiers (Figure 1). However, Cell-BLAST performs poorly for the Baron Mouse and 
Segerstople pancreatic datasets. Further, scVI has low performance on the deeply annotated 
datasets TM (55 cell populations) and AMB92 (92 cell populations), and kNN produces low 
performance for the Xin and AMB92 datasets.

For the pancreatic datasets, the best-performing classifiers are SVM, SVMrejection, scPred, 
scmapcell, scmapcluster, scVI, ACTINN, singleCellNet, LDA and NMC. SVM is the only classifier 
to be in the top five list for all five pancreatic datasets, while NMC, for example, appears 
only in the top five list for the Xin dataset. The Xin dataset contains only four pancreatic cell 
types (alpha, beta, delta and gamma) making the classification task relatively easy for all 
classifiers, including NMC. Considering the median F1-score alone to judge the classification 
performance can be misleading since some classifiers incorporate a rejection option (e.g. 
SVMrejection, scmapcell, scPred), by which a cell is assigned as ‘unlabeled’ if the classifier is 
not confident enough. For example, for the Baron Human dataset, the median F1-score for 
SVMrejection, scmapcell, scPred and SVM is 0.991, 0.984, 0.981, and 0.980, respectively (Figure 
1B). However, SVMrejection, scmapcell and scPred assigned 1.5%, 4.2% and 10.8% of the cells, 
respectively, as unlabeled while SVM (without rejection) classified 100% of the cells with a 
median F1-score of 0.98. This shows an overall better performance for SVM and SVMrejection, 
with higher performance and less unlabeled cells.

The CellBench 10X and CEL-Seq2 datasets represent an easy classification task, where the five 
sorted lung cancer cell lines are quite separable [34]. All classifiers have an almost perfect 
performance on both CellBench datasets (median F1-score ≈ 1).

For the TM dataset, the top five performing classifiers are SVMrejection, SVM, scmapcell, Cell-
BLAST and scPred with a median F1-score > 0.96, showing that these classifiers can perform 
well and scale to large scRNA-seq datasets with a deep level of annotation. Furthermore, 
scmapcell and scPred assigned 9.5% and 17.7% of the cells, respectively, as unlabeled, which 
shows a superior performance for SVMrejection and SVM, with a higher median F1-score and 
2.9% and 0% unlabeled cells, respectively.
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Figure 1. Performance comparison of supervised classifiers for cell identification using different scRNA-seq 
datasets. Heatmap of the A) median F1-scores and B) percentage of unlabeled cells across all cell populations per 
classifier (rows) per dataset (columns). Grey boxes indicate that the corresponding method could not be tested on 
the corresponding dataset. Classifiers are ordered based on the mean of the median F1-scores. Asterix (*) indicates 
that the prior-knowledge classifiers, SCINA, DigitalCellSorter, GarnettCV, Garnettpretrained, and Moana, could not be 
tested on all cell populations of the PBMC datasets. SCINADE, GarnettDE, and DigitalCellSorterDE are the versions of 
SCINA, GarnettCV, and DigitalCellSorter were the marker-genes are defined using differential expression from the 
training data. Different numbers of marker-genes, 5, 10, 15, and 20, were tested and the best result is shown here. 
SCINA, Garnett, and DigitalCellSorter produced the best result for the Zheng sorted dataset using 20, 15 and 5 
markers, and for the Zheng 68K dataset using 10, 5 and 5 markers, respectively.
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2.2.3 Performance evaluation across different annotation levels 

We used the AMB dataset with its three different levels of annotations, to evaluate the 
classifiers’ performance behavior with an increasing number of smaller cell populations 
within the same dataset. For AMB3, the classification task is relatively easy, differentiating 
between three major brain cell types (GABAergic, Glutamatergic and Non-Neuronal). All 
classifiers perform almost perfectly with a median F1-score > 0.99 (Figure 1A). For AMB16, 
the classification task becomes slightly more challenging and the performance of some 
classifiers drops, especially kNN. The top five classifiers are SVMrejection, scmapcell, scPred, SVM 
and ACTINN, where SVMrejection, scmapcell and scPred assigned 1.1%, 4.9% and 8.4% of the 
cells as unlabeled, respectively. For the deeply annotated AMB92 dataset, the performance 
of all classifiers drops further, specially for kNN and scVI, where the median F1-score is 
0.130 and zero, respectively. The top five classifiers are SVMrejection, scmapcell, SVM, LDA, 
and scmapcluster, with SVMrejection assigning less cells as unlabeled compared to scmapcell 
(19.8% vs 41.9%) and once more SVMrejection shows improved performance over scmapcell 
(median F1-score of 0.981 vs 0.906). These results show an overall superior performance for 
general-purpose classifiers (SVMrejection, SVM and LDA) compared to other scRNA-seq specific 
classifiers across different levels of cell population annotation.

Instead of only looking at the median F1-score, we also evaluated the F1-score per 
cell population for each classifier (Figure S1). We confirmed previous conclusions, kNN 
performance drops with deep annotations which include smaller cell populations (Figure 
S1B-C), and scVI poorly performs on the deeply annotated AMB92 dataset. Additionally, 
we observed that some cell populations are much harder to classify compared to other 
populations. For example, most classifiers had a low performance on the Serpinf1 cells in the 
AMB16 dataset.

2.2.4 Incorporating marker-genes does not improve intra-dataset 
performance on PBMC data

For the two PBMC datasets (Zheng 68K and Zheng sorted), the prior-knowledge classifiers 
Garnett, Moana, DigitalCellSorter and SCINA could be evaluated and benchmarked with the 
rest of the classifiers. Although the best performing classifier on Zheng 68K is SCINA with a 
median F1-score of 0.998, this performance is based only on 3, out of 11, cell populations 
(Monocytes, B cells and NK cells) for which marker-genes are provided. Table S1 summarizes 
which PBMC cell populations can be classified by the prior-knowledge methods. Interestingly, 
none of the prior-knowledge methods showed superior performance compared to other 
classifiers, despite the advantage these classifiers have over other classifiers given they are 
tested on fewer cell populations due to the limited availability of marker-genes. Garnett, 
Moana, and DigitalCellSorter, could be tested on seven, seven, and five cell populations 
respectively (Table S1). Beside SCINA, the top classifiers for the Zheng 68K dataset are 
CaSTLe, ACTINN, singleCellNet and SVM. SVMrejection and Cell-BLAST show high performance, 
at the expense of high rejection rate of 61.8% and 29%, respectively (Figure 1). Moreover, 
scPred failed when tested on the Zheng 68K dataset. Generally, all classifiers show relatively 
lower performance on the Zheng 68K dataset compared to other datasets, as the Zheng 68K 
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dataset contains 11 immune cell populations which are harder to differentiate, particularly 
the T cell compartment (6 out of 11 cell populations). This difficulty of separating these 
populations was previously noted in the original study [36]. Also, the confusion matrices 
for CaSTLe, ACTINN, singleCellNet and SVM clearly indicate the high similarity between cell 
populations, such as 1) monocytes with dendritic cells, 2) the two CD8+ T populations, and 3) 
the four CD4+ T populations (Figure S2). 

The classification of the Zheng sorted dataset is relatively easier compared to the Zheng 68K 
dataset, as almost all classifiers show improved performance (Figure 1), with the exception 
that LAmbDA failed while being tested on the Zheng sorted dataset. The prior-knowledge 
methods show high performance (median F1-score > 0.93), which is still comparable to other 
classifiers such as SVMrejection, scVI, scPred and SVM. Yet, the supervised classifiers do not 
require any marker-genes, and they can predict more (all) cell populations.

2.2.5 The performance of prior-knowledge classifiers strongly de-
pends on the selected marker-genes

Some prior-knowledge classifiers, SCINA, DigitalCellSorter and GarnettCV, used marker-genes 
to classify the cells. For the PBMC datasets, the number of marker-genes per cell population 
varies across classifiers (2-161 markers) and the marker-genes show very little overlap. Only 
one B cell marker gene, CD79A, is shared by all classifiers while none of the marker-genes 
for the other cell populations is shared by the three classifiers. We analyzed the effect of the 
number of marker-genes, mean expression, dropout rate, and the specificity of each marker 
gene (beta score, see Methods), on the performance of the classifier (Figure S3). The dropout 
rate and marker specificity (beta-score) are strongly correlated with the median F1-score, 
highlighting that the performance does not only depend on biological knowledge, but also 
on technical factors.

The difference between the marker-genes used by each method underscores the challenge 
of marker-genes selection, especially for smaller cell populations. Moreover, public databases 
of cell type markers (e.g. PanglaoDB [39] and CellMarker [40]) often provide different markers 
for the same population. For example, CellMarker provides 33 marker-genes for B cells, 
while PanglaoDB provides 110 markers, with only 11 marker-genes overlap between the two 
databases. 

Given the differences between “expert-defined” markers and the correlation of classification 
performance and technical dataset-specific features (e.g. dropout rate), we tested if the 
performance of prior-knowledge methods can be improved by automatically selecting 
marker-genes based on differential expression. Through the cross-validation scheme, 
we used the training folds to select the marker-genes of each cell population based on 
differential expression (see Methods) and later used these markers to evaluate the classifiers’ 
performance on the testing fold. We tested this approach on the two PBMC datasets, Zheng 
sorted and Zheng 68K for different numbers of marker-genes (5, 10, 15, and 20 markers). 
In Figure 1, the best result across the number of markers for SCINADE, GarnettDE, and 
DigitalCellSorterDE are shown.
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The median F1-score obtained using the differential expression-defined markers is 
significantly lower compared to the original versions of classifiers using the markers defined 
by the authors. This lower performance is in part due to the low performance on challenging 
populations, such as subpopulations of CD4+ and CD8+ T cell populations (F1-score ≤ 0.68) 
(Figure S4). These challenging populations are not identified by the original classifiers since 
the markers provided by the authors only considered annotations at a higher level (Table S1). 
For example, the median F1-score of SCINADE on Zheng sorted is 0.38, compared to a median 
F1-score of 1.0 for SCINA (using the original markers defined by the authors). However, SCINA 
only considers three cell populations: CD14+ monocytes, CD56+ NK cells, and CD19+ B cells. 
If we only consider these cell populations for SCINADE, this results in a median F1-score of 
0.95. 

We observed that the optimal number of marker-genes varies per classifier and dataset. For 
the Zheng sorted dataset the optimal number of markers is 5, 15, and 20 for DigitalCellSorterDE, 
GarnettDE, and, SCINADE respectively, while for Zheng 68K this is 5, 5, and 10. All together, these 
results illustrate the dependence of the classification performance on the careful selection of 
marker genes which is evidently a challenging task. 

2.2.6 Classification performance depends on dataset complexity

A major aspect affecting the classification performance is the complexity of the dataset at 
hand. We described the complexity of each dataset in terms of the pairwise similarity between 
cell populations (see Methods) and compared the complexity to the performance of the 
classifiers and the number of cell populations in a dataset (Figure 2). When the complexity 
and/or the number of cell populations of the dataset increases, the performance generally 
decreases. The performance of all classifiers is relatively low on the Zheng 68K dataset, 
which can be explained by the high pairwise correlations between the mean expression 
profiles of each cell population (Figure S5). These correlations are significantly lower for the 
TM and AMB92 datasets, justifying the higher performance of the classifiers on these two 
datasets (Figure S6-7). While both TM and AMB92 have more cell populations (55 and 92, 
respectively) compared to Zheng 68K (11 populations), these populations are less correlated 
to one another, making the task easier for all the classifiers. 

2.2.7 Evaluation across datasets

While evaluating the classification performance within a dataset (intra-dataset) is important, 
the realistic scenario in which a classifier is useful requires cross-dataset (i.e. inter-dataset) 
classification. We used 22 datasets (Table 2) to test the classifiers’ ability to predict cell identities 
in a dataset that was not used for training. First, we tested the classifiers’ performance across 
different sequencing protocols, applied to the same samples within the same lab using the 
two CellBench datasets. We evaluated the classification performance when training on one 
protocol and testing on the other. Similar to the intra-dataset evaluation result, all classifiers 
performed well in this case (Figure S8). 
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Second, we tested the classification performance on the PbmcBench datasets, which 
represent a more extensive protocol comparison. PbmcBench consists of two samples 
(pbmc1 and pbmc2), sequenced using seven different protocols (Table 2) with the exception 
that 10Xv3 was not applied to the pbmc2 sample. We used the pbmc1 datasets to evaluate 
the classification performance of all pairwise train-test combinations between the seven 
protocols (42 experiments, see Methods). Moreover, we extended the evaluation to include 
comparisons across different samples for the same protocol, using pbmc1 and pbmc2 (6 
experiments, see Methods). All 48 experiments results are summarized in Figure 3. Overall, 
several classifiers performed well including SCINADE using 20 marker-genes, singleCellNet, 
scmapcell, scID and SVM, with an average median F1-score > 0.75 across all 48 experiments 
(Figure 3A, S9A). SCINADE, GarnettDE, and DigitalCellSorterDE were tested using 5, 10, 15 and 
20 marker-genes, Figure 3A shows the best result for each classifier, where SCINADE and 
GarnettDE performed best using 20 and 5 marker-genes, respectively, while DigitalCellSorterDE 
had a median F1-score of zero during all experiments using all different numbers of marker-
genes. DigitalCellSorterDE could only identify B-cells in the test sets, usually with an F1-score 
between 0.8 and 1.0, while the F1-score for all other cell populations was zero.

We also tested the prior-knowledge classifiers on all 13 PbmcBench datasets. The prior-
knowledge classifiers showed lower performance compared to other classifiers (average 

Figure 2. Complexity of the datasets compared 
to the performance of the classifiers. A) Boxplots 
of the median F1-scores of all classifiers for each 
dataset used during the intra-dataset evaluation. B) 
Barplots describing the complexity of the datasets 
(see Methods). Datasets are ordered based on 
complexity. Box- and barplots are colored according 
to the number of cell populations in each dataset.
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median F1-score < 0.6), with the exception of SCINA which was only tested on three cell 
populations (Figure 3B, S9B). These results are inline with our previous conclusions from the 
Zheng sorted and Zheng 68K datasets in the intra-dataset evaluation. 

Comparing the performance of the classifiers across the different protocols, we observed a 
higher performance for all classifiers for specific pairs of protocols. For example, all classifiers 
performed well when trained on 10Xv2 and tested on 10Xv3, and vice versa. On the other 
hand, other pairs of protocols had good performance only in one direction, training on Seq-
Well produced good predictions on 10Xv3, but not the other way around. Compared to all 
other protocols, the performance of all classifiers was low when they were either trained or 
tested on Smart-seq2 data. This can, in part, be due to the fact that Smart-seq2 data does not 
contain Unique Molecular Identifier (UMI), in contrast to all other protocols.

Figure 3. Classification performance across the PbmcBench datasets. A) Heatmap showing the median F1-scores 
of the supervised classifiers for all train-test pairwise combination across different protocols. The training set is 
indicated in the grey box on top of the heatmap, the test set is indicated using the column labels below. Results 
showed to the left of the red line represent the comparison between different protocol using sample pbmc1. Sample 
pbmc2 was used as test set then. Results showed to the right of the red line represent the comparison between 
different samples using the same protocol, with pbmc 1 used for training and pbmc2 used for testing. Boxplots 
on the right side of the heatmap summarize the performance of each classifier across all experiments. The mean 
of the median F1-scores, also used to order the classifiers, is indicated in the boxplots using a red dot. Boxplots 
underneath the heatmap summarize the performance of the classifiers per experiment. For SCINADE, GarnettDE, and 
DigitalCellSorterDE different numbers of marker-genes were tested. Only the best result is shown here. B) Median 
F1-score of the prior-knowledge classifiers on both samples of the different protocols. The protocol is indicated in 
the grey box on top of the heatmap, the sample is indicated with the labels below. Classifiers are ordered based on 
their mean performance across all datasets.
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We also tested the classification performance using the three brain datasets, VISp, ALM 
and MTG (Table 2), which allowed us to compare performances across species (mouse and 
human) as well as single-cell RNA-seq (used in VISp and ALM) versus single-nucleus RNA-seq 
(used for MTG). We tested all possible train-test combinations for both levels of annotation, 
three major brain cell types (inhibitory neurons, excitatory neurons and non-neuronal cells) 
and the deeper annotation level with 34 cell populations (18 experiments, see Methods). 
Prediction of the three major cell types was easy, where almost all classifiers showed high 
performance (Figure 4A) with some exceptions. For example, scPred failed the classification 
task completely when testing on the MTG dataset, producing 100% unlabeled cells (Figure 
S10A). Predicting the 34 cell populations turned out to be a more challenging task, especially 
when the MTG human dataset is included either as training or testing data, resulting in 
significantly lower performance across all classifiers (Figure 4B). Across all nine experiments 
at the deeper annotation, the top performing classifiers were SVM, ACTINN, singleCellNet, 
SingleR and LAmbDA, with almost 0% unlabeled cells (Figure S10B).

Finally, to evaluate the classification performance across different protocols and different 
labs, we used the four human pancreatic datasets: Baron Human, Muraro, Segerstople and 
Xin. We tested four combinations by training on three datasets and test on one dataset, 
in which case the classification performance can be affected by batch differences between 
datasets. We evaluated the performance of the classifiers when trained using the original 
data as well as aligned data using the mutual nearest neighbour (MNN) method [41]. Figure 
S11 shows UMAPs [42] of the combined dataset before and after alignment, demonstrating 
better grouping of pancreatic cell types after alignment. 

For the original (unaligned) data, the best performing classifiers across all four experiments 
are scVI, SVM, ACTINN, scmapcell and SingleR (Figure 5A, S12A). For the aligned data, the 
best performing classifiers are kNN, SVMrejection, singleCellNet, SVM and NMC (Figure 5B, 
S12B). Some classifiers benefit from aligning datasets such as SVMrejection, kNN, NMC and 
singleCellNet, resulting in higher median F1-scores (Figure 5). On the other hand, some other 
classifiers failed the classification task completely, such as scmapcell which labels all cells as 
unlabeled. Some other classifiers failed to run over the aligned datasets, such as ACTINN, 
scVI, Cell-BLAST, scID, scmapcluster and scPred. These classifiers work only with positive gene 
expression data, while the aligned datasets contains positive and negative gene expression 
values.

2.2.8 Rejection option evaluation

Classifiers developed for scRNA-seq data often incorporate a rejection option to identify cell 
populations in the test set that were not seen during training. These populations cannot be 
predicted correctly and therefore should remain unassigned. To test whether the classifiers 
indeed leave these unseen populations unlabeled, we applied two different experiments 
using negative controls of different tissues and using unseen populations of the same tissue. 

First, the classifiers were trained on a data set from one tissue (e.g. pancreas) and used 
to predict cell populations of a completely different tissue (e.g. brain) [22]. The methods 

Thesis_LM_final.indd   47Thesis_LM_final.indd   47 24-04-2024   18:54:0824-04-2024   18:54:08



CHAPTER 2

48

Figure 4. Classification performance across brain datasets. Heatmaps show the median F1-scores of the supervised 
classifiers when tested on A) major lineage annotation with three cell populations, and B) deeper level of annotation 
with 34 cell populations. The training set(s) are indicated using the column labels on top of the heatmap. The test 
set is indicated in the grey box. In each heatmap the classifiers are ordered based on their mean performance across 
all experiments. 
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should thus reject all (100%) of the cells in the test dataset. We carried out four different 
negative control experiments (see Methods, Figure 6A). scmapcluster and scPred have an 
almost perfect score for all four combinations, rejecting close 100% of the cells. Other top 
performing methods for this task, SVMrejection and scmapcell, failed when trained on mouse 
pancreatic data and tested on mouse brain data. All labeled cells of the AMB16 dataset are 
predicted to be beta cells in this case. The prior-knowledge classifiers, SCINA, Garnettpretrained, 
and DigitalCellSorter, could only be tested on the Baron Human pancreatic dataset. GarnettCV 
could, on top of that, also be trained on the Baron Human dataset and tested on the Zheng 
68K dataset. During the training phase, GarnettCV tries to find representative cells for the 
cell populations described in the marker-genes file. Being trained on Baron Human using 
the PBMC marker-genes file, it should not be able to find any representatives and therefore 
all cells in the Zheng 68K dataset should be unassigned. Surprisingly, GarnettCV still finds 
representatives for PBMC cells in the pancreatic data and thus the cells in the test set are 
labeled. However, being trained on the PBMC dataset and tested on the pancreatic dataset, 
it does have a perfect performance. 

To test the rejection option in more realistic and challenging scenario, we trained the 
classifiers on some cell populations from one dataset, and used the held out cell populations 
in the test set (see Methods). Since the cell populations in the test set were not seen during 
training, they should remain unlabeled. Here, the difficulty of the task was gradually increased 

Figure 5. Classification performance across pancreatic datasets. Heatmaps showing the median F1-score for 
each classifier for the A) unaligned and B) aligned datasets. The column labels indicate which of the four datasets 
was used as a test set, in which case the other three datasets were used as training. Grey boxes indicate that the 
corresponding method could not be tested on the corresponding dataset. In each heatmap, the classifiers are 
ordered based on their mean performance across all experiments.
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(Table S3). First all the T-cells were removed from the training set. Next, only the CD4+ T cells 
were removed. Finally, only CD4+/CD45RO+ Memory T cells, a subpopulation of the CD4+ T 
cells, were removed. The top performing methods for this task are: scmapcell, scPred, scID, 
SVMrejection, and SCINA (Figure 6B). We expected that rejecting T cells would be a relatively 
easy task as they are quite distinct from all other cell populations in the dataset. It should 
thus be comparable to the negative control experiment. Rejecting CD4+/CD45RO+ Memory 
T cells, on the other hand, would be more difficult as they could easily be confused with all 
other subpopulations of CD4+ T cells. Surprisingly, almost all classifiers, except for scID and 
scmapcluster, show the opposite. 

To better understand this unexpected performance we analyzed the labels assigned by 
SVMrejection. In the first task (T cells removed from the training set), SVMrejection labels almost 
all T cells as B cells. This can be explained by the fact that SVMrejection, and most classifiers 
for that matter, rely on classification posterior probabilities to assign labels but ignores the 
actual similarity between each cell and the assigned population. In task two (CD4+ T cells 
were removed), there were two subpopulations of CD8+ T cells in the training set. In that 
case, two cell populations are equally similar to the cells in the test set, resulting in low 
posterior probabilities for both classes and thus the cells in the test set remain unlabeled. If 

Figure 6. Performance of the classifiers during the rejection experiments. A) Percentage of unlabeled cells during 
the negative control experiment for all the classifiers with a rejection option. The prior-knowledge classifiers could 
not be tested on all datasets, this is indicated with a grey box. The species of the dataset is indicated in the grey 
box on top. Column labels indicate which datasets are used for training and testing respectively. B) Percentage of 
unlabeled cells for all classifiers with a rejection option when a cell population was removed from the training set. 
Column labels indicate which cell population was removed. This cell population was used as a test set. In both A) and 
B) the classifiers are sorted based on their mean performance across all experiments.
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one of these CD8+ T cell populations was removed from the training set, only 10.53% instead 
of 75.57% of the CD4+ T cells were assigned as unlabeled by SVMrejection. All together, our 
results indicate that despite the importance of incorporating a rejection option in cell identity 
classifiers, the implementation of this rejection option remains challenging.

2.2.9 Performance sensitivity to the input features 

During the intra-datasets cross-validation experiment described earlier, we used all features 
(genes) as input to the classifiers. However, some classifiers suffer from overtraining when 
too many features are used. Therefore, we tested the effect of feature selection on the 
performance of the classifiers. While different strategies for feature selection in scRNA-seq 
classification experiments exist, selecting genes with a higher number of dropouts compared 
to the expected number of dropouts has been shown to outperform other methods [22,43]. 
We selected subsets of features from the TM dataset using the dropout method. In the 
experiments, we used the top: 100, 200, 500, 1000, 2000, 5000, and 19791 (all) genes. Some 
classifiers include a built-in feature selection method which is used by default. To ensure that 
all methods use the same set of features, the built-in feature selection was turned off during 
these experiments. 

Some methods are clearly overtrained when the number of features increases (Figure 7A). 
For example, scmapcell shows the highest median F1-score when using less features and 
the performance drops when the number of features increases. On the other hand, the 
performance of other classifiers, such as SVM, keeps improving when the number of features 
increases. These results indicate that the optimal number of features is different for each 
classifier.

Looking at the median F1-score, there are several methods with a high maximal performance. 
Cell-BLAST, ACTINN, scmapcell, scPred, SVMrejection and SVM all have a median F1-score higher 
than 0.97 for one or more of the feature sets. Some of these well-performing methods, 
however, leave many cells unlabeled. scmapcell and scPred, for instance, yield a maximum 
median F1-score of 0.976 and 0.982 respectively, but 10.7% and 15.1% of the cells are 
assigned as unlabeled (Figure 7B). On the other hand, SVMrejection has the highest median F1-
score (0.991) overall with only 2.9% unlabeled. Of the top performing classifiers only ACTINN 
and SVM label all the cells. Overall SVM shows the third highest performance with a score of 
0.979. 

2.2.10 Scalability: performance sensitivity to the number of cells

scRNA-seq datasets vary significantly across studies in terms of the number of cells analyzed. 
To test the influence of the size of the dataset on the performance of the classifier, we 
downsampled the TM dataset in a stratified way (i.e. preserving population frequencies) to 1, 
5, 10, 20, 50, and 100% of the original number of 45,469 cells (see Methods) and compared 
the performance of the methods (Figure 7C, D). Using less than 500 cells in the dataset, most 
classifiers have a relatively high performance. Only scID, LAmbDA, CaSTLe, and Cell-BLAST, 
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Figure 7. Classification performance and computation time evaluation across different numbers of features, 
cells, and annotation levels. Line plots show A) the median F1-score, B) percentage of unlabeled cells, and E) 
computation time of each classifier applied to the TM dataset with the top 100, 200, 500, 1000, 2000, 5000, and 
19791 (all) genes as input feature sets. Genes were ranked based on dropout-based feature selection. C) The median 
F1-score, D) percentage of unlabeled cells, and F) computation time of each classifier applied to the downsampled 
TM datasets containing 463, 2,280, 4,553, 9,099, 22,737, and 45,469 (all) cells. G) The computation time of each 
classifier is plotted against the number of cell populations. Note that the y-axis is 100^x scaled in A,C and log-scaled 
in E-G. The x-axis is log-scaled in A-F
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have a median F1-score below 0.85. Surprisingly, SVMrejection has almost the same median 
F1-score when using 1% of the data as when using all data (0.993 and 0.994 respectively). It 
must be noted here, however, that the percentage of unlabeled cells decreases significantly 
(from 28.9% to 1.3%). Overall, the performance of all classifiers stabilized when tested on ≥ 
20% (9,099 cells) of the original data.

2.2.11 Running time evaluation 

To compare the runtimes of the methods and see how they scale when the number of cells 
increases, we compared the number of cells in each dataset with the computation time of 
the classifiers (Figure S13). Overall, big differences in the computation time can be observed 
when comparing the different methods. SingleR showed the highest computation time overall. 
Running SingleR on the Zheng 68K dataset took more than 39 hours, while scmapcluster was 
finished within 10 seconds on this dataset. Some of the methods have a high runtime for 
the small datasets. On the smallest dataset, Xin, all classifiers have a computation time <5 
minutes, with most classifiers finishing within 60 seconds. Cell-BLAST, however, takes more 
than 75 minutes. In general, all methods show an increase in computation time when the 
number of cells increase. However, when comparing the second largest, TM, and largest, 
Zheng 68K, dataset, not all methods show an increase in computation time. Despite the 
increase in the number of cells between the two datasets, CaSTLe, CHETAH, and SingleR, 
have a decreasing computation time. A possible explanation could be that the runtime of 
these methods also depends on the number of genes or the number of cell populations in 
the dataset. To evaluate the run time of the methods properly, we therefore investigated the 
effect of the number of cells, features, and cell populations separately (Figure 7E-G). 

To assess the effect of the number of genes on the computation time, we compared the 
computation time of the methods during the feature selection experiment (Figure 7E). Most 
methods scale linearly with the number of genes. However, LDA does not scale very well 
when the number of genes increases. If the number of features is higher than the number of 
cells, the complexity of LDA is O(g^3), where g is the number of genes [44]. 

The effect of the number of cells on the timing showed that all methods increase in 
computation time when the number of cells increases (Figure 7F). The differences in runtime 
on the largest dataset are larger. scmapcluster, for instance, takes five seconds to finish, while 
Cell-BLAST takes more than 11 hours.

Finally, to evaluate the effect of the number of cell populations, the runtime of the methods 
on the AMB3, AMB16, and AMB92 datasets were compared (Figure 7G). For most methods 
this shows an increase in runtime when the number of cell populations increases, specially 
singleCellNet. For other methods, such as ACTINN and scmapcell, the runtime remains 
constant. Five classifiers, scmapcell, scmapcluster, SVM, RF, and NMC, have a computation 
time below six minutes on all the datasets. 
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2.3 Discussion
In this study, we evaluated the performance of 22 different methods for automatic cell 
identification using 27 scRNA-seq datasets. We performed several experiments to cover 
different levels of challenges in the classification task, and to test specific aspects of the 
classifiers such as the feature selection, scalability and rejection experiments. We summarize 
our findings across the different experiments (Figure 8) and provide a detailed summary 
of which dataset was used for each experiment (Table S4). This overview can be used as a 
user-guide to choose the most appropriate classifier depending on the experimental setup 
at hand. Overall, several classifiers performed accurately across different datasets and 
experiments, particularly: SVMrejection, SVM, singleCellNet, scmapcell, scPred, ACTINN and 
scVI. We observed relatively lower performance for the inter-dataset setup, likely due to the 
technical and biological differences between datasets, compared to the intra-dataset setup. 
SVMrejection, SVM and singleCellNet performed well for both setups, while scPred and scmapcell 
performed better in the intra-dataset setup, and scVI and ACTINN had better performance 
in the inter-dataset setup (Figure 8). Of note, we evaluated all classifiers using the default 
settings. While adjusting these settings for a specific dataset might improve the performances 
it increases the risk of overtraining.

Considering all three evaluation metrics (median F1-score, percentage of unlabeled cells and 
computation time), SVMrejection and SVM are overall the best performing classifiers for the 
scRNA-seq datasets used. Although SVM has a shorter computation time, the high accuracy 
of the rejection option of SVMrejection, which allows flagging new cells and assigning them as 
unlabeled, results in an improved performance compared to SVM. Our results show that 
SVMrejection and SVM scale well to large datasets as well as deep annotation levels. In addition, 
they did not suffer from the large number of features (genes) present in the data, producing 
the highest performance on the TM dataset using all genes, due to the incorporated L2-
regularization. The comparable or higher overall performance of a general-purpose classier 
such as SVM warrants caution when designing scRNA-seq specific classifiers that they do not 
introduce unnecessary complexity. For example, deep learning methods, such as ACTINN and 
scVI, showed overall lower performance compared to SVM, supporting recent observations 
by Köhler et al. [45].

scPred (which is based on an SVM with radial kernel), LDA, ACTINN, and singleCellNet performed 
well on most datasets, yet the computation time is long for large datasets. singleCellNet also 
becomes slower with a large number of cell populations. In addition, in some cases, scPred 
and scmapcell/cluster reject higher proportions of cells as unlabeled compared to SVMrejection, 
without a substantial improvement in accuracy. In general, incorporating a rejection option 
with classification is a good practice to allow the detection of potentially novel cell populations 
(not present in the training data) and improve the performance for the classified cells with 
high confidence. However, for the datasets used in this study, the performance of classifiers 
with rejection option, except for SVMrejection, did not show substantial improvement compared 
to other classifiers. Furthermore, our results indicate that designing a proper rejection 
option can be challenging for complex datasets (e.g. PBMC) and that relying on the posterior 
probabilities alone might not yield optimal results. 
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Figure 8. Summary of the performance of all classifiers during different experiments. For each experiment, the 
heatmap shows whether a classifier performs good, intermediate, or poor. Light-grey indicates that a classifier could 
not be tested during an experiment. The grey boxes to the right of the heatmap indicate the four different categories 
of experiments: intra-dataset, inter-dataset, rejection and timing. Experiments itself are indicated using the row 
labels. Table S4 shows which datasets were used to score the classifiers exactly for each experiment. Grey boxes next 
to the heatmap indicate the two classifiers categories. Within these two categories, the classifiers are sorted based 
on their mean performance on the intra and inter dataset experiments. 
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For datasets with deep levels of annotation (i.e. large number) of cell populations, the 
classification performance of all classifiers is relatively low, since the classification task is 
more challenging. scVI, in particular, failed to scale with deeply annotated datasets, although 
it works well for datasets with relatively small number of cell populations. Further, applying 
the prior-knowledge classifiers becomes infeasible for deeply annotated datasets, as the task 
of defining the marker-genes becomes even more challenging.

We evaluated the performance of the prior-knowledge methods (marker-based and pre-
trained) on PBMC datasets only, due to the limited availability of author-provided marker 
genes. For all PBMC datasets, the prior-knowledge methods did not improve the classification 
performance over supervised methods, which do not incorporate such prior knowledge. We 
extended some prior-knowledge methods such that the marker-genes were defined in a 
data-driven manner using differential expression which did not improve the performance of 
these classifiers, except for SCINADE (with 20 marker-genes) for the PbmcBench datasets. The 
data-driven selection of markers allows the prediction of more cell populations compared 
to the number of populations for which marker-genes were originally provided. However, 
this data-driven selection violates the fundamental assumption in prior-knowledge methods 
that incorporating expert-defined markers improves classification performance. Further, 
several supervised classifiers which do not require markers to be defined a priori (e.g. scPred 
and scID) already apply a differential expression test to find the best set of genes to use 
while training the model. The fact that prior-knowledge methods do not outperform other 
supervised methods and given the challenges associated with explicit marker definition, 
indicate that incorporating prior knowledge in the form of marker-genes is not beneficial, at 
least for PBMC data.

In the inter-dataset experiments, we tested the ability of the classifiers to identify populations 
across different scRNA-seq protocols. Our results show that some protocols are more 
compatible with one another (e.g. 10Xv2 and 10Xv3), Smart-Seq2 is distinct from the other 
UMI-based methods, and CEL-Seq2 suffers from low replicability of cell populations across 
samples. These results can serve as a guide in order to choose the best set of protocols that 
can be used in studies where more than one protocol is used. 

The intra-dataset evaluation included the Zheng sorted dataset, which consists of 10 FACS 
sorted cell populations based on the expression of surface protein markers. Our results show 
relatively lower classification performance compared to other datasets, except the Zheng 68K 
dataset. The poor correlation between the expression levels of these protein markers and 
their coding genes mRNA levels [46] might explain this low performance. 

Overall, we observed that the performance of almost all methods was relatively high on 
various datasets, while some datasets with overlapping populations (e.g. Zheng 68K dataset) 
remain challenging. The inter-dataset comparison requires extensive development in order 
to deal with technical differences between protocols, batches, and labs, as well as proper 
matching between different cell population annotations. Further, the pancreatic datasets are 
known to project very well across studies and hence using them to evaluate inter-dataset 
performance can be misleading. We recommend considering other challenging tissues and 
cell populations.
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2.4 Conclusions
We present a comprehensive evaluation of automatic cell identification methods for single 
cell RNA-sequencing data. Generally, all classifiers perform well across all datasets, including 
the general-purpose classifiers. In our experiments, incorporating prior knowledge in the 
form of marker-genes does not improve the performance (on PBMC data). We observed large 
differences in the performance between methods in response to changing the input features. 
Furthermore, the tested methods vary considerably in their computation time which also 
varies differently across methods based on the number of cells and features. 

Taken together, we recommend the use of the general-purpose SVMrejection classifier (with 
a linear kernel) since it had better performance compared to the other classifiers tested 
across all datasets. Other high performing classifiers include: SVM with a remarkably fast 
computation time at the expense of losing the rejection option, singleCellNet, scmapcell, 
and scPred. To support future extension of this benchmarking work with new classifiers and 
datasets, we provide a Snakemake workflow to automate the performed benchmarking 
analyses (https://github.com/tabdelaal/scRNAseq_Benchmark/).

2.5 Methods

2.5.1 Classification methods

We evaluated 22 scRNA-seq classifiers, publicly available as R or Python packages or 
scripts (Table 1). This set includes 16 methods developed specifically for scRNA-seq data 
as well as six general-purpose classifiers from the scikit-learn library in Python: linear 
discriminant analysis (LDA), nearest mean classifier (NMC), k-nearest neighbor (kNN), 
support vector machine with linear kernel (SVM), SVM with rejection option (SVMrejection) 
and random forest (RF). The following functions from the scikit-learn library were used 
respectively: LinearDiscriminantAnalysis(), NearestCentroid(), 
KNeighborsClassifier(n_neighbors=9), LinearSVC(), LinearSVC() 
with CalibratedClassifierCV() wrapper, and RandomForestClassifier(n_
estimators=50). For kNN, nine neighbors were chosen. After filtering the datasets, 
only cell populations consisting of ten cells or more remained. Using nine neighbors would 
thus ensure that this classifier could also predict very small populations. For SVMrejection a 
threshold of 0.7 was used on the posterior probabilities to assign cells as ‘unlabeled’. During 
the rejection experiments, also an LDA with rejection was implemented. In contrast to the 
LinearSVC(), the LinearDiscriminantAnalysis() function can output the 
posterior probabilities itself, which was also thresholded at 0.7.

scRNA-seq specific methods were excluded from the evaluation if they did not return the 
predicted labels for each cell. For example, we excluded MetaNeighbor [47] because the 
tool only returns the area under the receiver operator characteristic curve (AUROC). For all 
methods the latest (May 2019) package was installed or scripts were downloaded from their 
GitHub. For scPred it should be noted that it is only compatible with an older version of 
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Seurat (v2.0). For CHETAH it is important that the R version 3.6 or newer is installed. For 
LAmbDA, instead of the predicted label, the posterior probabilities were returned for each 
cell population. Here, we assigned the cells to the cell population with the highest posterior 
probability.

During the benchmark, all methods were run using their default settings and if not available, 
we used the settings provided in the accompanying examples or vignettes. As input, we 
provided each method with the raw count data (after cell and gene filtering as described 
in Section 2.5.3 Data Preprocessing) according to the method documentation. The majority 
of the methods have a built-in normalization step. For the general-purpose classifiers, we 
provided log-transformed counts, log ( )2 1count + .

Some methods required a marker gene file or pre-trained classifier as an input (e.g. Garnett, 
Moana, SCINA, DigitalCellSorter). In this case, we use the marker gene files of pre-trained 
classifiers provided by the authors. We did not attempt to include additional marker gene 
files for all datasets, and hence the evaluation of those methods is restricted to datasets 
where a marker gene file for cell populations is available. 

2.5.2 Datasets 

A total of 27 scRNA-seq datasets were used to evaluate and benchmark all classification 
methods, from which 11 datasets were used for intra-dataset evaluation using a cross-
validation scheme, and 22 datasets were used for inter-dataset evaluation, with six datasets 
overlapping for both tasks as described in Table 2. Datasets vary across species (human and 
mouse), tissue (brain, pancreas, PBMC and whole mouse), as well as the sequencing protocol 
used. The brain datasets, including Allen Mouse Brain (AMB), VISp, ALM (GSE115746) and 
MTG, were downloaded from the Allen Institute Brain Atlas http://celltypes.brain-map.
org/rnaseq. All five pancreatic datasets were obtained from: https://hemberg-lab.github.
io/scRNA.seq.datasets/ (Baron Mouse: GSE84133, Baron Human: GSE84133, Muraro: 
GSE85241, Segerstolpe: E-MTAB-5061, Xin: GSE81608). The CellBench 10X dataset was 
obtained from (GSM3618014), and the CellBench CEL-Seq2 dataset was obtained from 3 
datasets (GSM3618022, GSM3618023, GSM3618024) and concatenated into one dataset. 
The Tabula Muris (TM) dataset was downloaded from https://tabula-muris.ds.czbiohub.org/ 
(GSE109774). For the Zheng sorted datasets, we downloaded the 10 PBMC sorted populations 
(CD14+ Monocytes, CD19+ B Cells, CD34+ Cells, CD4+ Helper T Cells, CD4+/CD25+ Regulatory 
T Cells, CD4+/CD45RA+/CD25- Naive T Cells, CD4+/CD45RO+ Memory T Cells, CD56+ Natural 
Killer Cells, CD8+ Cytotoxic T cells, CD8+/CD45RA+ Naive Cytotoxic T Cells) from: https://
support.10xgenomics.com/single-cell-gene-expression/datasets, next we downsampled 
each population to 2,000 cells obtaining a dataset of 20,000 cells in total. For the Zheng 68K 
dataset, we downloaded the gene-cell count matrix for the ‘Fresh 68k PBMCs’ [36] from: 
https://support.10xgenomics.com/single-cell-gene-expression/datasets (SRP073767). All 13 
PbmcBench datasets, seven different sequencing protocols applied on two PBMC samples, 
were downloaded from the Broad Institute Single Cell portal https://portals.broadinstitute.
org/single_cell/study/SCP424/single-cell-comparison-pbmc-data. The cell population 
annotation for all datasets was provided with the data, except the Zheng 68K dataset, for 
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which we obtained the cell population annotation from https://github.com/10XGenomics/
single-cell-3prime-paper/tree/master/pbmc68k_analysis. These annotations were used as 
‘ground truth’ during the evaluation of the cell population predictions obtained from the 
classification methods.

2.5.3 Data preprocessing 

Based on the manual annotation provided in the datasets, we started by filtering out cells 
that were labeled as doublets, debris or unlabeled cells. Next, we filtered genes with zero 
counts across all cells. For cells, we calculated the median number of detected genes per cell, 
and from that we obtained the median absolute deviation (MAD) across all cells in the log 
scale. We filtered out cells when the total number of detected genes was below three MAD 
from the median number of detected genes per cell. The number of cells and genes in Table 
2 represent the size of each dataset after this stage of preprocessing. 

Moreover, before applying cross validation to evaluate each classifier, we excluded cell 
populations with less than 10 cells across the entire dataset; Table 2 summarizes the number 
of cell populations before and after this filtration step for each dataset.

2.5.4 Intra-dataset classification

For the supervised classifiers, we evaluated the performance by applying a 5-fold cross 
validation across each dataset after filtering genes, cells and small cell populations. The folds 
were divided in a stratified manner in order to keep equal proportions of each cell population 
in each fold. The training and testing folds were exactly the same for all classifiers.

The prior-knowledge classifiers, Garnett, Moana, DigitalCellSorter and SCINA, were only 
evaluated on the Zheng 68K and Zheng sorted datasets, for which the marker-genes files 
or the pre-trained classifiers were available, after filtering genes and cells. Each classifier 
uses the dataset and the marker-genes file as inputs, and outputs the cell population label 
corresponding to each cell. No cross validation is applied in this case, except for Garnett 
where we could either use the pretrained version (Garnettpretrained) provided from the original 
study, or train our own classifier using the marker-genes file along with the training data 
(GarnettCV). In this case, we applied 5-fold cross validation using the same train and test sets 
described earlier. Table S1 shows the mapping of cell populations between the Zheng dataset 
and each of the prior-knowledge classifiers. For Moana a pre-trained classifier was used, this 
classifier also predicted cells to be Memory CD8+ T cells and CD16+ Monocytes, while these 
cell populations were not in the Zheng dataset.

2.5.5 Evaluation of marker-genes

The performance and choice of the marker-genes per cell population per classifier were 
evaluated by comparing the F1-score of each cell population with four different characteristics 
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of the marker-genes across the cells for that particular cell population: 1) the number of 
marker-genes, 2) the mean expression, 3) the average dropout rate, and 4) the average beta 
of the marker-genes [37]. Beta is a score developed to measure how specific a marker gene 
for a certain cell population is based on binary expression.

2.5.6 Selecting marker-genes using differential expression

Using the cross-validation scheme, training data of each fold was used to select sets of 5, 
10, 15, and 20 differentially expressed (DE) marker-genes. First, if the data was not already 
normalized, a CPM read count normalization was applied to the data. Next, the data was 
log-transformed using log ( )2 1count + , and afterwards the DE test could be applied. As 
recommended in [48], MAST was used to find the DE genes [49]. The implementation of 
MAST in the FindAllMarkers() function of Seurat v2.3.0 was used to do a one-vs-all differential 
expression analysis [50]. Genes returned by Seurat were sorted and the top 5, 10, 15, or 20 
significant genes with a positive fold change were selected as marker-genes. These marker-
genes were then used for population prediction of the test data of the corresponding fold. 
These marker-genes lists can be used by prior-knowledge classifiers such as SCINA, GarnettCV 
and DigitalCellSorter, by modifying the cell type marker-genes file required as an input 
to these classifiers. Such modification cannot be applied to the pre-trained classifiers of 
Garnettpretrained and Moana.

2.5.7 Dataset complexity 

To describe the complexity of a dataset, the average expression of all genes for each cell 
population (avgci ) in the dataset was calculated, representing the prototype of each cell 
population in the full genes space. Next, the pairwise Pearson correlation between these 
centroids was calculated corr avg avg∀i j c ci j, ( , ). For each cell population, the highest correlation 
to another cell population was recorded. Finally, the mean of these per cell population 
maximum correlations was taken to describe the complexity of a dataset.

Complexity mean corr avg avg� � � �(max ( ( , ))), ,i i j i j c ci j

2.5.8 Inter-dataset classification

CellBench. Both CellBench datasets, 10X and CEL-Seq2, were used once as training data and 
once as test data, to obtain predictions for the five lung cancer cell lines. The common set of 
detected genes by both datasets was used as features in this experiment.

PbmcBench. Using pbmc1 sample only, we tested all train-test pairwise combinations between 
all seven protocols, resulting in 42 experiments. Using both pbmc1 and pbmc2 samples, for 
the same protocol we used pbmc1 as training data and pbmc2 as test data, resulting in six 
additional experiments (10Xv3 was not applied for pbmc2). As we are now dealing with 
PBMC data, we evaluated all classifiers, including the prior-knowledge classifiers, as well as 
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the modified versions of SCINA, GarnettCV and DigitalCellSorter, in which the marker-genes 
are obtained through differential expression from the training data as previously described. 
Through all these 48 experiments, genes that are not expressed in the training data were 
excluded from the feature space. Also, as these PbmcBench datasets differ in the number of 
cell populations (Table 2), only cell populations provided by the training data were used for 
the test data prediction evaluation.

Brain. We used the three brain datasets, VISp, ALM and MTG with two levels of annotations, 
3 and 34 cell populations. We tested all possible train-test combinations, by either using one 
dataset to train and test on another (6 experiments) or using two concatenated datasets to 
train and test on the third (3 experiments). A total of nine experiments was applied for each 
annotation level. We used the common set of detected genes between the datasets involved 
in each experiment as features.

Pancreas. We selected the four major endocrine pancreatic cell types (alpha, beta, delta and 
gamma) across all four human pancreatic datasets: Baron Human, Muraro, Segerstolpe and 
Xin. Table S2 summarizes the number of cells in each cell type across all datasets. To account 
for batch effects and technical variations between different protocols, datasets were aligned 
using MNN [41] from the scran R package (version 1.1.2.0). Using both the raw data (un-
aligned) and the aligned data, we applied leave-one-dataset-out cross validation where we 
train on three datasets and test on the left out dataset.

2.5.9 Performance evaluation metrics

The performance of the methods on the datasets is evaluated using three different metrics: 1) 
For each cell population in the dataset the F1-score is reported. The median of these F1-scores 
is used as a measure for the performance on the dataset. 2) Some of the methods do not 
label all the cells. These unassigned cells are not considered in the F1-score calculation. The 
percentage of unlabeled cells is also used to evaluate the performance. 3) The computation 
time of the methods is also measured. 

2.5.10 Feature selection

Genes are selected as features based on their dropout rate. The method used here, is based 
on the method described in [22]. During feature selection, a sorted list of the genes is made. 
Based on this list, the top n number of genes can be easily selected during the experiments. 
First, the data is normalized using log ( )2 1count + . Next, for each gene the percentage of 
dropouts, d, and the mean, m, of the normalized data are calculated. Genes that have a 
mean or dropout rate of zero are not considered during the next steps. These genes will be 
at the bottom of the sorted list. For all other genes, a linear model is fitted to the mean and
log ( )2 d . Based on their residuals, the genes are sorted in descending order and added to the 
top of the list.
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2.5.11 Scalability

For the scalability experiment we used the TM dataset. To ensure that the dataset could be 
downsampled without losing cell populations, only the 16 most abundant cell populations 
were considered during this experiment. We downsampled these cell populations in a 
stratified way to 1, 5, 10, 20, 50, and 100% of its original size (45,469 cells). 

2.5.12 Rejection

Negative control. Two human datasets, Zheng 68K and Baron Human, and two mouse 
datasets, AMB16 and Baron Mouse, were used. The Zheng 68K dataset was first stratified 
downsampled to 11% of its original size to reduce computation time. For each species, two 
different experiments were applied by using one dataset as training set and the other as test 
set and vice versa.

Unseen cell populations. Zheng 68K dataset was stratified downsampled to 11% of its original 
size to reduce computation time. Three different experiments were conducted. First, all cell 
populations that are subpopulation of T cells were considered the test set. Next, the test set 
consisted of all subpopulations of CD4+ T cells. Last, only the CD4+/CD45RO+ Memory T cells 
were in the test set. Each time, all cell populations that were not in the test set, were part of 
the training set. Table S3 gives an exact overview of the populations per training and test set.

2.5.13 Benchmarking pipeline

In order to ensure reproducibility and support future extension of this benchmarking work 
with new classification methods and benchmarking datasets, a Snakemake [51] workflow 
for automating the performed benchmarking analyses was developed with an MIT license 
(https://github.com/tabdelaal/scRNAseq_Benchmark/). Each tool (license permitting) is 
packaged in a Docker container (https://hub.docker.com/u/scrnaseqbenchmark) alongside 
the wrapper scripts and their dependencies. These images will be used through snakemake’s 
singularity integration to allow the workflow to be run without the requirement to install 
specific methods and to ensure reproducibility. Documentation is also provided to execute 
and extend this benchmarking workflow to help researchers to further evaluate interested 
methods. 

2.6 Availability of data and material
The filtered datasets analyzed during the current study can be downloaded from Zenodo 
(https://doi.org/10.5281/zenodo.3357167). The source code is available in th e GitHub 
repository, at https://github.com/tabdelaal/scRNAseq_Benchmark [52], and in the Zenodo 
repository, at https://doi.org/10.5281/zenodo.3369158 [53]. The source code is released 
under MIT license. Datasets accession numbers: AMB, VISp, and ALM [35] (GSE115746), MTG 
[31] (phs001790), Baron Mouse [30] (GSE84133), Baron Human [30] (GSE84133), Muraro 
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[31] (GSE85241), Segerstolpe [32] (E-MTAB-5061), Xin [33] (GSE81608), CellBench 10X [34] 
(GSM3618014), CellBench CEL-Seq2 [34] (GSM3618022, GSM3618023, GSM3618024), 
TM [6] (GSE109774), and Zheng sorted and Zheng 68K [36] (SRP073767). The PbmcBench 
datasets [38] are not yet uploaded to any data repository.
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Supervised methods are increasingly used to identify cell populations in single-cell data. Yet, 
current methods are limited in their ability to learn from multiple datasets simultaneously, 
are hampered by the annotation of datasets at different resolutions, and do not preserve 
annotations when retrained on new datasets. The latter point is especially important 
as researchers cannot rely on downstream analysis performed using earlier versions of 
the dataset. Here, we present scHPL, a hierarchical progressive learning method which 
allows continuous learning from single-cell data by leveraging the different resolutions of 
annotations across multiple datasets to learn and continuously update a classification tree. 
We evaluate the classification and tree learning performance using simulated as well as real 
datasets and show that scHPL can successfully learn known cellular hierarchies from multiple 
datasets while preserving the original annotations. scHPL is available at https://github.com/
lcmmichielsen/scHPL. 

3.1 Introduction
Cell identification is an essential step in single-cell studies with profound effects on 
downstream analysis. For example, in order to compare cell-population-specific eQTL 
findings across studies, cell identities should be consistent [1]. Currently, cells in single-cell 
RNA-sequencing (scRNA-seq) datasets are primarily annotated using clustering and visual 
exploration techniques, i.e. cells are first clustered into populations which are subsequently 
named based on the expression of marker genes. This is not only time-consuming, but also 
subjective [2]. The number of cell populations identified in a dataset, for example, is strongly 
correlated with the number of cells analyzed, which results in inconsistency across datasets 
[3–5]. 

Recently, many supervised methods have been developed to replace unsupervised 
techniques. The underlying principles of these methods vary greatly. Some methods, for 
instance, rely on prior knowledge and assume that for each cell population marker genes can 
be defined (e.g. SCINA [6] and Garnett [7]), while others search for similar cells in a reference 
database (e.g. scmap [8] and Cell-BLAST [9]), or train a classifier using a reference atlas or a 
labeled dataset (e.g. scPred [10] and CHETAH [11]).

Supervised methods rely either on a reference atlas or labeled dataset. Ideally, we would 
use a reference atlas containing all possible cell populations to train a classifier. Such an 
atlas, however, does not exist yet and might never be fully complete. In particular, aberrant 
cell populations might be missing as a huge number of diseases exist and mutations could 
result in new cell populations. To overcome these limitations, some methods (e.g. OnClass) 
rely on the Cell Ontology to identify cell populations that are missing from the training data 
but do exist in the Cell Ontology database [12]. These Cell Ontologies, however, were not 
developed for scRNA-seq data specifically. As a consequence, many newly identified (sub)
populations are missing and relationships between cell populations might be inaccurate. A 
striking example of this inadequacy are neuronal cell populations. Recent single-cell studies 
have identified hundreds of populations [4,13,14], including seven subtypes and 92 cell 
populations in one study only [5]. In contrast, the Cell Ontology currently includes only one 
glutamatergic neuronal cell population without any subtypes.
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Since no complete reference atlas is available, a classifier should ideally be able to combine 
the information of multiple annotated datasets and continue learning. Each time a new cell 
population is found in a dataset, it should be added to the knowledge of the classifier. We 
advocate that this can be realized with progressive learning, a learning strategy inspired by 
humans. Human learning is a continuous process that never ends [15]. Using progressive 
learning, the task complexity is gradually increased, for instance, by adding more classes, but 
it is essential that the knowledge of the previous classes is preserved [16,17]. This strategy 
allows combining information of multiple existing datasets and retaining the possibility 
to add more datasets afterwards. However, it cannot be simply applied to scRNA-seq 
datasets as a constant terminology to describe cell populations is missing, which eliminates 
straightforward identification of new cell populations based on their names. For example, the 
recently discovered neuronal populations are typically identified using clustering and named 
based on the expression of marker genes. A standardized nomenclature for these clusters 
is missing [18], so the relationship between cell populations defined in different datasets is 
often unknown. 

Moreover, the level of detail (resolution) at which datasets are annotated highly depends on 
the number of cells analyzed [19]. For instance, if a dataset is annotated at a low resolution, 
it might contain T-cells, while a dataset at a higher resolution can include subpopulations of 
T-cells, such as CD4+ and CD8+ T-cells. We need to consider this hierarchy of cell populations 
in our representation, which can be done with a hierarchical classifier. This has the advantage 
that cell population definitions of multiple datasets can be combined, ensuring consistency. 
A hierarchical classifier has additional advantages in comparison to a classifier that does 
not exploit this hierarchy between classes (here denoted as ‘flat classifier’). One of these 
advantages is that the classification problem is divided into smaller sub-problems, while a flat 
classifier needs to distinguish between many classes simultaneously. Another advantage is 
that if we are not sure about the annotation of an unlabeled cell at the highest resolution, we 
can always label it as an intermediate cell population (i.e. at a lower resolution). 

Currently, some classifiers, such as Garnett, CHETAH, and Moana, already exploit this 
hierarchy between classes [7,11,20]. Garnett and Moana both depend on prior knowledge in 
the form of marker genes for the different classes. Especially for deeper annotated datasets it 
can be difficult to define marker genes for each cell population that are robust across scRNA-
seq datasets [21,22]. Moreover, we have previously shown that adding prior knowledge is 
not beneficial [23]. CHETAH, on the contrary, constructs a classification tree based on one 
dataset by hierarchically clustering the reference profiles of the cell populations and classifies 
new cells based on the similarity to the reference profile of that cell population. However, 
simple flat classifiers outperform CHETAH [23], indicating that a successful strategy to exploit 
this hierarchy is still missing. Furthermore, these hierarchical classifiers cannot exploit the 
different resolutions of multiple datasets as this requires adaptation of the hierarchical 
representation. 

Even if multiple datasets are combined into a hierarchy, there might be unseen populations 
in an unlabeled dataset. Identifying these cells as a new population is a challenging problem. 
Although some classifiers have implemented an option to reject cells, they usually fail when 
being tested in a realistic scenario [23]. In most cases, the rejection option is implemented 
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by setting a threshold on the posterior probability [7,10,23,24]. If the highest posterior 
probability does not exceed a threshold, the cell is rejected. By looking at the posterior, the 
actual similarity between a cell and the cell population is ignored. 

In this work, we propose a hierarchical progressive learning approach to overcome these 
challenges. To summarize our contributions: (i) we exploit the hierarchical relationships 
between cell populations to be able to classify data sets at different resolutions, (ii) we propose 
a progressive learning approach that updates the hierarchical relationships dynamically 
and consistently, and (iii) we adopt an advanced rejection procedure including a one-class 
classifier to be able to discover new cell (sub)populations. 

3.2 Results

3.2.1 Hierarchical progressive learning of cell identities

We developed scHPL, a hierarchical progressive learning approach to learn a classification 
tree using multiple labeled datasets (Figure 1A) and use this tree to predict the labels of a new, 
unlabeled dataset (Figure 1B). The tree is learned using multiple iterations (Methods). First, 
we match the labels of two datasets by training a flat classifier for each dataset and predicting 
the labels of the other dataset. Based on these predictions we create a matching matrix (X) 

Figure 1. Schematic overview of scHPL. A) Overview of the training phase. In the first iteration, we start with two 
labeled datasets. The colored areas represent the different cell populations. For both datasets a flat classifier (FC1 
& FC2) is constructed. Using this tree and the corresponding dataset, a classifier is trained for each node in the 
tree except for the root. We use the trained classification tree of one dataset to predict the labels of the other. 
The decision boundaries of the classifiers are indicated with the contour lines. We compare the predicted labels to 
the cluster labels to find matches between the labels of the two datasets. The tree belonging to the first dataset 
is updated according to these matches, which results in a hierarchical classifier (HC1). In dataset 2, for example, 
subpopulations of population ‘1’ of dataset 1 are found. Therefore, these cell populations, ‘A’ and ‘B’, are added as 
children to the ‘1’ population. In iteration 2, a new labeled dataset is added. Again a flat classifier (FC3) is trained 
for this dataset and HC1 is trained on dataset 1 and 2, combined. After cross-prediction and matching the labels, we 
update the tree which is then trained on all datasets 1-3 (HC2). B) The final classifier can be used to annotate a new 
unlabeled dataset. If this dataset contains unknown cell populations, these will be rejected.
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and match the cell populations of the two datasets. In the matching process, we separate 
different biological scenarios, such as a perfect match, merging or splitting cell populations, 
as well as creating a new population (Figure 2, Table S1). In the following iterations, we add 
one labeled dataset at a time by training a flat classifier on this new dataset and training the 
previously learned tree on all pre-existing datasets. Similar to the previous iteration, the tree 
is updated after cross-prediction and matching of the labels. It could happen that datasets 
are inconsistently labeled and the labels cannot be matched (Supplementary Note 1). In this 
case, one of the populations might be missing from the tree.

Either during tree learning or prediction, there can be unseen populations. Therefore, 
an efficient rejection option is needed, which we do in two steps. First, we reject cells by 
thresholding the reconstruction error of a cell when applying a PCA-based dimension 
reduction: a new, unknown, population is not used to learn the PCA transformation, and 
consequently will not be properly represented by the selected PCs, leading to a high 
reconstruction error (Methods). Second, to accommodate rejections when the new 
population is within the selected PCA domain, scHPL adopts two alternatives to classify cells: 
a linear and a one-class support vector machine (SVM). The linear SVM has shown a high 
performance in a benchmark of scRNA-seq classifiers [23], but has a limited rejection option. 
Whereas, the one-class SVM solves this as only positive training samples are used to fit a tight 
decision boundary around [25]. 

3.2.2 Linear SVM has a higher classification accuracy than one-
class SVM

We tested our hierarchical classification scheme by measuring the classification performance 
of the one-class SVM and linear SVM on simulated, PBMC (PBMC-FACS) and brain (Allen 
Mouse Brain) data using 10-, 10-, and 5-fold cross-validation respectively (Methods). The 

Figure 2. Schematic examples of different matching 
scenarios. A) Perfect match, B) splitting, C) merging, 
D) new population. The first two columns represent a 
schematic representation of two datasets. After cross-
predictions, the matching matrix (X) is constructed 
using the confusion matrices (Methods). We update 
the tree based on X. 
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simulated dataset was constructed using Splatter [26] and consists of 8,839 cells, 9,000 genes 
and 6 different cell populations (Figure S1). PBMC-FACS is the downsampled FACS-sorted 
PBMC dataset from Zheng et al. [27] and consists of 20,000 cells and 10 cell populations. The 
Allen Mouse Brain (AMB) dataset is challenging as it has deep annotation levels [5], containing 
92 different cell populations ranging in size from 11 to 1,348 cells. In these experiments, the 
classifiers were trained on predefined trees (Figure S1-3).

On all datasets, the linear SVM performs better than the one-class SVM (Figure 3A-D). The 
simulated dataset is relatively easy since the cell populations are widely separated (Figure 
S1C). The linear SVM shows an almost perfect performance: only 0.9% of the cells are rejected 
(based on the reconstruction error only), which is in line with the adopted threshold resulting 
in 1% false negatives. The one-class SVM labels 92.9% of the cells correctly, the rest is labeled 
as an internal node (2.3%) or rejected (4.8%), which results in a median Hierarchical F1-score 
(HF1-score) of 0.973, where HF1 is an F1-score that considers class importance across the 
hierarchy (Methods). 

As expected, the performance of the classifiers on real data drops, but the HF1-scores remain 
higher than 0.9. On both the PBMC-FACS and AMB dataset, the performance of the linear 

Figure 3. Classification performance. A-C) Boxplots showing the HF1-score of the one-class and linear SVM during 
n-fold cross-validation on the A) simulated (n = 10), B) PBMC-FACS (n = 10), and C) AMB (n = 5) dataset. In the 
boxplots, the middle (orange) line represents the median, the lower and upper hinge represent the first and third 
quartiles, and the lower and upper whisker represent the values no further than 1.5 inter-quartile range away from 
the lower and upper hinge respectively. D) Barplot showing the percentage of true positives (TP), false negatives 
(FN), and false positives (FP) per classifier on the AMB dataset. For the TPs a distinction is made between correctly 
predicted leaf nodes and internal nodes. E) Heatmap showing the percentage of unlabeled cells per classifier during 
the different rejection experiments. F) Heatmap showing the F1-score per classifier per cell population on the AMB 
dataset. Grey indicates that a classifier never predicted a cell to be of that population. 
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SVM is higher than the one-class SVM (Figure 3B-D). For the AMB dataset, we used the same 
cross-validation folds as in Abdelaal et al. [23], which enables us to compare our results. 
When comparing to CHETAH, which allows hierarchical classification, we notice that the 
linear SVM performs better based on the median F1-score (0.94 vs 0.83). The one-class SVM 
has a slightly lower median F1-score (0.80 vs 0.83), but it has more correctly predicted cells 
and less wrongly predicted cells (Figure 3D). 

The linear (hierarchical) SVM also shows a better performance compared to SVMrejection, which 
is a flat linear SVM with rejection option based on the posterior probability and was the best 
classifier for this data [23]. SVMrejection, however, has a slightly higher median F1-score (0.98 vs 
0.94). This is mainly because it makes almost no mistakes, only 1.7% of the cells are wrongly 
labeled (Figure 3D). The number of rejected cells, on the other hand, is not considered when 
calculating the median F1-score. This number is relatively high for SVMrejection (19.8%). The 
linear SVM, on the contrary, has almost no rejected cells, which is also reflected in a higher 
HF1-score (Figure 3C). Because of this large amount of rejections of SVMrejection, the one-class 
SVM also has a higher HF1-score.

On the AMB dataset, we observe that the performance of all classifiers decreases when the 
number of cells per cell population becomes smaller. The performance of the one-class SVM 
is affected more than the others (Figure 3F). The one-class SVM, for instance, never predicts 
the ‘Astro Aqp4’ cells correctly, while this population is relatively different from the rest as it is 
the only non-neuronal population. This cell population, however, only consists of eleven cells. 

In the previous experiments, we used all genes to train the classifiers. Since the selection of 
highly variable genes (HVGs) is common in scRNA-seq analysis pipelines, we tested the effect 
of selecting HVGs on the classification performance of the PBMC-FACS dataset. We noted 
that using all genes results in the highest HF1-score for both the linear and one-class SVM 
(Figure S4).

3.2.3 One-class SVM detects new cells better than linear SVM

Besides a high accuracy, the classifiers should be able to reject unseen cell populations. First, 
we evaluated the rejection option on the simulated data. In this dataset, the cell populations 
are distinct, so we expect that this is a relatively easy task. We removed one cell population, 
‘Group 3’, from the training set and used this population as a test set. The one-class SVM 
outperforms the linear SVM as it correctly rejects all these cells, while the linear SVM rejects 
only 38.9% of them. 

Next, we tested the rejection option on the AMB dataset. Here, we did four experiments 
and each time removed a node, including all its subpopulations, from the predefined tree 
(Figure S3). We removed the ‘L6 IT’ and ‘Lamp5’ cell populations from the second layer of 
the tree, and the ‘L6 IT VISp Penk Col27a1’ and ‘Lamp5 Lsp1’ from the third layer. When a 
node is removed from the second layer of the tree, the linear SVM clearly rejects these cells 
better than the one-class SVM (Figure 3E). On the contrary, the one-class SVM rejects leaf 
node cells better. 
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3.2.4 scHPL accurately learns cellular hierarchies

Next, we tested if we could learn the classification trees for the simulated and PBMC-FACS 
data using scHPL. In both experiments, we performed a 10-fold cross-validation and splitted 
the training set in three different batches, Batch 1, Batch 2, and Batch 3, to simulate the 
idea of different datasets. To obtain different annotation levels in these batches, multiple 
cell populations were merged into one population in some batches, or cell populations were 
removed from certain batches (Tables S2-3). Batch 1 contains the lowest resolution and Batch 
3 the highest. When learning the trees, we try all (six) different orders of the batches to see 
whether this affects the tree learning. Combining this with the 10-fold cross-validation, 60 
trees were learned in total by each classifier. To summarize the results, we constructed a 
final tree in which the thickness of an edge indicates how often it appeared in the 60 learned 
trees.

The linear and one-class SVM showed stable results during both experiments; all 60 trees - 
except for two trees learned by the one-class SVM on the PBMC data - look identical (Figure 
4A-D). The final tree for the simulated data looks as expected, but the tree for the PBMC 
data looks slightly different from the predefined hematopoietic tree (Figure S2A). In the 
learned trees, CD4+ memory T-cells are a subpopulation of CD8+ instead of CD4+ T-cells. The 
correlation between the centroids of CD4+ memory T-cell and CD8+ T-cells (r = 0.985±0.003) 
is also slightly higher than the correlation to CD4+ T-cells (r = 0.975±0.002) (Figure S5). Using 
the learned tree instead of the predefined hematopoietic tree improves the classification 
performance of the linear SVM slightly (HF1-score = 0.990 vs 0.985). Moreover, when relying 

Figure 4. Tree learning evaluation. Classification trees 
learned when using a A, C, E) linear SVM or B, D, F) 
one-class SVM during the A, B) simulated, C, D) PBMC-
FACS, and E, F) simulated rejection experiment. The line 
pattern of the links indicates how often that link was 
learned during the 60 training runs. D) In 2/60 trees, the 
link between the CD8+ T-cells and the CD8+ naive and 
CD4+ memory T-cells is missing. In those trees, the CD8+ 
T-cells and CD8+ naive T-cells have a perfect match and 
the CD4+ memory T-cells are missing from the tree. F) In 
20/60 trees, the link between ‘Group456’ and ‘Group5’ 
is missing. In those trees, these two populations are a 
perfect match. 
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on the predefined hematopoietic tree, CD4+ memory T-cells, CD8+ T-cells, and CD8+ naive 
T-cells were also often confused, further highlighting the difficulty in distinguishing these 
populations based on their transcriptomic profiles alone (Tables S4-5). 

Next, we tested the effect of the matching threshold (default = 0.25) on the tree construction 
by varying this to 0.1 and 0.5. For the linear SVM, changing the threshold had no effect. For 
the one-class SVM, we noticed a small difference when changing the threshold to 0.1. The 
two trees that were different using the default threshold (Figure 4D), were now constructed 
as the other 58 trees. In general, scHPL is robust to settings of the matching threshold due to 
its reliance on reciprocal classification. 

3.2.5 Missing populations affect tree construction with linear SVM

We tested whether new or missing cell populations in the training set could influence tree 
learning. We mimicked this scenario using the simulated dataset and the same batches as in 
the previous tree learning experiment. In the previous experiment, ‘Group5’ and ‘Group6’ 
were merged into ‘Group56’ in Batch 2, but now we removed ‘Group5’ completely from this 
batch (Table S6). In this setup, the linear SVM misconstructs all trees (Figure 4E). If ‘Group5’ is 
present in one batch and absent in another, the ‘Group5’ cells are not rejected, but labeled as 
‘Group6’. Consequently, ‘Group6’ is added as a parent node to ‘Group5’ and ‘Group6’. On the 
other hand, the one-class SVM suffers less than the linear SVM from these missing populations 
and correctly learns the expected tree in 2/3 of the cases (Figure 4F). In the remaining third 
(20 trees), ‘Group5’ matched perfectly with ‘Group456’ and was thus not added to the tree. 
This occurs only if we have the following order: Batch 1 - Batch 3 - Batch 2 or Batch 3 - Batch 
1 - Batch 2. Adding batches in increasing or decreasing resolution consequently resulted in 
the correct tree.

3.2.6 Linear SVM can learn the classification tree during an inter-
dataset experiment

Finally, we tested scHPL in a realistic scenario by using three PBMC datasets (PBMC-eQTL, 
PBMC-Bench10Xv2, and PBMC-FACS) to learn a classification tree and using this tree to predict 
the labels of a fourth PBMC dataset (PBMC-Bench10Xv3) (Table 1). Before applying scHPL, we 
aligned the datasets using Seurat [28]. We constructed an expected classification tree based 
on the names of the cell populations in the datasets (Figure 5A). Note that matching based 
on names might result in an erroneous tree since every dataset was labeled using different 
clustering techniques, marker genes, and their own naming conventions.

When comparing the tree learned using the linear SVM to the expected tree, we notice 
five differences (Figure 5A-B). Some of these differences are minor, such as the matching 
of monocytes from the Bench10Xv2 dataset to myeloid dendritic cells (mDC), CD14+ 
monocytes, and the CD16+ monocytes. Monocytes can differentiate into mDC which can 
explain their transcriptomic similarity [29]. Other differences between the reconstructed 
and the expected trees are likely the result of (partly) mislabeled cell populations in the 
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original datasets (Figure S6-15). (i) According to the expression of FCER1A (a marker for 
mDC) and FCGR3A (CD16+ monocytes), the labels of the mDC and the CD16+ monocytes 
in the eQTL dataset are reversed (Figure S6-8). (ii) Part of the CD14+ monocytes in the FACS 
dataset express FCER1A, which is a marker for mDC (Figure S6, S8-9). The CD14+ monocytes 
in the FACS dataset are thus partly mDCs, which explains the match with the mDC from the 
eQTL dataset. (iii) Part of the CD4+ T-cells from the eQTL and Bench10Xv2 dataset should be 
relabeled as CD8+ T-cells (Figure S6, S10-13). In these datasets, the cells labeled as the CD8+ 
T-cells only contain cytotoxic CD8+ T-cells, while naive CD8+ T-cells are all labeled as CD4+ 
T-cells. This mislabeling explains why the CD8+ naive T-cells are a subpopulation of the CD4+ 
T-cells. (iv) Part of the CD34+ cells in the FACS dataset should be relabeled as pDC (Figure 
S6, S14-15), which explains why the pDC are a subpopulation of the CD34+ cells. In the FACS 
dataset, the labels were obtained using sorting, which would indicate that these labels are 
correct. The purity of the CD34+ cells, however, was significantly low (45%) compared to 
other cell populations (92-100%) [27]. There is only one difference , however, that cannot be 
explained by mislabeling. The NK cells from the FACS dataset do not only match the NK cells 
from the eQTL dataset, but also the CD8+ T-cells.

Cell population Batch 1 
eQTL

Batch 2 
Bench 10Xv2

Batch 3 
FACS

Test dataset 
Bench 10Xv3

CD19+ B 812 676 2,000 346

CD34+ 2,000

Monocytes (MC) 1,194

     CD14+ 2,081 2,000 354

     CD16+ 274 98

CD4+ T 13,523 1,458 960

     Reg. 2,000

     Naive 2,000

     Memory 2,000

CD8+ T 4,195 2,128 962

     Naive 2,000

Megakaryocyte (MK) 142 433 270

NK cell 429 2,000 194

     CD56+ bright 355

     CD56+ dim 2,415

Dendritic 35

     Plasmacytoid (pDC) 101

     Myeloid (mDC) 455

Table 1. Number of cells per cell population in the different training datasets (batches) and test dataset. Subpopula-
tions are indicated using an indent.
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Most cells of the Bench10Xv3 dataset can be correctly annotated using the learned 
classification tree (Figure 5E). Interestingly, we notice that the CD16+ monocytes are 
predicted to be mDCs and vice versa, which could be explained by the fact that the labels of 
the mDCs and the CD16+ monocytes were flipped in the eQTL dataset. Furthermore, part of 
the CD4+ T-cells are predicted to be CD8+ naïve T-cells. In the Bench10Xv3, we noticed the 
same mislabeling of part of the CD4+ T-cells as in the eQTL and Bench10Xv2 datasets, which 
supports our predictions (Figure S6, S10-13). 

The tree constructed using the one-class SVM differs slightly compared to the linear SVM 
(Figure S16A). Here, the monocytes from the Bench10Xv2 match the CD14+ monocytes and 
mDC (which are actually CD16+ monocytes) as we would expect. Next, the CD14+ monocytes 
from the FACS dataset merge the CD16+ monocytes (which are actually mDC) and the 
monocytes. Using the one-class SVM the CD8+ T-cells and NK cells from the Bench10Xv2 
dataset are missing since there was a complex scenario. The NK cells are a relatively small 
population in this dataset which made it difficult to train a classifier for this population.

In the previous experiments, we used the default setting of Seurat to align the datasets (using 
2000 genes). We tested whether changing the number of genes to 1000 and 5000 affects 
the performance. When using the one-class SVM, the number of genes does not affect tree 
construction. For the linear SVM, we notice one small difference when using 1000 genes: the 
CD8+ T-cells from the Bench10Xv2 dataset are a subpopulation of the CD8+ T-cells from the 
eQTL dataset instead of a perfect match. 

Figure 5. PBMC inter-dataset evaluation. A) Expected and B) learned classification tree when using a linear SVM on 
the PBMC datasets. The color of a node represents the agreement between dataset(s) regarding that cell population. 
C) Confusion matrix when using the learned classification tree to predict the labels of PBMC-Bench10Xv3. The dark 
boundaries indicate the hierarchy of the constructed classification tree.
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The predicted labels of the Bench10Xv3 dataset change slightly when using a different 
number of genes (Figure S17). Whether more genes improves the prediction, differs per cell 
population. The labels of the megakaryocytes, for instance, are better predicted when more 
genes are used, but for the dendritic cells we observe the reverse pattern.

3.2.7 Mapping brain cell populations using scHPL

Next, we applied scHPL to construct a tree which maps the relationships between brain cell 
populations. This is a considerably more challenging task compared to PBMCs given the 
large number of cell populations as well as the fact that brain cell types are not consistently 
annotated. First, we combined two datasets from the primary visual cortex of the mouse 
brain, AMB2016 and AMB2018 [4,5]. AMB2018 contains more cells (12,771 vs. 1,298) and is 
clustered at a higher resolution (92 cell populations vs. 41) compared to AMB2016. Before 
applying scHPL, we aligned the datasets using Seurat [28]. Using scHPL with a linear SVM 
results in an almost perfect tree (Figure 6). We verified these results by comparing our 
constructed tree to cluster correspondences in Extended Data Fig. 6 from Tasic et al. [5]. 
Since AMB2018 is clustered at a higher resolution, most populations are subpopulations of 
AMB2016, which are all correctly identified by scHPL. Conversely, three L4 populations from 
AMB2016 were merged into one population (L4 IT VISp Rspo1) from AMB2018 [5], forming a 
continuous spectrum. This relation was also automatically identified using scHPL (Figure 6). 
Compared to the results from Tasic et al. [5], one cell population from AMB2018 is attached 
to a different parent node. scHPL assigned ‘L6b VISp Col8a1 Rprm’ as a subpopulation of 
‘L6a Sla’ instead of ‘L6b Rgs12’. This population, however, does not express Rgs12, but does 
express Sla (Figure S18), supporting the matching identified by scHPL. Three cell populations 
could not be added to the tree due to complex scenarios. According to Extended Data Fig. 6 
from Tasic et al. [5], these AMB2018 populations are a subpopulation of multiple AMB2016 
subpopulations. 

The AMB2016 and AMB2018 datasets were generated and analyzed by the same group and 
hence the cluster matching is certainly easier than a real-life scenario. Therefore, we tested 
scHPL also on a complicated scenario with brain datasets that are sequenced using different 
protocols and by different labs (Table S7, Figure S19). We used three datasets (Zeisel, Tabula 
Muris, and Saunders) to construct the tree (Figure 7A-D) [2,30,31]. The Zeisel dataset is 
annotated at two resolutions. Before applying scHPL, we aligned the datasets using Seurat 
[28]. First, we constructed a tree using a linear SVM based on the low resolution of Zeisel. We 
started with the Saunders dataset and added Zeisel (Figure 7E). This is a clear illustration of 
the possible scenarios scHPL can manage. Some populations are a perfect match between the 
two datasets (e.g. neurons), some populations from Saunders are splitted (e.g. astrocytes), 
some are merged (e.g. macrophages and microglia), and some populations from Zeisel have 
no match (e.g. Ttr). Next, we updated the tree by adding the Tabula Muris dataset (Figure 
7F). Here, we found matches that would not have been possible to identify by relying on 
the assigned cell type labels to map cell types. For example, mural cells from Saunders are a 
perfect match with the brain pericytes from the Tabula Muris. The results of scHPL with the 
one-class SVM were almost identical to the linear SVM (Figure S20A). 
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Figure 6. Constructed hierarchy for the 
AMB datasets. Learned classification tree 
after applying scHPL with a linear SVM on 
the AMB2016 and AMB2018 datasets. A 
green node indicates that a population 
from the AMB2016 and AMB2018 dataset 
had a perfect match. Three populations 
from the AMB2018 dataset are missing 
from the tree: ‘Pvalb Sema3e Kank4’, ‘Sst 
Hpse Sema3c’, and ‘Sst Tac1 Tacr3’. 
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Next, we used the resulting tree to predict the labels of a fourth independent dataset 
(Rosenberg) [32]. The predictions from the linear and the one-class SVM are very similar 
(Figure 7G, S20B). The only difference is that the linear SVM correctly predicts some 
progenitor or precursor neuronal populations from Rosenberg to be ‘neurogenesis’ while the 
one-class SVM rejects these populations.

To assess the effect of the annotation resolution, we repeated the analysis using the higher 
resolution annotation from the Zeisel dataset (Figure S21-23). Here, we noticed that the 
‘brain pericytes (TM)’ and ‘pericytes (Zeisel)’ - two populations one would easily match based 
on the names only - are not in the same subtree. ‘Brain pericyte (TM)’ forms a perfect match 

Figure 7. Brain inter-dataset evaluation. A-D) UMAP embeddings of the datasets after alignment using Seurat v3. 
E) Learned hierarchy when starting with the Saunders dataset and adding Zeisel with linear SVM. F) Updated tree 
when the Tabula Muris dataset is added. G) Confusion matrix when using the learned classification tree to predict 
the labels of Rosenberg. The dark boundaries indicate the hierarchy of the classification tree.
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with ‘mural (Saunders)’ and ‘vascular smooth muscle cells (Zeisel)’, while ‘pericytes (Zeisel)’ 
is a subpopulation of ‘endothelial stalk (Saunders)’ and ‘endothelial cell (TM)’ (Figure S22-23). 
In the UMAP embedding of the integrated datasets, the ‘pericytes’ and ‘brain pericyte’ are 
at a different location, but they do overlap with the cell populations they were matched with 
(Figure S21). This highlights the power of scHPL matching rather than name-based matching.

3.3 Discussion
In this study, we showed that scHPL can learn cell identities progressively from multiple 
reference datasets. We showed that using our approach the labels of two AMB datasets can 
successfully be matched to create a hierarchy containing mainly neuronal cell populations and 
that we can combine three other brain datasets to create a hierarchy containing mainly non-
neuronal cell populations. In both experiments, we discovered new relationships between 
cell populations, such as the mapping of ‘L6b VISp Col8a1 Rprm’ as a subpopulation of ‘L6b 
Sla’ instead of ‘L6b Rgs12’. This observation would not be possible to make by manually 
matching populations based on the assigned labels, highlighting the power of automatically 
constructing cellular hierarchies. In this case, the Cell Ontology database could also not 
be used to verify this relationship since many brain cell populations are missing. Most of 
these populations have recently been annotated using scRNA-seq and there is a wide lack 
of consistency in population annotation and matching between studies [18]. scHPL can 
potentially be used to map these relations, irrespective of the assigned labels, and improve 
the Cell Ontology database.

When combining multiple datasets to construct a tree, we expect that cell populations are 
annotated correctly. However, in the PBMC inter-dataset experiment, this was not the case. 
At first sight, the constructed tree looked erroneous, but the expression of marker genes 
revealed that (parts of) several cell populations were mislabeled. Here, we could use the 
constructed tree as a warning that there was something wrong with the original annotations. 

In general, scHPL is robust to sampling differences between datasets or varying parameters 
such as the matching threshold or the number of genes used. The brain datasets used to 
construct the tree, for instance, varied greatly in population sizes, which did not cause any 
difficulties. This is mainly because we rely on reciprocal classification. A match between cell 
populations that is missed when training a classifier on one dataset to predict labels of the 
other, can still be captured by the classifier trained on the other dataset.

Since batch effects are inevitable when combining datasets, we require datasets to be aligned 
before running scHPL. In all inter-dataset experiments in this manuscript, we used Seurat 
V3 [28] for the alignment, but we would like to emphasize that scHPL is not dependent on 
Seurat and can be combined with any batch correction tool, such as more computationally 
efficient methods like Harmony [33]. A current limitation of these tools is that when a new 
dataset is added, the alignment - and consequently also scHPL - has to be rerun. An interesting 
alternative would be to project the new dataset to a latent space learned using reference 
dataset(s), using scArches [34] for example. In that case, scHPL does not have to be rerun but 
can be progressively updated. 
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The batch effects between the datasets make it more difficult to troubleshoot errors. 
Generally, it will be hard to resolve whether mistakes in the constructed tree are caused by 
the erroneous alignment of datasets or by mismatches created by scHPL. 

We would like to note though that there are inherent limitations to the assumption that cell 
populations have hierarchical relationships. While this assumption is widely adopted in single 
cell studies as well as the Cell Ontology, there are indeed situations in which a tree is not 
adequate. For instance, situations in which cells dedifferentiate into other cell types, such as 
beta to alpha cell conversions in type2 diabetes [35,36].

Considering the classification performance, we showed that using a hierarchical approach 
outperforms flat classification. On the AMB dataset, the linear SVM outperformed SVMrejection, 
which was the best performing classifier on this dataset [23]. In contrast to SVMrejection, the 
linear SVM did not reject any of the cells but labeled them as an intermediate cell population. 
During this experiment, there were no cells of unknown populations. Correct intermediate 
predictions instead of rejection are therefore beneficial since it provides the user with at least 
some information. When comparing the linear SVM and one-class SVM, we noticed that the 
accuracy of the linear SVM is equal to or higher than the one-class SVM on all datasets. For 
both classifiers, we saw a decrease in performance on populations with a small number of 
cells, but for the one-class SVM this effect was more apparent. 

Since the one-class SVM has a low performance on small cell populations, it also cannot be 
used to combine datasets which consist of small populations. If the classification performance 
is low, it will also not be possible to construct the correct tree. On the other hand, the 
performance of the linear SVM seems to be robust to small populations throughout our 
experiments. This classifier can thus better be used when combining multiple datasets with 
small populations.

When testing the rejection option, the one-class SVM clearly outperforms the linear SVM by 
showing a perfect performance on the simulated dataset. Moreover, when cell populations 
are missing from the simulated data, the linear SVM cannot learn the correct tree anymore, 
in contrast to the one-class SVM. This suggests that the one-class SVM is preferred when cell 
populations are missing, although on the AMB dataset, the rejection option of both classifiers 
was not perfect.

In summary, we present a hierarchical progressive learning approach to automatically 
identify cell identities based on multiple datasets with various levels of subpopulations. We 
show that we can accurately learn cell identities and learn hierarchical relations between 
cell populations. Our results indicate that choosing between a one-class and a linear SVM 
is a trade-off between achieving a higher accuracy and the ability to discover new cell 
populations. Our approach can be beneficial in single-cell studies where a comprehensive 
reference atlas is not present, for instance, to annotate datasets consistently during a cohort 
study. The first available annotated datasets can be used to build the hierarchical tree, which 
could subsequently can be used to annotate cells in the other datasets.
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3.4 Methods

3.4.1 Hierarchical progressive learning

Within scHPL, we use a hierarchical classifier instead of a flat classifier. A flat classifier is a 
classifier that doesn’t consider a hierarchy and distinguishes between all cell populations 
simultaneously. For the AMB dataset, a flat classifier will have to learn the decision boundaries 
between all 92 cell populations in one go. Alternatively, a hierarchical classifier divides the 
problem into smaller subproblems. First it learns the difference between the 3 broad classes: 
GABAergic neurons, glutamatergic neurons, and non-neuronal cells. Next, it learns the 
decision boundaries between the six subtypes of GABAergic neurons and the eight subtypes 
of glutamatergic neurons, separately. Finally, it will learn the decision boundaries between 
the different cell populations within each subtype separately. 

3.4.2 Training the hierarchical classifier

The training procedure of the hierarchical classifier is the same for every tree: we train a 
local classifier for each node except the root. This local classifier is either a one-class SVM or 
a linear SVM. We used the one-class SVM (svm.OneClassSVM(nu = 0.05)) from the 
scikit-learn library in Python [37]. A one-class classifier only uses positive training samples. 
Positive training samples include cells from the node itself and all its child nodes. To avoid 
overfitting, we select the first 100 principal components (PCs) of the training data. Next, we 
select informative PCs for each node separately using a two-sided two-sample t-test between 
the positive and negative samples of a node (α < 0.05, Bonferroni corrected). Negative 
samples are selected using the siblings policy [38], i.e. sibling nodes include all nodes that 
have the same ancestor, excluding the ancestor itself. If a node has no siblings, cells labeled 
as the parent node, but not the node itself are considered negative samples. In some rare 
cases, the Bonferroni correction was too strict and no PCs were selected. In those cases, the 
five PCs with the smallest p-values were selected. For the linear SVM, we used the svm.
LinearSVC() function from the scikit-learn library. This classifier is trained using positive 
and negative samples. The linear SVM applies L2-regularization by default, so no extra 
measures to prevent overtraining were necessary. 

3.4.3 The reconstruction error

The reconstruction error is used to reject unknown cell populations. We use the training 
data to learn a suitable threshold which can be used to reject cells by doing a nested 5 fold 
cross-validation. A PCA (ncomponents = 100) is learned on the training data. The test data is then 
reconstructed by first mapping the data to the selected PCA domain, and then mapping the 
data back to the original space using the inverse transformation (hence the data lies within 
the plane spanned by the selected PCs). The reconstruction error is the difference between 
the original data and the reconstructed data (in other words, the distance of the original data 
to the PC plane). The median of the qth (default q = 0.99) percentile of the errors across the 
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test data is used as threshold. By increasing or decreasing this parameter, the number of false 
negatives can be controlled. Finally, we apply a PCA (ncomponents = 100) to the whole dataset to 
learn the transformation that can be applied to new unlabeled data later.

3.4.4 Predicting the labels

First, we look at the reconstruction error of a new cell to determine whether it should be 
rejected. If the reconstruction error is higher than the threshold determined on the training 
data, the cell is rejected. If not, we continue with predicting its label. We start at the root 
node, which we denote as parent node and use the local classifiers of its children to predict 
the label of the cell using the predict() function, and score it using the decision_
function(), both from the scikit-learn package. These scores represent the signed 
distance of a cell to the decision boundary. When comparing the results of the local classifiers, 
we distinguish three scenarios:

1.	 All child nodes label the cell negative. If the parent node is the root, the new cell is 
rejected. Otherwise we have an internal node prediction and the new cell is labeled 
with the name of the parent node.

2.	 One child node labels the cell positive. If this child node is a leaf node, the sample is 
labeled with the name of this node. Otherwise, this node becomes the new parent 
and we continue with its children. 

3.	 Multiple child nodes label the cell positive. We only consider the child node with the 
highest score and continue as in scenario two. 

3.4.5 Reciprocal matching labels and updating the tree

Starting with two datasets, D1 and D2, and the two corresponding classification trees (which 
can be either hierarchical or flat), we would like to match the labels of the datasets and merge 
the classification trees accordingly into a new classification tree while being consistent with 
both input classification trees (Figure 1). We do this in two steps: first matching the labels 
between the two dataset and then updating the tree.

Reciprocal matching labels. We first cross-predict the labels of the datasets: we use the classi-
fier trained on D1 to predict the labels of D2 and vice versa. We construct confusion matrices, 
C1 and C2, for D1 and D2, respectively. Here, C1ij indicates how many cells of population i of 
D1 are predicted to be population j of D2. This prediction can be either a leaf node, internal 
node or a rejection. As the values in C1 and C2 are highly dependent on the size of a cell 
population, we normalize the rows such that the sum of every row is one, now indicating the 
fraction of cells of population i in D1 that have been assigned to population j in D2: 

NC
C
Cij
ij

ijj

1
1

1
�

��
 

Clearly, a high fraction is indicative of matching population i in D1 with population j in D2. 
Due to splitting, merging, or new populations between both datasets, multiple relatively high 

Thesis_LM_final.indd   84Thesis_LM_final.indd   84 24-04-2024   18:54:2024-04-2024   18:54:20



single-cell Hierarchical Progressive Learning

85

33

fractions can occur (e.g. if a population i is split in two populations j1 and j2 due to D2 being of 
a higher resolution, both fractions NCij1 and NCij2 will be approximately 0.5). To accommodate 
for these operations, we allow multiple matches per population. 

To convert these fractions into matches, NC1 and NC2 are converted into binary confusion 
matrices, BC1 and BC2, where a 1 indicates a match between a population in D1 with a 
population in D2, and vice versa. To determine a match, we take the value of the fraction 
as well as the difference with the other fractions into account. This is done for each row 
(population) of NC1 and NC2 separately. When considering row i from NC1, we first rank 
all fractions, then the highest fraction will be set to 1 in BC1, after which all fractions for 
which the difference with the preceding (higher) fraction is less than a predefined threshold 
(default = 0.25) will also be set to 1 in BC1. 

To arrive at reciprocal matching between D1 and D2, we combine BC1 and BC2 into matching 
matrix X (Figure 2): 

X BC BCT� �1 2

The columns in X represent the cell populations of D1 and the rows represent the cell 
populations of D2. If Xij = 2, this indicates a reciprocal match between cell population i from 
D2 and cell populations j from D1. Xij = 1 indicates a one-sided match, and Xij = 0 represents 
no match. 

Tree updating. Using the reciprocal matches between D1 and D2 represented in X, we update 
the hierarchical tree belonging to D1 to incorporate the labels and tree structure of D2. We 
do that by handling the correspondences in X elementwise. For a non-zero value in X, we 
check whether there are other non-zero values in the corresponding row and column to 
identify which tree operation we need to take (such as split/merge/create). As an example, if 
we encounter a split for population i in D1 into j1 and j2, we will create new nodes for j1 and 
j2 as child nodes of node i in the hierarchical tree of D1. Figure 2 and Table S1 explain the 
four most common scenarios: a perfect match, splitting nodes, merging nodes, and a new 
population. All other scenarios are explained in Supplementary Note 1. After an update, the 
corresponding values in X are set to zero and we continue with the next non-zero element of 
X. If the matching is impossible, the corresponding values in X are thus not set to zero. If we 
have evaluated all elements of X, and there are still non-zero values, we will change X into a 
strict matrix, i.e. we further only consider reciprocal matches, so all ‘1’s are turned into a ‘0’ 
with some exceptions (Supplementary Note 2). We then again evaluate X element wise once 
more. 

3.4.6 Evaluation

Hierarchical F1-score. We use the hierarchical F1-score (HF1-score) to evaluate the 
performance of the classifiers [39]. We first calculate the hierarchical precision (hP) and recall 
(hR): 

hP
P T

P
i ii

ii

� ��
�

        hR
P T

T
i ii

ii

� ��
�
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Here, Pi is a set that contains the predicted cell population for a cell i and all the ancestors of 
that node, Ti contains the true cell population and all its ancestors, and P Ti i∩ is the overlap 
between these two sets. The HF1-score is the harmonic mean of hP and hR: 

HF1 2 2� �
hP hR
hP hR

*

Median F1-score. We use the median F1-score to compare the classification performance 
to other methods. The F1-score is calculated for each cell population in the dataset and 
afterwards the median of these scores is taken. Rejected cells and internal predictions are 
not considered when calculating this score.

3.4.7 Datasets

Simulated data. We used the R-package Splatter (V1.6.1) to simulate a hierarchical scRNA-
seq dataset that consists of 8,839 cells and 9,000 genes and represents the tree shown in 
Figure S1A (Supplementary Note 3) [26]. We chose this low number of genes to speed up 
the computation time. In total there are six different cell populations of approximately 1,500 
cells each. As a preprocessing step, we log-transformed the count matrix (log ( )2 1count + ). A 
UMAP embedding of the simulated dataset shows it indeed represents the desired hierarchy 
(Figure S1C).

Peripheral Blood Mononuclear Cells (PBMC) scRNA-seq datasets. We used four different 
PBMC datasets: PBMC-FACS, PBMC-Bench10Xv2, PBMC-Bench10Xv3, and PBMC-eQTL. The 
PBMC-FACS dataset is the downsampled FACS-sorted PBMC dataset from Zheng et al. [27]. 
Cells were first FACS-sorted into ten different cell populations (CD14+ monocytes, CD19+ 
B cells, CD34+ cells, CD4+ helper T-cells, CD4+/CD25+ regulatory T-cells, CD4+/CD45RA+/
CD25− naive T-cells, CD4+/CD45RO+ memory T-cells, CD56+ natural killer cells, CD8+ 
cytotoxic T-cells, CD8+/CD45RA+ naive cytotoxic T-cells) and sequenced using 10X Chromium 
[27]. Each cell population consists of 2,000 cells. The total dataset consists of 20,000 cells 
and 21,952 genes. During the cross-validation on the PBMC-FACS dataset, we tested the 
effect of selecting HVG. We used the ‘seurat_v3’ flavor of scanpy to select 500, 1000, 2000, 
and 5000 HVG on the training set [28,40]. The PBMC-Bench10Xv2 and PBMC-Bench10Xv3 
datasets are the PbmcBench pbmc1.10Xv2 and pbmc1.10Xv3 datasets from Ding et al. 
[41]. These datasets consist of 6,444 and 3,222 cells respectively, 22,280 genes, and nine 
different cell populations. Originally the PBMC-Bench10Xv2 dataset contained CD14+ and 
CD16+ monocytes. We merged these into one population called monocytes to introduce a 
different annotation level compared to the other PBMC datasets.The PBMC-eQTL dataset 
was sequenced using 10X Chromium and consists of 24,439 cells, 22,229 genes, and eleven 
different cell populations [42].

Brain scRNA-seq datasets. We used two datasets from the mouse brain, AMB2016 and 
AMB2018, to look at different resolutions of cell populations in the primary mouse visual 
cortex. The AMB2016 dataset was sequenced using SMARTer [4], downloaded from https://
portal.brain-map.org/atlases-and-data/rnaseq/data-files-2018. AMB2016 consists of 1,298 
cells and 21,413 genes. The AMB2018 dataset, which was sequenced using SMART-Seq V4 
[5], downloaded from https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-v1-
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and-alm-smart-seq, consists of 12,771 cells and 42,625 genes. Additionally, we used four 
other brain datasets: Zeisel [2], Tabula Muris [30], Rosenberg [32], and Saunders [31]. These 
were downloaded from the scArches ‘data’ Google Drive (‘mouse_brain_regions.h5ad’ from 
https://drive.google.com/drive/folders/1QQXDuUjKG8CTnwWW_u83MDtdrBXr8Kpq) [34]. 
We downsampled each dataset such that at the highest resolution each cell population 
consisted of up to 5,000 cells to reduce the computational time for the alignment (Table S7). 

Preprocessing scRNA-seq datasets. All datasets were preprocessed as described in Abdelaal 
et al. [23]. Briefly, we removed cells labeled in the original studies as doublets, debris or 
unlabeled cells, cells from cell populations with less than 10 cells, and genes that were not 
expressed. Next, we calculated the median number of detected genes per cell, and from 
that, we obtained the median absolute deviation (MAD) across all cells in the log scale. We 
removed cells when the total number of detected genes was below three MAD from the 
median number of detected genes per cell. During the intra-dataset experiments, we log-
transformed the count matrices ( log ( )2 1count + ).

Aligning scRNA-seq datasets. During the inter-dataset experiments, we aligned the datasets 
using Seurat V3 [28] based on the joint set of genes expressed in all datasets. In the PBMC, 
AMB, and brain inter-dataset experiment respectively 17,573, 19,197, and 14,858 genes 
remained. For the PBMC inter-dataset experiment, we also removed cell populations that 
consisted of less than 100 cells from the datasets used for constructing and training the 
classification tree (PBMC-eQTL, FACS, Bench10Xv2). To test the effect of the number of genes 
on scHPL, we integrated this data using 1000, 2000 (default), and 5000 HVGs.

3.5 Code and data availability
The filtered PBMC-FACS and AMB2018 dataset can be downloaded from Zenodo (https://
doi.org/10.5281/zenodo.3357167). The simulated dataset and the aligned datasets 
used during the inter-dataset experiment can be downloaded from Zenodo (http://doi.
org/10.5281/zenodo.3736493). Accession numbers or links to the raw data: AMB2016 [4] 
(GSE71585, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71585), AMB2018 
[5] (GSE115746, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746), PBMC-
FACS [27] (SRP073767, https://support.10xgenomics.com/single-cell-gene-expression/
datasets), PBMC-eQTL [42] (EGAS00001002560, https://ega-archive.org/studies/
EGAS00001002560), PBMC-Bench10Xv2 and PBMC-Bench10Xv3 [41] (GSE132044, https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132044), Rosenberg [32] (GSE110823, 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110823), Zeisel [2] (http://
mousebrain.org, file name L5_all.loom, downloaded on 9/9/2019), Saunders [31] (http://
dropviz.org, DGE by Region section, downloaded on 30/8/2019), Tabula Muris [30] (https://
figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_
tissues_from_Mus_musculus_at_single_cell_resolution/27733, downloaded on 14/2/2019). 
The source code for scHPL is available as a python package that is installable through the PyPI 
repository (https://github.com/lcmmichielsen/scHPL) [43]. 
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Supplementary Materials
Supplementary Note 1
When matching the cell populations from two datasets, we distinguish five options: simple, 
multiple columns, multiple rows, complex, and impossible. When describing the different 
scenarios within these options, we sometimes make a distinction between leaf nodes and 
internal nodes. Here, it is important to remember that only T1 can have internal nodes since 
this is the tree that is updated. T2 is always a flat classification tree, so only consists of the 
root node and leaf nodes.

Simple. In this scenario, we find a unique match between a cell population, Pi, from dataset 
1 and a cell population, Pj, from dataset 2. As as consequence, Xj,I will be 1 or 2 and the rest 
of row j and column i in X are zero. Within this scenario, there are three different options:

1.	 Both cell populations are leaf or internal nodes. This indicates a perfect match. The tree 
is not updated, but the labels of Pj are renamed to Pi (Figure S24A). This is the same 
scenario as the ‘perfect match’ scenario described in the main text.

2.	 Pi is a leaf or internal node, but Pj is the root node of T2. This indicates that Pi is missing 
in dataset 2. The node, however, is already in the tree, so it is not updated (Figure S24B).

3.	 Pi is the root of T1, but the Pj is a leaf node. This indicates that Pj is missing in dataset 1. 
The cell population is thus also not in the tree yet, so we will add it as a child to the root 
(Figure S24C). This is the same scenario as the ‘new population’ scenario described in 
the main text.

Multiple rows. In this scenario, a cell population, Pi, from dataset 1 matches multiple 
populations from dataset 2. In X there will be multiple non-zero values in column i. Here, we 
distinguish two different scenarios:

1.	 Pi matches only cell populations from dataset 2 that are leaf node. We consider the cell 
populations from dataset 2 subpopulations of Pi, so we add them as descendants to Pi 
(Figure S25A). This is the same scenario as the ‘splitting nodes’ scenario described in the 
main text.

2.	 The root node of T2 is also involved. We simple ignore this node and for the rest do the 
same as above (Figure S25B-C).

Multiple columns. This scenario is quite similar to the multiple rows scenario. Here, however, 
multiples populations from dataset 1 match one cell population, Pj, of dataset 2. In X there 
will be multiple non-zero values in row j. This scenario is a little more complex since the 
populations from dataset 1 does not have to be leaf nodes or the root node, but there can 
also be internal nodes in this tree. Here, we distinguish three different scenarios:

1.	 The root node of T1 and T2 are not involved, so multiple cell populations, which can 
be leaf or internal nodes, from dataset 1 match Pj. We consider the cell populations 
from dataset 1 subpopulations of Pj, so we need to add Pj as a parent node to these 
cell populations (Figure S26A). This is same scenario as the ‘merging nodes’ scenario 
described in the main text. It could be, however, that this node already exists in this tree 
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(Figure S26B). If this is the case, we have a perfect match between a node from tree 1 
and tree 2, so we do not have to update the tree, but we only have to update the labels 
of Pj.

2.	 Besides leaf or internal nodes, the root of T1 is involved. This indicates that Pj is ‘bigger’ 
than the cell populations from dataset 1 as part of it is unlabeled. Therefore, we add Pj 
as a descendant to the root of T1. Next, we rewire the involved cell populations from 
dataset 1 such that they become descendants of Pj (Figure S26C).

3.	 The root node of T2 is involved. This indicates that multiple cell populations from dataset 
1 are missing in dataset 2. These nodes, however, are already in the tree, so the tree can 
remain the same (Figure S26D).

Complex. The scenarios described above were all relatively easy. A cell population from one 
dataset matches either one or multiple cell populations from another. It could also happen, 
however, that multiple cell populations from dataset 1 match multiple cell populations from 
dataset 2 (Figure S27). As a consequence, there will a certain place Xj,I which is either 1 or 2 
and there are two or more non-zero values in the corresponding row j and column i. Here, we 
distinguish three different scenarios:

1.	 The root node of T1 is involved. We just assume that the boundary should be adjusted 
and this is automatically done, so we remove this `1’ from the table (Figure S27A). If the 
situation is still complex after the one is removed, we continue to scenario 2 or 3. If not, 
we treat it as a multiple rows problem as explained above.

2.	 The root node of T2 is involved. Again, we just assume that the boundary should be 
adjusted, so we remove this `1’ from the table (Figure S27B). If the situation is still 
complex after the one is removed, we continue to scenario 3. If not, we treat it as a 
multiple columns problem as explained above.

3.	 Multiple leaf/internal nodes of dataset 1 are involved and multiple leaf nodes of dataset 
2. We can only solve this if the ‘complex’ cell population, Pi, of dataset 1 is not a leaf 
node. Otherwise we are dealing with an impossible scenario which is described below. If 
the complex node is an internal node, we attach the involved cell populations of dataset 
2 as descendants to the complex node (splitting scenario) and attach the involved cell 
populations of dataset 1, except for Pi, to Pj (Figure S27C).

Impossible. Sometimes, it could be impossible to match the labels from two datasets. 
Something could have gone wrong during the clustering, e.g. a population 1 and 2 from 
dataset 1 match population A from dataset 2, but population 2 also matches population C 
from dataset 2 (Figure S28A). Here, population A and C should be merged into population 2, 
but population A should also be split into population 1 and 2. Population 2, however, cannot 
be added to the tree twice. It could also be that dataset 2 contains labels at a different 
resolution, e.g. that population B is a subpopulation of population A (Figure S28B). This is not 
what we assumed and thus impossible to match. Both scenarios occur when a leaf node from 
dataset 1 is at a crossing of multiple rows and multiple columns (i.e. a complex situation). An 
extra difficulty is that there are thus multiple situations that could explain this. All of these 
situation are not what we desired and thus we call it impossible and do nothing.
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Supplementary Note 2
If there is a complex scenario that cannot be solved immediately, matrix X will be changed 
into a strict matrix. In the strict matrix, only reciprocal matches are considered, so all ‘1’s’ are 
turned into ‘0’. There are some exceptions to this rule. 

-	 A population can never have a reciprocal match with the root, so these ‘1’s’ are 
never removed.

-	 If a population from a dataset has only one match, it is also never removed. 
Consider the following example: If population P1 of Dataset 1 is only predicted to be 
Population Q of Dataset 2, we know that P1 should be a match with Q as it cannot 
be matched with any other population or with the root. It could be that this match 
is not reciprocal if population Q has many different subpopulations (e.g. P1, P2, P3, 
P4). Imagine that population P2 is really big. Almost all cells of population Q will be 
predicted to be P2 and so the matches with P1 (and P3 and P4) are missed because 
of the matching threshold. In case there is a complex scenario caused by any other 
population (maybe P2 or P3 or P4), we still know that P1 is a subpopulation of Q, 
since that was super clear and didn’t cause any complexity.  

Supplementary Note 3
Current scRNA-seq data simulators cannot simulate hierarchical data, so we simulated this 
dataset step by step (Figure S1B). 
First, we simulated the expression of 3,000 genes for 9,000 cells. For this simulation, the 
cells were divided into three groups. The 3,000 simulated genes represent genes that are 
differentially expressed between the cell populations at a low resolution, so for example B 
cells vs. T cells. Next, we simulated another 3,000 genes for the same 9,000 cells. Now, the 
cells were divided into five groups. Here, the differentially expressed genes represent genes 
that distinguish cell populations at a slightly higher resolution, so for example CD4+ T cells 
vs. CD8+ T cells. We repeated this step for another set of 3,000 genes, but now there were 
six populations. The third dataset represents the highest resolution, so for instance CD4+ 
memory T cells vs. CD4+ naïve T cells.
Together this resulted in a dataset of 9,000 cells and 9,000 genes. The cells were labeled 
at three resolutions. There was some inconsistency between the labels at the different 
resolutions (e.g. some cells were labeled as ‘Group12’, ‘Group3’, ‘Group3’). We removed 
these cells from the dataset, which resulted in a final dataset of 8,839 cells and 9,000 genes.
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Single-cell genomics is now producing an ever-increasing amount of datasets that, when 
integrated, could provide large-scale reference atlases of tissue in health and disease. 
Such large-scale atlases increase the scale and generalizability of analyses and enable 
combining knowledge generated by individual studies. Specifically, individual studies often 
differ regarding cell annotation terminology and depth, with different groups specializing in 
different cell type compartments, often using distinct terminology. Understanding how these 
distinct sets of annotations are related and complement each other would mark a major step 
towards a consensus-based cell-type annotation reflecting the latest knowledge in the field. 
Whereas recent computational techniques, referred to as “reference mapping” methods, 
facilitate the usage and expansion of existing reference atlases by mapping new datasets (i.e., 
queries) onto an atlas; a systematic approach towards harmonizing dataset-specific cell-type 
terminology and annotation depth is still lacking. Here, we present “treeArches”, a framework 
to automatically build and extend reference atlases while enriching them with an updatable 
hierarchy of cell-type annotations across different datasets. We demonstrate various use 
cases for treeArches, from automatically resolving relations between reference and query 
cell types to identifying unseen cell types absent in the reference, such as disease-associated 
cell states. We envision treeArches enabling data-driven construction of consensus atlas-level 
cell-type hierarchies and facilitating efficient usage of reference atlases. 

4.1 Introduction 
Single-cell sequencing technologies have revolutionized our understanding of human health. 
Hereto, large single-cell datasets - referred to as “reference atlases” - have been built to 
characterize the cellular heterogeneity of whole organs. An example is all the organ- and 
body-scale cell atlases constructed within big consortia such as the human cell atlas (HCA) 
[1–5]. Users can contextualize their datasets within these references to identify novel cell 
types. This enables the discovery of disease-affected cell types that can be prioritized for 
treatment design [6–8]. 

To create a reference atlas, one would ideally leverage information from multiple scRNA-seq 
datasets and harmonize their cell annotations. This, however, is not as easy as it seems since 
all datasets are annotated at a different resolution. Furthermore, matching cell types based 
on their names is difficult. Databases such as ‘Cell Ontology’ try to overcome this problem, 
but a complete naming convention is still missing [9]. When constructing the Human Lung Cell 
Atlas (HLCA), for instance, the cell type labels of 14 datasets had to be manually harmonized, 
which is a time-consuming process [2]. To accelerate the construction of reference atlases, 
we developed scHPL: a method to automatically match the cell-type labels of multiple 
datasets and construct a cell-type hierarchy [10]. In follow-up, Novella-Rausell et al. showed 
how scHPL simplified the process when building a mouse kidney atlas [11]. 

The concept of a “reference atlas”, however, suggests it should help analyze and interpret new 
datasets (here denoted as “query”). This is, however, complicated by batch effects between 
the reference and query, limited computational resources, and data privacy and sharing. 
Recently, we, along with others, developed computational approaches (known as “reference 
mapping” methods) to address these challenges [4,12,13]. Such methods could for instance 
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be used to map a query dataset to the reference and annotate the cells. Currently, there is no 
method available that tackles both challenges simultaneously.

To address these challenges, we present treeArches, a framework that builds upon single-cell 
architectural surgery (scArches) [12] and single-cell Hierarchical Progressive Learning (scHPL) 
[10] to progressively build and update a reference atlas and corresponding hierarchical 
classifier. Our approach allows users to build a reference atlas using existing integration 
methods supported by scArches (e.g., scVI, scANVI, totalVI, and all others described in 
[14]). Next, we use scHPL to augment this reference atlas by learning the relations between 
cell types to construct a cell-type hierarchy. Afterward, query data, which can be either 
annotated or unannotated, can be mapped to the reference. If the query is annotated, the 
query cells can expand the newly updated tree by highlighting potential novel cell types and 
their relationship with other cell types in the reference. Otherwise, the created reference 
can be used to annotate the query cells and identify new unseen cell types in the query. 
Unlike existing methods, we show that treeArches can be used to create a reference atlas 
and corresponding cell-type hierarchy from scratch, update an existing reference atlas and 
the hierarchy by finding novel relations between cell types, and leverage a reference atlas to 
transfer labels to a new dataset. 

4.2 Methods

4.2.1 Overview

treeArches consists of two main steps: (i) removing the batch effects between datasets and (ii) 
matching the annotated cell types to construct a cell-type hierarchy (Figure 1). Starting with 
multiple labeled datasets, hereafter called reference datasets, we first use neural network-
based reference-building models (e.g., sc(AN)VI [14] or scGen [15]), which are top performers 
in recent data benchmarking efforts [16] and compatible with scArches, to construct a latent 
space. Next, we use scHPL to construct the cell-type hierarchy (Figure 1A). For each dataset, 
we train a classifier in the learned latent space and cross-predict the labels of the other 
dataset(s). Using the confusion matrices, we automatically match the cell types to create a 
hierarchy. This hierarchy also represents a hierarchical classifier where every node represents 
a cell type in one or more of the datasets. Afterwards, we can map new query datasets to the 
learned latent space using architectural surgery, a transfer learning approach to map query 
datasets to references, implemented by scArches (Figure 1B). Architectural surgery brings 
the advantage that the count matrices of the reference datasets are not needed anymore for 
querying the model. Instead, we only use the pre-trained neural network architecture. The 
query datasets can either be labeled or unlabeled. In the case of a labeled dataset, we match 
the cell types from the query to the reference and again update the hierarchy we had learned 
on the reference datasets. In the case of an unlabeled query, we annotate the cells using the 
learned hierarchy. 

When matching the cell types or predicting labels of a query dataset, it is important to identify 
new cell types that are not present in the reference. This is only possible when biological 
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Figure 1. A schematic version of treeArches and an example using PBMC and bone marrow datasets. A) Pre-
training of a latent representation using labeled public reference datasets. After integration, a cell-type hierarchy is 
created by matching the cell types of the different datasets. Here, for instance, cell types (CT) 1 and 2 from study (S) 
2 are subtypes of CT1 from S1. B) (Un)labeled query datasets can be added to the latent representation by applying 
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variation is preserved when mapping the datasets to the latent space and when the classifier 
in scHPL recognizes unseen cells, i.e. cells that are not present in the tree. Therefore scHPL 
adopts a rejection strategy, which rejects these unseen cells and identifies them as a new 
cell type. Within scHPL, a cell is rejected if it meets one of the following criteria: 1) if the 
posterior probability of the classifier is lower than a threshold which means the predicted 
label is ambiguous, 2) if the distance between a cell and its closest neighbors is too big, and 
3) if the reconstruction error (when mapping to a reduced PCA space and back) is above a 
threshold, which means the query cell is too different from the reference cell types. These 
three thresholds are automatically set based on the distribution of the data.

treeArches is a framework built around scArches (version 0.5.3) [12] and scHPL (version 
1.0.1) [10]. A detailed description of scArches and scHPL can be found in their original 
papers [10,12]. Here, we only describe changes to the original methods when combined in 
the treeArches framework. We enhanced the original version of scHPL by adding the option 
to use a k-nearest neighbor (kNN) classifier. The dimensionality of the latent space learned 
by scArches is relatively low (varying between 10 and 30 dimensions). We noticed that the 
linear SVM originally implemented doesn’t perform well, since the cell types are not linearly 
separable anymore. Therefore, it is better to use scHPL with the kNN classifier in this case. 
In contrast to the linear SVM, we train a multiclass classifier for every parent node instead 
of a binary classifier for every child node [10]. During training, we set the default number 
of neighbors to 50. However, when there are cell types in the dataset that consist of less 
than 50 cells, this is not ideal. Therefore, we added an extra option (dynamic_neighbors) to 
automatically decrease k to the size of the smallest cell type across the direct child nodes. 
Since the tree consists of multiple classifiers, it can thus be that they all use a different number 
of neighbors because of this option. For the kNN classifier itself, we implemented alternatives 
using either the FAISS library [17] or the scikit-learn library [18]. The FAISS implementation is 
faster than the scikit-learn library but is only available on Linux. 

4.2.2 Detecting new or diseased cell types

We have implemented three methods to detect new or diseased cell types: 1) a threshold on 
the posterior probability, 2) a threshold on the reconstruction error, and 3) a threshold on the 
distance between query and reference. The first two options were already implemented in 
the previous version of scHPL. The default threshold for the first option is 0.5. The threshold 
for the second rejection option is determined using a nested cross-validation loop. It is the 
median reconstruction error that gives a certain amount of false negatives on the test folds 
(default = 0.5%). The third option rejects cells whose distance to the predicted class is too 
big. The threshold for rejection is determined by calculating the neighbors for all cells in the 
training set, averaging the distance across the neighbors, and taking the 99th percentile.

architectural surgery. After integration, the cell-type hierarchy is updated with labeled query datasets. Unlabeled 
query datasets can be annotated using the learned hierarchy. C) UMAP embedding showing the integrated latent 
space of the three reference datasets. D) Cell-type hierarchy learned from the three reference datasets. MC derived 
DC: monocyte-derived dendritic cells, MC: monocytes, pDC: plasmacytoid dendritic cells, HSPC: hematopoietic 
stem and progenitor cell. E) Updated hierarchy after the 10X dataset was added. F) UMAP embedding showing the 
integrated latent space of the reference and query datasets.
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4.2.3 Datasets

PBMC datasets. The dataset was obtained from the recent data integration benchmark [16]. 
The data contains bone marrow samples from Oetjen et al. [19] and also PBMC samples 
that were obtained from 10x Genomics https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.0/pbmc_10k_v3, Freytag et al. and Sun et al. [20,21], the original 
url and the preprocessing and annotation details can be found in Luecken et al. [16]. Marker 
genes specific to early erythrocytes and platelets were downloaded from Azimuth [4].

Brain datasets. We used datasets from the primary motor cortex of three species: human, 
mouse, and marmoset [22]. We downloaded the datasets from the Cytosplore comparison 
viewer. In these datasets, genes were already matched based on one-to-one homologs. For 
the analysis, we only kept these one-to-one matches (15,860 genes in total). We selected 
2,000 highly variable genes based on the reference datasets (mouse and marmoset) and 
used those counts as input for treeArches. The datasets are annotated at three different 
resolutions: Class, Subclass, and RNA_cluster. The class level contains three broad brain cell 
types: GABAergic neurons, glutamatergic neurons, and non-neuronal cells. At the subclass 
level, the cells are annotated at a higher resolution (5-10 subclasses per class). The RNA_
cluster level contains the highest resolution. Here, we will use the subclass level to match the 
cell types. Marker genes used for visualization were chosen based on Supplementary Tables 
5 and 6 from the original paper [22].

Human Lung Cell Atlas. The human lung cell atlas (HLCA) is a carefully constructed reference 
atlas for the human respiratory system [2]. Sikkema et al. aligned 14 datasets, harmonized 
the annotations, and built a cell-type hierarchy consisting of 5 levels. When matching the 
cell types, we used the latent space generated in their original paper (downloaded from 
https://zenodo.org/record/6337966#.YqmGIidBx3g). When updating the hierarchy with the 
IPF data, we removed the cell types smaller than 10 cells. Marker genes were downloaded 
from the lung reference v2 from Azimuth [2,4]. Marker genes for the Meyer cell populations 
were obtained from [26]. We annotated the fibrosis-specific cell types in greater detail by 
sub clustering the cell types of interest (macrophages, epithelial cells, myofibroblasts and 
identifying the subtypes by marker gene expression. We identified transitioning/basaloid 
epithelial cells by KRT5/KRT17 expression, inflammatory monocyte-derived macrophages by 
SPP1 expression, and myofibroblasts by the expression of CTHRC1.

The runtime and memory usage of treeArches on the different datasets can be found in Table 
S1.

4.2.4 Comparisons

FR-Match. We ran FR-Match (v2.0.0) with default settings on all pairwise combinations of the 
PBMC reference datasets [23,24]. Before running FR-Match marker genes have to be selected 
for each cell type. We do this using the method recommended by the authors of FR-Match: 
NS-Forest [25]. We ran NS-Forest (v3.0) on each dataset separately using the default settings.
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MetaNeighbor. We ran MetaNeighbor (v1.13.0) using the default settings on all pairwise 
combinations of the PBMC datasets [26]. MetaNeighbor returns an AUROC score for all cell-
type combinations. As recommended in the MetaNeighbor vignette, we consider two cell 
types a match when the AUROC is higher than 0.9.

Azimuth. We run Azimuth using Seurat v4.3.0 [4] and follow the ‘integration_mapping’ 
vignette.

4.3 Results 

4.3.1 treeArches accurately learns PBMC hierarchy

We showcase treeArches with a simulation where we build a cell-type hierarchy using one 
bone marrow and three PBMC datasets [19–21,27] (Table S2). We consider three datasets 
as the reference (Freytag, Oetjen, and Sun), and one as the query (10X). The annotations of 
these datasets have been manually harmonized by Luecken et al. [16], so we relabel some 
cells to enforce the datasets to be annotated at different resolutions (Table S3, S4). In the 
Oetjen dataset, for instance, we relabel all the CD4+ and CD8+ T cells as T cells. The challenge 
here is to correctly match cell types present in multiple datasets and to reconstruct their 
hierarchy. Some cell types, however, are dataset-specific and these should thus be added as 
a new node in the tree. Here, it is important to note that these new cell types are not forced 
to be aligned with other existing cell types during the integration step and that the classifier 
used by scHPL contains a good rejection option during the matching step. This harmonizing 
and afterward relabeling of the cells allows us to manually construct a ground truth hierarchy 
that we can use to evaluate treeArches (Figure S1). 

We remove the batch effects from the reference datasets using scVI [14] and match the 
cell types in the learned latent space (see Methods) (Figure 1C-D, S2). Since both scArches 
and scHPL are invariant to a different order of the datasets, treeArches will also be invariant 
[10,12]. For scHPL, however, the datasets still have to be added progressively, which we will 
do from low to high resolution (Sun - Oetjen - Freytag). The constructed tree by treeArches 
largely matches the ground truth: seven out of eight Oetjen cell types and all nine Freytag cell 
types are correctly matched to the Sun cell types (e.g. the CD4+ T cells are a subpopulation 
of the T cells which are a subpopulation of the Group 1 - Sun cells). The six cell types only 
found in one dataset are all added as new cell types to the tree (e.g. the CD10+ B cells and 
erythrocytes). 

However, the megakaryocyte (MK) progenitor cells from the Freytag and Sun dataset do not 
match the cells from Oetjen. The Freytag and Sun datasets are PBMC datasets and the Oetjen 
dataset is a bone marrow dataset. Looking at the expression of marker genes and the location 
of the megakaryocyte progenitor cells in the UMAP embedding supports our claim that the 
cell types from Sun and Freytag should not match Oetjen in the hierarchy (Figure S3). Based 
on marker gene expression, the MK progenitor cells in the Oetjen dataset should be relabeled 
as early erythrocytes and the MK progenitor cells in the Freytag and Sun dataset as platelets. 
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After constructing the reference tree from the three datasets, we align the query dataset to 
the latent space of the reference datasets using scArches and update the learned hierarchy 
with the new cell types (Figure 1E-F). For this step, only the trained model and reference 
latent space are needed. Again, almost all cell types (10 out of 12) are added to the correct 
node in the tree, while the plasma cells and the MK progenitors are added to the tree as new 
cell types. These cell types contain 21 and 18 cells, respectively, which makes them difficult 
to match compared to the other cell types in the query dataset, which contain more than 
1000 cells on average. 

For some of the cell types, we would expect a perfect match, but the 10X cell type is 
a subpopulation instead (NKT cells, CD8+ T cells, MC-derived DC, and HSPCs). We tested 
whether this is indeed a subpopulation and if there are interesting biological differences 
between the groups. To do so, we used the classifier trained on the 10X dataset and split the 
cells from these cell types from the reference into two groups: 1) correctly classified, and 
2) rejected. Next, we tested whether there are genes differentially expressed between the 
two groups. Here, we did not look at the HSPCs, since only 6 cells were correctly predicted. 
For the NKT cells -Freytag, NKT cells -Oetjen, and CD8+ T cells -Freytag, there are (almost) 
no genes differentially expressed (adjusted p-value < 0.01, log foldchange > 0.5) (Table S5). 
However, in the monocyte-derived dendritic cells -Oetjen, there are 85 genes upregulated in 
the rejected cells. According to Enrichr [28–30] 41 of these genes are related to the Cell Cycle 
R-HSA-1640170 Reactome pathway (adjusted p-value = 3e-40) [31]. The rejected cells are 
thus probably dividing cells. These results indicate that there could be biological differences 
between the two groups, but that this is not always the case. 

Since there are many dataset-specific cell types in the PBMC datasets, it is important that 
the rejection option works correctly to ensure that cell types such as erythrocytes from 
the Oetjen dataset are added to the root node. In treeArches, there are different rejection 
options: 1) the maximum distance to the training data, 2) the reconstruction error, and 3) the 
posterior probability. If a cell is rejected based on the first or second option, this indicates 
that the cell potentially belongs to a new cell type. In the third case, this indicates that the 
cell’s gene expression is similar to two or more cell types and that we thus cannot label it 
with enough confidence. Using the default settings for these parameters, all dataset-specific 
cell types are indeed correctly rejected. We tested three options for all thresholds to test 
the effect related to the different rejection options. This results in minimal differences in the 
constructed hierarchies (Figure S4). The hierarchies mainly differ in the number of perfect 
matches. Changing the rejection option causes cell types that were a perfect match to be 
subpopulations of one another. For example, when using the default settings the CD4+ 
T cells from the Oetjen and Freytag dataset are a perfect match, but when changing the 
percentage of false negatives allowed for the reconstruction error to 1%, CD4+ T cells -10X 
is a subpopulation of the CD4+ T cells -Freytag. In two cases, however, treeArches cannot 
resolve where the NKT cells from the 10X dataset should be added to the hierarchy and 
this cell type is thus missing. In three cases, the megakaryocyte progenitor cells from the 
Oetjen dataset form a match with the HSPCs from the 10X dataset. When removing all three 
rejection options, however, the tree looks completely different (Figure S4). Cell types that are 
dataset-specific are not added to the root node but match another population. For instance, 
the erythrocytes now are a subpopulation of the Group 1 cells (a combination of T cells, NK 
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cells, NKT cells, and B cells) from the Sun dataset. This shows the importance of the rejection 
options within treeArches. 

Since there is no method with exactly the same functionality as treeArches, we benchmark 
parts of the algorithm separately. First, we compare our constructed hierarchy for 
the reference data to the output of two cell-type matching algorithms: FR-Match and 
MetaNeighbor [23,24,26]. It is important to note that these methods were developed 
for pairwise comparisons and do not construct a hierarchy. We ran both methods on all 
combinations of the reference datasets and visualized their matches in a graph (Figure S5). 
To allow comparisons, we transform the learned hierarchy by treeArches to a graph by adding 
edges between a parent and all descendants (Figure S5). When comparing the resulting 
graphs to the ground-truth graph constructed based on the relabeled cell types, treeArches 
outperforms FR-Match and MetaNeighbor (Table S6). Using treeArches, only two edges are 
missing and no wrong edges were introduced while using FR-Match and MetaNeighbor there 
are respectively 11 and 8 wrong edges, and 7 and 11 missing edges.

Next, we compare the cell type classification performance of treeArches to Azimuth [4]. 
Azimuth allows label transfer by projecting a query dataset onto a reference atlas but 
assumes that the labels of the reference are already harmonized. Therefore, we compare the 
performance in two ways: 1) using the datasets annotated at a different resolution, and 2) 
using the datasets with the manually harmonized labels. We use the Sun, Oetjen, and Freytag 
datasets as a reference and the 10X dataset as the query. In the first comparison, treeArches 
outperforms Azimuth (Figure S6), but during the second comparison, Azimuth performs 
better (Figure S7). During the second comparison, treeArches uses a flat classifier instead of 
the hierarchical classifier, which might explain why treeArches’ performance decreases. Both 
Azimuth and treeArches rely on a nearest neighbor classifier. Therefore, it’s most likely that 
Azimuth outperforms treeArches because of better data integration. For the data integration, 
however, Azimuth needs both the reference and query data, while treeArches only uses the 
trained model and the query data. Purely looking at cell type classification, Azimuth thus 
outperforms treeArches on this dataset but treeArches offers a broader functionality. Here, 
we also compare the performance of treeArches using the kNN (default) and a linear SVM 
which is the best-performing method according to our classification benchmark [32]. Since 
the latent space is not linearly separable anymore, the kNN outperforms the linear SVM 
(Figure S7). This motivates the use of a kNN classifier within treeArches.

4.3.2 Increasing the resolution of the human lung cell atlas using 
treeArches

The human lung cell atlas (HLCA) is a carefully constructed reference atlas for the human 
respiratory system [2]. Sikkema et al. integrated 14 datasets, re-annotated the cells and 
constructed a cell-type hierarchy consisting of 5 levels (Figure 2A, S8). Furthermore, they 
used scArches to project multiple datasets to this reference atlas. Since the cell-type hierarchy 
for the reference is well-defined, we can omit the reference-building step and leverage 
treeArches to update the reference hierarchy using one of the labeled query datasets (Meyer) 
[33]. Using scHPL, we matched the cell types of the Meyer dataset to the cell types from the 
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Figure 2. Updated hierarchy when adding Meyer to the reference atlas. A) The cell-type hierarchy corresponding 
to the reference atlas (only the first two levels are shown). Each node represents a cell type in the reference atlas 
instead of a cell type in a separate dataset of the reference atlas. The UMAP embedding shows the aligned reference 
and query dataset. The cells in the reference dataset are colored according to their level 2 annotation. B, C) Updated 
hierarchy zoomed in on the blood vessels and airway epithelium secretory cells respectively. The UMAP embeddings 
are colored according to their finest resolution. D) Expression of marker genes for club and goblet cells in the 
reference and query cell types. E) Comparison of the predictions using the original and updated reference on the 
T-cells of the Tata dataset. F) Expression of marker genes for CD8 + GZMK + cells.
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reference (Figure S9). In the updated hierarchy, many cell types from the query dataset match 
a cell type from the reference as expected based on the cell-type names. Neuroendocrine-
Meyer, for instance, is a perfect match to the neuroendocrine cells from the reference. Since 
no ground truth cell-type matches between the reference datasets and Meyer is known, we 
cannot assess this quantitatively. For some parts of the hierarchy, we can even increase the 
resolution. If we zoom in on the blood vessel branch in the tree, for instance, the pulmonary 
and systemic endothelial vascular arterial cell types from the query both match endothelial 
cells arterial (EC arterial) from the reference (Figure 2B).

For some parts of the tree, e.g. the airway epithelium secretory cells, the matches are not 
what we would expect based on the names (Figure 2C). The secretory goblet cells from 
the query dataset match not only the goblet but also the club cells from the reference and 
the secretory club cells match the transitional club-alveolar type 2 (AT2) cells. Transitional 
club-AT2 cells were only recently discovered, which could explain why they are missing 
from the original Meyer annotations [34–36]. Based on the expression of marker genes, we 
can conclude that the match between the transitional club-AT2 and secretory club cells is 
a correct match (Figure 2D). The expression of the marker genes in the other cell types, 
however, is ambiguous and it is hard to determine what is the correct match. Furthermore, in 
the HLCA paper, label transfer for these cell types from the reference atlas to the Meyer data 
did not match well with the original labels either [2].

Furthermore, we see sixteen cell types from the query added to the root node of the tree as a 
new cell type (Figure S9). Of these cell types, most of them, e.g. chondrocytes, erythrocytes, 
Schwann cells, and B plasmablasts, are indeed not in the reference atlas. For some, such as 
some macrophage subtypes that are seen as new, it is more difficult to determine whether 
they are new or whether they should match one of the macrophage subtypes in the tree. 
The ‘Macro CHIT1’ cells from the Meyer dataset, for instance, form a relatively big cell type 
of 1570 cells and are still seen as new. We visualized the expression of CHIT1, the gene this 
cell type was named after, and the marker genes that were used to annotate the cells in the 
reference data (Figure S10). This shows that the Macro CHIT1 cell type is the only cell type 
that expresses CHIT1. Furthermore, the marker gene profile of the other cell types does not 
correspond to the profile of the Macro CHIT1 cells, which indicates that this cell type was 
indeed rejected correctly.

However, twelve out of 77 cell types are missing from the tree, which means that it was 
impossible to match these Meyer cell types with a cell type from the reference. Due to many-
to-many matches between the reference and query cell types, it is sometimes unclear where 
a cell type should be added to the tree. Especially, when the boundary between cell types is 
diffuse, it can be quite arbitrary where to put the threshold. If this threshold is different in 
each dataset or if cells are wrongly annotated in general, this can cause impossible matching 
scenarios. Here, we notice that this mainly happens with some immune and stromal subtypes. 
The B cells and plasma cells from the reference and Meyer dataset, for instance, could not 
be matched automatically, which is caused by the plasma cells in the Meyer dataset that 
are partially misannotated (Figure S11). Cell types that are missing from the hierarchy thus 
usually indicate that these cells are wrongly annotated in at least one of the datasets. This 
information could thus still be used to improve the annotations. Either by using label transfer 
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for these cells using trained hierarchy or manually by visualizing specific marker genes in both 
datasets.

Next, we annotate a second healthy query dataset (Tata) [35] using the original and updated 
reference to show that cells in this new query dataset will indeed be mapped to the new 
Meyer cell types we added to the hierarchy. The majority of the predictions remained 
unchanged (72.1%, Figure S12). When the predictions differ, cells are often annotated as a 
Meyer cell type which is a subpopulation of the original annotation (18.4%). A clear example 
is the T cells: cells previously annotated as CD4+ or CD8+ T cells are now annotated as a 
subpopulation (Figure 2E). These new annotations are supported by the expression of marker 
genes (Figure 2F, S13). 

4.3.3 treeArches identifies unseen disease-associated cell types 
in the query data

Next, we show how we can use treeArches to detect previously unseen cell types in idiopathic 
pulmonary fibrosis (IPF) samples [37]. This dataset was mapped on the HLCA with scArches 
(Figure 3A-C). Ideally, we would use scHPL to update the hierarchy with the cell types from 
this query dataset. A downside of the original annotations, however, is that the resolution 
is very low. Cells are, for instance, only annotated as endothelial cells. Therefore, we used 
scHPL to predict the labels of the IPF data and compare those predictions to the original 
annotations (Figure 3D). In the predictions, we see some interesting differences between the 
IPF and healthy cells. 

For the IPF cells, many macrophages and epithelial cells are rejected, while almost none 
for the healthy cells. Furthermore, most healthy Col1+ cells are predicted to be alveolar 
fibroblasts, while the diseased Col1+ are mainly SM-activated stress response cells. In all 
datasets, however, we notice confusion between the B cells and dendritic cells. Based on 
marker gene expression, the cells originally annotated as B cells and dendritic cells are more 
likely to be plasma cells and B cells respectively (Figure S14). The cells originally annotated 
as dendritic cells also overlap in the UMAP with the lymphoid lineage mainly instead of the 
myeloid lineage (Figure 3A-B). 

Next, we annotated the cells at a higher resolution (see Methods) and used these annotations 
to update the hierarchy (Figure S15). In the updated hierarchy, the healthy and IPF transitioning 
epithelial cells are not present in the reference atlas and are now correctly added as a new 
cell type. As expected, we also see some differences in how the healthy and IPF cell types 
were added to the tree. IPF alveolar macrophage proliferating cells, for instance, are seen 
as new, while the healthy cells match with the same cell type in the hierarchy. For other IPF 
macrophage cell types, however, this is not the case even though many cells were rejected 
previously. Comparing the new annotations with the previously obtained predictions and the 
matches in the hierarchy, we notice that there are still many macrophages rejected (Figure 
3E). For most IPF cell types, however, only a subset of the cells is rejected. For instance, 
for the IPF monocyte-derived macrophages (Md-M), 486 cells are rejected and 750 are 
predicted to be Md-M. Therefore, the two cell types are still matched. Comparing the two 
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Figure 3. Identifying diseased cells in IPF data. A–C) UMAPs show the HLCA and IPF datasets after alignment. The 
cells are colored according to their cell type or condition. D) Heatmap showing the predicted labels by scHPL and 
original labels. The dark boundaries indicate the hierarchy of the reference tree. E) Sankey diagram showing the new 
annotations and predictions for the macrophages for the IPF condition. F) Expression of SPP1 in the different cell 
types of the reference and query datasets.
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IPF ‘subtypes’ of Md-M, the top differentially expressed gene is SPP1 (adjusted p-value = 
9.9e-20). Monocytes and macrophages expressing SPP1 are known to be a hallmark of IPF 
pathogenesis [38,39]. The rejected Md-M cells are the only group of cells expressing SPP1 
(Figure 3F). For the alveolar and interstitial macrophages, there are 214/493 and 19/276 
cells rejected respectively. In these rejected populations, SPP1 is also upregulated, but only 
in the alveolar macrophages, it is also differentially expressed (adjusted p-value = 0.0011) 
(Figure S16). This could indicate that these rejected cells are also a diseased subpopulation. 
By combining the confusion matrices with the created hierarchy, these diseased subtypes are 
easily found, either directly as the proliferating cells, or by looking at the rejected cells of a 
matched cluster.

4.3.4 treeArches can correctly map cell types across species 

Next, we show how treeArches can be applied to map the relationship between cell types of 
different species. We construct a cell-type hierarchy for the motor cortex of the brain using 
human, mouse, and marmoset data (Table S7) [22]. We integrate the reference datasets, 
mouse and marmoset, using scVI and construct the cell-type hierarchy using scHPL (Figure 
4A-B, S17). Here, we focus on the GABAergic neurons to make the results less cluttered. 
Almost all cell types (5 out of 7) are a perfect match, except for ‘Meis2’ and ‘Sncg’. In the 
latent space, the Meis2 cell types from mouse and marmoset also show no overlap, and both 
cell types were defined using different marker genes (Figure S18A-B). Furthermore, Bakken 
et al. didn’t find a match between these two either [22]. This could indicate that the Meis2 
cells are species-specific and should indeed not match one another. It is unclear why the 
Sncg cell types (559 and 960 cells in mouse and marmoset respectively) do not match. Even 
though the cell types are aligned in the UMAP embedding as expected and the marker genes 
correspond quite well, the cells are rejected based on distance (Figure S18C-D). This means 
that the cells are still too separated in the latent space. Next, we align the human dataset 
to the reference using architectural surgery and add the human cell type to the reference 
hierarchy (Figure 4B-C). Here, the constructed hierarchy looks like what we would expect 
based on the names of the cell types. 

All previous results were obtained using the default parameters (number of neighbors = 50, 
dynamic number of neighbors = True, see Methods), which turned out to be relatively robust 
(Figure S19). The main difference is whether a match is found between the Sncg cell types. 
When increasing the number of neighbors, this match is correctly found.

4.4 Discussion
In this study, we present treeArches, a method to create and extend a reference atlas and 
the corresponding cell type hierarchy. treeArches builds on scArches, which allows users to 
easily map new query datasets to the latent space learned from the reference datasets using 
architectural surgery. Architectural surgery has the advantage that the reference datasets 
are not needed anymore for the mapping and that the latent space corresponding to the 
reference datasets does not change. This last point is especially important for scHPL, which 
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then allows users to match the cell types of multiple labeled datasets to build a cell-type 
hierarchy. If the latent space of all datasets would be altered when a new dataset is added, 
we would have to restart the construction of the tree completely. 

We have shown three different situations where treeArches can be applied: building a 
reference atlas from scratch, extending an existing reference atlas to add new cell types or 
increase the resolution, or using an existing reference atlas to label cells in a new dataset. 
By using the HLCA data, we show an example of how treeArches can be used to extend a 
hierarchy or to label cells in a new dataset. The HLCA reference atlas consists of 16 datasets 
with a well-defined cell-type hierarchy. We show that treeArches can be used to extend this 
hierarchy. For instance, by increasing the resolution of some branches of the tree, but also by 
adding new cell types. We could also detect diseased cell types in the IPF datasets.

Whether building or extending a reference atlas or labeling new cells, it is essential that we 
can detect new cell types, such as disease-specific cell types. To do so, it is important that 
during the mapping, the cell types are not forced to align; the biological variation should 
be preserved. Furthermore, during the classification, there should be a correctly working 
rejection option (i.e. cells are recognized to belong to a new unseen class). Here, we showed 
that this indeed works in all tested scenarios. A disadvantage of our current approach is that 
new cell types are usually added to the root node directly instead of to an intermediate node 
in the hierarchy. However, this is still informative for potential users. It indicates that a certain 
cell type is different from the known cell types in the tree, and by using prior knowledge or 
visualizing potential marker genes such cell types could manually be placed at a different, 
more specific place in the hierarchy.

Due to the extended rejection options, however, it is difficult to match small cell types (less 
than 50 cells). We modified the kNN classifier from scHPL such that the number of neighbors 

Figure 4. Results motor cortex across species. A) UMAP embedding of the integrated reference datasets. B) Learned 
hierarchy when combining mouse and marmoset (step 1) and after adding human (step 2). The color of each node 
represents the dataset(s) from which the cell type originates. C) UMAP embedding after architectural surgery with 
the human dataset.
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automatically decreases when there is a small cell type in the training data, but apparently, 
this is not sufficient in all cases. The number of neighbors is a trade-off between the ability to 
learn a representation for small cell types and the generalizability of the big cell types. 

treeArches relies on the original annotations to extend the cell-type hierarchy. This can be a 
problem in two different situations. If the annotations are missing or at a too low resolution, 
it is impossible to extend the atlas. This was the case with the original annotations of the 
IPF dataset. Alternatively, annotations can have a high resolution, but (partially) incorrect. 
Especially when there is no clear boundary between cell types, experts might disagree on 
where to put the boundary (the threshold for the classifier). Inconsistencies like this might 
result in a hierarchy that looks erroneous at first sight. In those cases, however, treeArches can 
still be more useful than expected. A cell-type hierarchy that looks different than expected, 
is usually a sign that the original annotations are inconsistent (e.g. different thresholds are 
used in different datasets). Certain parts of the dataset, e.g. the cell types that could not be 
added to the tree or caused confusion, can then be reannotated. Furthermore, the tree can 
still be adapted afterwards. Examples of this are the goblet and club cells in the HLCA and 
the megakaryocyte progenitor cells in the PBMC datasets. The learned hierarchy is a good 
starting point. Based on marker gene expression or expert knowledge, cell types can also be 
added to the tree, removed from the tree, or rewired. After manually adapting the tree, the 
classifiers have to be retrained though.

Our proposed method builds upon existing data integration methods. Thus, it naturally 
inherits both advantages and disadvantages linked to these existing models. As previously 
reported [12], the choice of the reference building algorithm and reference atlas itself can 
influence the quality of reference mapping. Therefore, in scenarios where the query dataset 
is strikingly different from the reference, the integrated query will still contain batch effects 
leading to inaccurate estimation of hierarchies in treeArches. This erroneous modeling 
results in weak label transfer results and thus identifies many overlapping cell types between 
query and reference as a new cell type only present in the query. We advise users to choose 
a comprehensive reference atlas and extensively benchmark and screen various data 
integration methods for an optimal reference representation [16]. 

In summary, we present treeArches, a method that can be used to combine multiple labeled 
datasets to create or extend a reference atlas and the corresponding cell-type hierarchy. 
This way we provide users with an easy-to-use pipeline to map new datasets to a current 
reference atlas, match cell types across multiple labeled datasets, and consistently label cells 
in new datasets. With the increasing availability of reference atlases, we envision treeArches 
facilitating the usage of reference atlases allowing users to automatically analyze their 
datasets from label transfer to the automatic identification of novel cell states in the query 
data. In conclusion, treeArches will enable a data-driven path towards consensus-based cell 
type annotation of (human) tissues and will significantly speed up the building and annotation 
of atlases.

Thesis_LM_final.indd   110Thesis_LM_final.indd   110 24-04-2024   18:54:2924-04-2024   18:54:29



111

treeArches

44

4.5 Code and data availability
treeArches is part of the scArches repository (https://github.com/theislab/scarches). The code 
for scHPL as a standalone package can be found here: https://github.com/lcmmichielsen/
scHPL. All code to reproduce the results and figures can be found at the reproducibility 
GitHub: https://github.com/lcmmichielsen/treeArches-reproducibility. PBMC count data: 
https://drive.google.com/uc?id=1Vh6RpYkusbGIZQC8GMFe3OKVDk5PWEpC. Brain count 
data: https://doi.org/10.5281/zenodo.6786357. PBMC + brain latent space: https://doi.
org/10.5281/zenodo.6786357. HLCA latent space: https://zenodo.org/record/6337966#.
YqmGIidBx3g
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Knowing the relation between cell types is crucial for translating experimental results from 
mice to humans. Establishing cell type matches, however, is hindered by the biological 
differences between the species. A substantial amount of evolutionary information 
between genes that could be used to align the species is discarded by most of the current 
methods since they only use one-to-one orthologous genes. Some methods try to retain the 
information by explicitly including the relation between genes, however, not without caveats. 
In this work, we present a model to Transfer and Align Cell Types in Cross-Species analysis 
(TACTiCS). First, TACTiCS uses a natural language processing model to match genes using 
their protein sequences. Next, TACTiCS employs a neural network to classify cell types 
within a species. Afterwards, TACTiCS uses transfer learning to propagate cell type labels 
between species. We applied TACTiCS on scRNA-seq data of the primary motor cortex of 
human, mouse and marmoset. Our model can accurately match and align cell types on these 
datasets. Moreover, our model outperforms Seurat and the state-of-the-art method SAMap. 
Finally, we show that our gene matching method results in better cell type matches than 
BLAST in our model. TACTiCS is available at https://github.com/kbiharie/TACTiCS.

5.1 Introduction
Model organisms, such as mouse and marmoset, are often used in brain research as a 
substitute for humans. However, because of differences between species, experiments 
performed on model organisms do not directly translate to humans. For example, widely-
used antidepressants that target serotonin receptors are often tested on mice, while the 
expression pattern of serotonin receptors is highly divergent between human and mouse, 
likely leading to differences in cell function between species [1]. Consequently, to facilitate 
translational research, it is important to better characterize cell type matches between 
species. This facilitates studying how drugs then alter biological processes within specific cell 
types between these species.

Traditionally, cell types were characterized solely based on morphology, but using single-cell 
RNA sequencing (scRNA-seq), the expression pattern across thousands of genes can now be 
used to describe a cell type. This has resulted in the identification of an increasing number 
of cell types within specific brain regions [2,3]. Although this improves our understanding 
of biological processes in the brain, when comparing species, it introduces the need for a 
method that can match these new cell types accurately between species.

Unfortunately, this is not a trivial task as genes are modified, duplicated and deleted 
throughout evolution, resulting in complicated many-to-many gene-gene relationships 
between species. These relationships become even more complicated when evolutionary 
distances increase.

Current methods that match cell types across species based on scRNA-seq data can be divided 
into two groups, mainly based on how they solve the gene-matching problem. The first group 
only uses the one-to-one orthologous genes, which are genes with exactly one match in the 
other species based on sequence similarity (e.g. using BLAST [4]). Methods such as scANVI 
[5], MetaNeighbour [6], and LAMbDA [7] belong to this group. While this is a straightforward 
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approach, it ignores genes with a more complex evolutionary history which might have 
caused divergent functional specification of cell types between species. The second group 
of methods, including SAMap [8], CAME [9], Kmermaid [10], and C3 [11], overcomes this 
limitation by considering many-to-many relationships between the genes based on sequence 
similarity. All these methods rely on the classical assumption that sequence similarity is a 
good measure of how genes functionally relate to each other. However, sequence similarity 
often considers one nucleotide/amino acid at a time, which to a large extent ignores sequence 
contexts important for functional characterization (e.g. secondary structures and sequence 
motifs). A growing body of evidence suggests that language models are a powerful approach 
to capture functional similarities between genes [12–15]. Similarly, we hypothesize that using 
language models to match genes between species can be beneficial for cell type matching.

Once we identified matching relationships between genes across species, the next step is to 
characterize cell type matches. We and others have posed cell type matching as a classification 
task where the agreement of predictions from two classifiers, trained on two labeled scRNA-
seq datasets, is used to match cell types between the datasets [7,16,17]. Biological differences 
between species, however, hinder applying such a method directly. A solution could be to 
learn a common embedding space for the cells before training the classifiers.

Here we introduce a method to Transfer and Align Cell Types in Cross-Species analysis 
(TACTiCS) that incorporates the two claims that we make: 1) using language models to match 
genes functionally between species, and 2) training classifiers in a shared embedding space 
to transfer cell types from one species to the other. We show that TACTiCS correctly matches 
human, mouse and marmoset brain cell populations from the primary motor (M1) cortex at a 
detailed cell type level, and does so better than SAMap, the current state-of-the-art method.

5.2 Methods
TACTiCS takes as input two single-cell (sc) or single-nucleus (sn) RNA-seq datasets, with 
raw expression counts, from two species A and B. TACTiCS consists of four steps (Figure 1): 
1) matching genes based on the protein sequences, 2) creating a shared feature space by 
mapping expression values with the gene matches obtained in step 1, 3) training within-
species cell type classifiers, and 4) matching cell types by swapping the classifiers.

5.2.1 Matching genes

First, we created an embedding for every gene using ProtBERT, a transformer-based language 
model [15]. The protein sequences were retrieved from UniProt [18]. For human and mouse, 
we selected only the Swiss-prot sequences, but for marmoset we selected all protein 
sequences. We input the protein sequences to ProtBERT to create an embedding for each 
protein (Figure 1A). ProtBERT generates a 1024-dimensional embedding for every amino acid 
in the protein sequence. To allow TACTiCS to work with variable-length proteins, we followed 
common practice [14] and took the mean embedding over all positions to represent the 
whole protein sequence (as well as the corresponding gene). Protein sequences longer than 
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2500 amino-acids (<2% of all sequences) were truncated to the first 2500 to fit into the 
memory of the GPU.

Next, for every pair of genes from species A and species B, we calculated the cosine distance 
between the ProtBERT embeddings. The initial set of gene matches were pairs with a cosine 
distance ≤ 0.005. To ensure that a gene is not connected to too many genes, we kept only the 
five closest genes, that met the distance threshold, for every gene.

Finally, we filtered the informative gene matches. Hereto, we calculated the top 2000 highly 
variable genes per species using Scanpy highly_variable_genes, and kept only those 
gene matches where at least one of the two genes is within the set of highly variable genes 
in their respective species [19]. From these matches, we constructed two sets of genes GA 
and GB, corresponding to species A and B respectively, consisting of genes with a match in 
the other species.

Figure 1. Schematic overview of TACTiCS. We use human and mouse as example, but cell types from any two 
species can be matched. A) Matching genes on protein sequences using ProtBERT. B) Bipartite graph of gene 
matches. Gene expression is imputed by taking the weighted average from connected genes in the bipartite graph. 
C) Creating cell embeddings using linear layers on the shared feature space. The weights of the linear layers are 
shared. D) Classifying within-species cells during training. The classifier consists of a linear layer outputting the cell 
type probabilities followed by a softmax. E) Classifying cross-species cells using transfer learning. The predictions are 
used to match cell types.
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To obtain sequence similarity-based gene matches, we used BLAST instead of ProtBERT. To 
obtain the many-to-many BLAST matches we selected matches with an E-value < 1e-6 as 
the initial set of matches. We used the bitscore as the distance metric. Since BLAST is not 
symmetrical, one gene match is assigned a separate E-value and bitscore for each direction. 
If only one direction meets the E-value threshold, we use the corresponding bitscore as the 
gene distance. If both directions meet the threshold, we use the average of the two bitscores. 
The list of matches is then filtered similarly as before with the closest-five and highly varying 
gene filtering. Additionally, we obtained one-to-one BLAST matches by starting with the same 
set of matches using the E-value threshold. For every gene we kept only the best match, i.e. 
the gene with the highest bitscore. We discarded gene matches that were not reciprocal and 
finally also applied the highly varying gene filtering to obtain the one-to-one matches.

5.2.2 Creating a shared feature space by mapping expression 
values with the gene matches

We normalized the expression levels of genes as follows: 1) the raw expression counts of each 
dataset are normalized by the number of reads per cell such that the total number of counts 
in every cell is 10,000, and 2) the natural logarithm of the normalized counts are taken:
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where xij is the expression of gene j in cell i. Finally, a Z-score per gene is calculated to form 
the normalized expression matrices XA and XB for genes GA and GB, respectively. We created 
a shared feature space for the two datasets spanningG GA B∪ (Figure 1B). The shared feature 
space is partly equal to the expression matrices XA and XB and partly imputed:
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where Xiu
A is the normalized expression of cell i from species A for gene u in the shared 

feature space. The expression of within species genes does not change. For a cross-species 
gene, we imputed the expression by taking the weighted average of the expression of the 
within-species genes it is matched to. The weight between gene u and gene v is calculated as:

euv
h hu v� �1

0 005

similarity ProtBERT ProtBERT( , )

.

where similarity calculates the cosine distance between the ProtBERT embeddings. The 
weights are scaled to the interval [0, 1] by dividing with the distance threshold. When BLAST 
is used instead, we used the (average) bitscore between the two genes directly, since the 
bitscore does not have to be inversed. The edge weight is set to 0 for gene pairs that do not 
match according to the threshold and filtering criteria. The resulting matrices X A and X B

both span the same set of genes, and can thus be compared directly.
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5.2.3 Cell embeddings

The shared feature space is put through two linear layers to create the cell embeddings 
(Figure 1C). Each linear layer is followed by a Rectified Linear Unit (ReLU) activation function. 
The first layer creates embeddings of length 64. The second layer creates embeddings of 
length 32. These embeddings are used to visualize the embedding space with a UMAP. The 
weights to embed the cells are shared across the species.

5.2.4 Training species-specific cell type classifier

We used these embeddings to train a separate classifier per species. We used a neural 
network consisting of one linear layer followed by a softmax activation function (Figure 1D). 
Both classifiers take the cell embedding as input and output cell type probabilities, hA,out or 
hB,out, only for cell types belonging to its respective species. During training, cells are input 
only to the classifier of its corresponding species.

The loss to update the embedding and classification weights consists of two parts: 1) the 
classification loss, and 2) the alignment loss. Both losses are calculated separately per species. 
For the classification loss, we used the weighted cross-entropy loss between the predictions 
and targets:
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where L
Acls is the classification loss for species A. NA and TA are the number of cells and cell 

types in species A respectively. wt is the weight for cell type t, explained further below. hit
A,out is 

the output of classifier A, specifically the probability that cell i belongs to cell type t. The one-
hot encoded targets Y are modified with label smoothing to prevent overfitting and improve 
stability:
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where ε (=0.1) controls the smoothness. The weight of each cell type is updated every epoch 
based on the accuracy of that cell type:
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where acct is the accuracy of class t in the current epoch.α is a hyperparameter that controls 
the influence of the accuracy on the weight. We use� � 9 such that the weights are in the 
interval [1,10] which restricts the relative difference in weight between cell types. By updating 
the weights, a cell type with a lower accuracy in the current epoch will have a higher weight 
in the next epoch and thus the predictions will shift to that cell type.

The alignment loss aims to integrate the embedding space across the species, such that 
cross-species cells with a similar gene expression are close in the embedding space:
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where NA is the number of cells of species A and Ni
cross are the 20 nearest cross-species neigh-

bours for cell i. MSE calculates the mean squared error between the prediction of the shared 
features of neighbours j and the actual shared features for cell i. If the alignment loss is min-
imized, neighbours in the embedding space can be used to predict the gene expression. The 
final loss is a combination of the classifier loss, the alignment loss and a regularization loss:

L L L L L
A B A B

� � � � �cls cls align align � �|| ||2
2

whereθ consists of all parameters in the model, and is used for the L2 regularization to 
prevent overfitting. γ is the weight of the L2 norm, which is set to 0.01. The model is trained 
for 200 epochs. We used the Adam optimizer with a learning rate of 0.001. The full training 
process takes around 30 minutes.

To efficiently use large scRNA-seq datasets, the neural network is trained in batches. A batch 
size of 5000 cells per species is used to speed up the training while still having enough cells per 
cell type. Instead of sequentially iterating over the dataset, each batch is randomly sampled 
from the full dataset, while accounting for the size of each cell type. More specifically, 
every cell is assigned a probability N NA

t
A/ or N NB

t
B/ , where NA is the total number of 

cells of species A and Nt
A is the number of cells of species A belonging to cell type t. These 

probabilities are then used to sample a batch of cells per species with a similar number of 
cells for each cell type.

5.2.5 Transferring cell type predictions across species

After the neural network is trained, the cell types are transferred by using the classifiers on 
the species they were not trained on (Figure 1E). That is, we calculate hB,out for cells of species 
A, and hA,out for cells of species B. The transferred cell type for a single cell is the cell type 
with the highest probability. To aggregate the information of the single cells to the cell type, 
we calculate the fraction of cells that are predicted to match cell types across species, which 
forms a normalized confusion matrix for both transferring directions. We average the two 
matrices to create a combined matrix, where high values indicate reciprocal matches. The 
values in the combined matrix can be used to score a match.

5.2.6 Dataset

We evaluated TACTiCS on snRNA-seq data taken from the primary motor cortex of human, 
mouse and marmoset [20]. These datasets consist of 76k human cells, 159k mouse cells and 
69k marmoset cells, respectively. The cell type distribution varies considerably across species. 
For instance, non-neuronal cells make up around a third of both mouse and marmoset cells, 
while only 5% of the human cells are non-neuronal. We use two resolutions of the cell labels 
assigned by the original authors: 1) a higher resolution, consisting of 45 cell types present in 
all species; and 2) a lower resolution, consisting of 20 human, 23 mouse and 22 marmoset 
subclass cell types. At the lower resolution not all cell types occur in all species. SMC is only 
present in mouse, while Meis2 and Peri are only present in mouse and marmoset. Species-
specific cells are labeled with “NA” at the higher resolution.
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5.2.7 Evaluation

The combined matrix cannot be evaluated using standard metrics for confusion matrices, 
such as precision or F1 score, since we cannot distinguish between false positives and false 
negatives. Instead, we focus on the matching scores from corresponding cell types in the 
combined matrix, which ideally should be 1. We define the Average Diagonal Score (ADS) as 
the average score of the diagonal entries, after excluding species-specific cell types. A high 
ADS indicates that many cell types are correctly and reciprocally matched. However, the ADS 
does not indicate how many cell types are correctly matched. To this end, we define the recall 
as the fraction of diagonal entries where the score is highest for both that row and column.

We compared TACTiCS to SAMap [8] and Seurat (version 4) [21]. SAMap is a cell type matching 
method that iterates between two steps. The first step matches the genes, which is initially 
done with BLAST on the DNA or protein sequences. Instead of taking the top-1 match, SAMap 
uses the BLAST bitscore directly in their model which allows for many-to-many matches. The 
second step uses the gene matches to first impute genes across species and then embed 
the cells by concatenating the principal components of the original expression and imputed 
expression. Then, the correlation between genes in the embedding space is used to update 
the gene matches. The two steps are repeated until the process converges.

Seurat can be used to transfer cell type labels from a reference to a query dataset. Since 
Seurat cannot use many-to-many matches, we use BLAST one-to-one matches for the data 
integration and label transfer. Since labels can only be transferred from the reference to the 
query dataset, we had to integrate the data twice for each pairwise comparison: once using 
one species as the reference and once using the other species as the reference.

5.2.8 Implementation

TACTiCS is implemented in Python 3.9. Pytorch [22] was used for the model architecture. The 
scRNA-seq data is stored as Anndata [23] objects, containing both the gene expression and 
the cell type annotations. The implementation of TACTiCS is available at https://github.com/
kbiharie/TACTiCS.

As Tarashanky et al. have noted, the runtime of SAMap increases significantly for larger 
datasets, and we were unable to run SAMap for the full datasets [8]. Instead, we used SAMap 
on subsets of 50k cells per species. We subsampled the data to keep the cell type proportions 
similar while making sure that all cell types are included. During sampling we ensured that 
at least 50 cells were present in the subset. If a cell type contained less than 50 cells, all cells 
were included in the subset.
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5.3 Results
5.3.1 Matching genes using sequence embeddings is comparable 
to sequence alignment with notable differences

First, we investigate how similar the gene matches returned by ProtBERT and BLAST are. We 
retrieved 17,435 human and 14,033 mouse protein sequences, discarding 47% of the human 
genes and 49% of the mouse genes for which we do not have the protein sequence. We used 
both ProtBERT and BLAST to generate gene matches.

For 13,935 human genes, we found a one-to-one mouse match using BLAST. For these human 
genes, we defined the ProtBERT match as the mouse gene with the most similar ProtBERT 
embedding. For 13,050 out of 13,935 human genes (94%), the BLAST match is identical to the 
ProtBERT match. Thus, the top-1 match is identical for the vast majority of genes. We ranked 
the BLAST matches according to the ProtBERT embedding distance to all mouse genes (Figure 
2A). Most of the BLAST matches have a rank close to 1 and over 98% of the BLAST matches 
have a rank below 100. Additionally, 48% of the BLAST matches that differ from the ProtBERT 
match are in the top-5 and thus considered in the many-to-many matches. Thus, if the BLAST 
match is not considered to be the best match by ProtBERT, it is still relatively similar based on 
the embedding distance.

Next, we focus on the human genes for which the ProtBERT and BLAST match differ to inves-
tigate which method returns the most functionally similar match. We restrict the comparison 
to the 818 human genes where the human gene, the BLAST match and the ProtBERT match 
are expressed in at least one cell. We assess functional similarity here in terms of gene ex-
pression similarity across cell types. Therefore, we calculated the Pearson correlation coeffi-
cient across cell types in humans and mouse. We considered the harmonized cell types as de-
fined in [20] (Figure 2B). For 568 out of 818 (69%) genes, the BLAST match has a higher gene 

Figure 2. Comparison of ProtBERT and BLAST matches. A) Rank of BLAST match according to ProtBERT embedding 
distances. Rank 1 indicates that the best ProtBERT match and the best BLAST match are the same. Rank NaN indicates 
a human gene with a ProtBERT match but no BLAST one-to-one match. B) Scatterplot of the correlation of the 
expression of human and mouse genes when considering the best BLAST match (x-axis) and the best ProtBERT match 
(y-axis). The expression correlation is calculated as the Pearson correlation across the average expression profiles 
of the cross-species harmonized cell types. We omitted human genes where the BLAST match and ProtBERT match 
are the same. Gene matches where either the human gene, ProtBERT match or BLAST match is highly variable, are 
colored orange.
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correlation than the ProtBERT match. This is to be expected since the harmonized cell types 
were defined using the BLAST matches. However, for some genes, the ProtBERT match has a 
higher correlation than the BLAST match. For example, human IL18R1 is matched to mouse 
Il1r1 according to ProtBERT with a correlation coefficient of 0.945, while BLAST matches the 
gene to mouse Il18r1 with a correlation coefficient of 0.103 (Figure 3). Human IL18R1 and 
mouse Il1r1 both show an increased expression for the endothelial and VLMC cells, while 
mouse Il18r1 does not show this pattern, and is lowly expressed in all cell types.

5.3.2 TACTiCS accurately matches cortical cell types across mouse 
and human

Now that we have seen that ProtBERT matches can be a powerful way to capture gene 
relationships, we use them in TACTiCS to match cell types in mouse and human cortex data. 
We use the Allen Brain Data, since the cell types have been carefully matched and harmonized 
by curators. We train TACTiCS for the human-mouse comparison for both the subclass and 
cross-species resolution. At the subclass resolution, TACTiCS returns the correct cell type for 
all 23 cell types that are present in both human and mouse (Figure 4A). The species-specific 
cell types, mouse Meis2, Peri and SMC, do not have a one-to-one match with a human cell 
type. Mouse Peri only matches human VLMC with a score of 0.5, but human VLMC matches 
mouse VLMC with a higher score of 1.0. Cell types present in both species have matching 
scores of ≥ 0.9 while wrong matches all have matching scores ≤ 0.5.

Figure 3. Average expression of human IL18R1 and mouse matches across harmonized cell types. The mouse 
matches are ordered according to the ProtBERT embedding distances. BLAST matches human IL18R1 to mouse 
Il18r1.

Figure 4. TACTiCS’ performance when matching human and mouse cell types at the subclass resolution. A) Av-
erage confusion matrix of transferred cell types. B) UMAP of cell embeddings, colored by species. C) UMAP of cell 
embeddings, colored by cell type.
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To get better insight into TACTiCS performance, we visualized the 32-dimensional cell 
embeddings using UMAP (Figure 4BC, S3). Individual human and mouse cells do not mix 
well in the embedding space, but the UMAP does seem to align at the cell type level, i.e. 
corresponding cell types either overlap partially in the embedding space, or are relatively 
close. For example, Vip cells form a large cluster with partly human and mouse cells separated, 
and cells of mixed origin in the middle. The Sncg cells also form a larger cluster, but the 
separation between the human and mouse cells is more visible. The Oligodendrocytes form 
two separate clusters, but they are closer to each other than to other cell types. The cell type 
proportions do seem to have an effect on the alignment in the embedding space. Cell types 
with a similar number of cells in human and mouse, such as Vip (6% in human and 2% in 
mouse), are clustered more coherently. Cell types with a large difference of occurrence within 
human and mouse, such as Astro (1% in human and 11% in mouse), form one small distinct 
cluster that is close to the larger cluster. The mouse-specific cell types Meis2, Peri, and SMC 
are (correctly) clustered separately from the human cells. Thus, the embedding space can 
align the cell types across the species, but not the individual cells. Note that this can be due 
to unresolved batch effects or actual biological differences between the two species.

At the cross-species resolution, TACTiCS returns correct matches for the majority of cell 
types, with a recall of 0.96 (Figure 5A, S1). The two cell types that are not properly matched, 
namely a L5-IT subtype and a Sncg subtype, are still matched with closely related cell types. 
The L5-IT subtype is matched with another L5-IT subtype and the Sncg subtype is matched to 
a subtype from the similar Lamp5 subclass.

To evaluate the performance of TACTiCS across species with variable evolutionary distance, 
we tested TACTiCS on cortical cell types between human-marmoset and mouse-marmoset 
(Table 1). At the subclass resolution, TACTiCS performs similar on all three comparisons with a 
recall of 1.0. At the cross-species resolution, TACTiCS performs best for the human-marmoset 

Figure 5. Performance of A) TACTiCS and B) SAMap when matching human and mouse cell types at cross-species 
resolution. Cross-species cell types are grouped per subclass (indicated with the light-gray lines) and class (indicated 
with dark-gray lines).
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comparison and worst for the mouse-marmoset comparison. These results indicate that the 
performance of TACTiCS is dependent on the evolutionary distance between the species, 
since the evolutionary distance to the closest common ancestors from human and marmoset 
(~40mya) is a lot less than human and mouse (~70mya).

5.3.3 TACTiCS outperforms SAMap and Seurat in matching cortical 
cell types across mouse, human, and marmoset

To benchmark TACTiCS, we compare its performance to SAMap and Seurat using three pair-
wise comparisons (human-mouse, human-marmoset, and mouse-marmoset). Across all 
comparisons, TACTiCS has a higher ADS and recall than SAMap and Seurat at the subclass 
resolution (Table 1). TACTiCS and SAMap perform well for all comparisons with a recall ≥0.95. 
Seurat performs well for the human-marmoset comparison, but the performance drops for 
the other two comparisons with a recall of 0.85 and 0.86 for the human-mouse and mouse-
marmoset comparisons respectively. Although the resulting matches of TACTiCS and SAMap 
are similar, the scores assigned by TACTiCS to those correct matches is higher than SAMap. For 

Comparison Method Matching Subclass Cross-species

ADS Recall ADS Recall

Hu-mo TACTiCS P (m:m) 0.991 1.000 0.856 0.956

Hu-mo TACTiCS B (m:m) 0.915 0.900 0.509 0.489

Hu-mo TACTiCS B (1:1) 0.992 1.000 0.724 0.778

Hu-mo Seurat B (1:1) 0.821 0.850 0.435 0.400

Hu-mo (50k) TACTiCS P (m:m) 0.894 0.900 0.780 0.822

Hu-mo (50k) SAMap P (m:m) 0.814 1.000 0.635 0.733

Hu-mo (50k) SAMap B (m:m) 0.827 1.000 0.630 0.800

Hu-ma TACTiCS P (m:m) 0.981 1.000 0.920 0.956

Hu-ma TACTiCS B (m:m) 0.891 0.900 0.848 0.889

Hu-ma TACTiCS B (1:1) 0.983 1.000 0.919 0.956

Hu-ma Seurat B (1:1) 0.906 1.000 0.697 0.822

Hu-ma (50k) TACTiCS P (m:m) 0.982 1.000 0.949 1.000

Hu-ma (50k) SAMap P (m:m) 0.892 1.000 0.816 0.978

Hu-ma (50k) SAMap B (m:m) 0.899 1.000 0.816 0.978

Mo-ma TACTiCS P (m:m) 0.990 1.000 0.735 0.733

Mo-ma TACTiCS B (m:m) 0.844 0.864 0.483 0.467

Mo-ma TACTiCS B (1:1) 0.991 1.000 0.770 0.778

Mo-ma Seurat B (1:1) 0.819 0.864 0.488 0.489

Mo-ma (50k) TACTiCS P (m:m) 0.928 0.909 0.730 0.733

Mo-ma (50k) SAMap P (m:m) 0.798 0.955 0.608 0.689

Mo-ma (50k) SAMap B (m:m) 0.823 0.955 0.637 0.689

Table 1. ADS and recall for TACTiCS, Seurat, and SAMap on human, mouse, and marmoset.
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instance, SAMap correctly matches human L6b to mouse L6b, but with a very low matching 
score equal to 0.47, while TACTiCS matches the same cell types with a matching score of 
1.0. Interestingly, for the species-specific cell types, TACTiCS suggests matches that have a 
low score (0.04-0.5), allowing to detect the species-specific cell types. The performance of 
SAMap and Seurat for the species-specific cell types is not consistent across all cell types and 
comparisons. For example, SAMap correctly assigns zero scores to mouse Meis2, Peri and 
SMC in the human-mouse comparison, but incorrectly matches mouse SMC to marmoset 
Peri with a high matching score. Likewise, Seurat correctly assigns low scores to mouse Meis2 
across all three comparisons, but incorrectly assigns higher scores to mouse Peri and SMC.

At the cross-species resolution the performance of all methods drops compared to the subclass 
level as expected, but the difference between the three methods becomes more apparent 
(Figure 5, S2). TACTiCS achieved the highest ADS and recall for the human-mouse and mouse-
marmoset comparisons. SAMap has a higher recall than TACTiCS for the human-marmoset 
comparison, but not a better ADS. Seurat performs the worst across all three comparisons 
and achieves a recall of only 0.4 for the human-mouse comparison. For mismatches between 
subtypes, TACTiCS usually matches to subtypes within the same subclass, while SAMap 
regularly maps to cell types from another subclass. While both TACTiCS and SAMap partly 
match human Sncg to mouse Lamp5, SAMap additionally shows similarity between human 
Sncg and mouse Vip.

While the human and mouse cells did not overlap much in the UMAP of TACTiCS, Seurat 
consistently maps the query dataset onto the reference dataset (Figure S3, S4). However, the 
query dataset is not mapped equally onto the reference dataset, which leaves large regions 
of the clusters consisting of only one species. For both methods the mixing of species is the 
highest for the human-marmoset comparison and lowest for the human-mouse comparison.

To account for the differences in dataset size, we compare TACTiCS and SAMap on the same 
50k subset. The performance of TACTiCS drops on the subset compared to the full dataset and 
does not match all common cell types correctly anymore at the subclass resolution. However, 
TACTiCS still outperforms SAMap at the higher resolution across all three comparisons.

5.3.4 Using ProtBERT matches improves the cell type matching for 
TACTiCS

Finally, we assessed the importance of using the ProtBERT embeddings to match genes 
compared to using BLAST on the final cell type matches. To this end, we trained TACTiCS 
based on the BLAST many-to-many matches and SAMap using the ProtBERT matches on 
the human-mouse data. For a fair comparison of ProtBERT to BLAST in SAMap, we only 
apply the embedding distance threshold to the ProtBERT matches, rather than filtering the 
gene matches thoroughly. Training TACTiCS at the cross-species resolution using the BLAST 
matches decreased the ADS and recall by a lot across all comparisons (Table 1). For SAMap, 
the performance remained similar, except for the human-mouse comparison where the 
recall decreased from 0.8 to 0.73 when ProtBERT matches were used instead of the BLAST 
matches.
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Additionally, we trained TACTiCS on the BLAST one-to-one matches. At the subclass 
resolution, the ADS and recall remain similar if BLAST one-to-one is used instead of ProtBERT 
many-to-many. This is not the case for all comparisons at the cross-species resolution. The 
performance decreases for human-mouse, remains similar for human-marmoset and is 
increased for mouse-marmoset when BLAST one-to-one is used.

5.4 Discussion
Here, we present TACTiCS, a method to accurately match cell types from scRNA-seq data 
across species. We applied TACTiCS to match cell types across human, marmoset, and mouse 
motor cortex, species with different evolutionary distances to each other. Even though 
TACTiCS matches cell types from all three species with high confidence, we showed that 
human and marmoset cell types are considerably easier to match which correlates with 
their closer evolutionary distance. Furthermore, we showed that TACTiCS outperforms the 
state-of-the-art method SAMap on all comparisons with the biggest difference at a higher 
resolution in favor of TACTiCS. We should note that our evaluation is limited to using only 
three datasets from one tissue with a relatively small evolutionary distance, while SAMap was 
originally developed to match cell types across larger evolutionary distances [8].

Even though TACTiCS outperforms SAMap on the (finer) cross-species resolution, its 
performance drops as well. We would like to note that the cell types at this resolution were 
established by Bakken et al. by integrating datasets from the different species and clustering 
them in an embedding space [20]. This resulted in ambiguous clusters which were resolved 
manually by the authors to determine which cell types would be in one cross-species group. 
Since these matches are not perfect, it makes sense that we cannot achieve a perfect 
performance either.

Furthermore, the ground-truth matches used for evaluation are based on analyses performed 
using BLAST one-to-one matches, also causing unwanted differences when comparing results. 
This might explain why the performance of TACTiCS using BLAST one-to-one is comparable to 
using ProtBERT many-to-many matches. Here, we only see an improvement for species with 
larger evolutionary distances (i.e. human-mouse comparison).

All the results obtained by TACTiCS were obtained using the same hyperparameters, which 
have not been tuned. Although, tuning the hyperparameters could potentially improve 
matches between species, the advantage of the current set of hyperparameters is that 
they show robust performance across all pairwise-comparisons regardless of species and 
resolution (i.e. subclass or cross-species).

Gene matching is one of the main components of TACTiCS. We match genes based on the 
distance between their corresponding protein embeddings, which are generated using 
ProtBERT instead of the commonly used sequence similarity based on BLAST. Even though the 
top-1 matches of ProtBERT and BLAST are largely similar, we have shown that using ProtBERT 
instead of BLAST distances improves the performance of TACTiCS. When aligning sequences 
using BLAST, every amino acid is considered to be equally important, while we speculate 
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that ProtBERT focuses more on functional domains. During further research, it would be 
interesting to dive deeper into the ProtBERT embedding space and see how this could be 
used to learn more about the relationships between cell types and the genes involved. A 
downside, however, of using ProtBERT distances is that the protein sequence is needed and as 
a consequence, we can only use coding genes. Using DNA sequence embedding models, e.g. 
DNABert [24], for non-coding genes, could in the future be used to overcome this limitation.

Some cell types, such as Meis2 and Peri in mice, are species-specific. A limitation of our 
current approach is that the classifiers we built in TACTiCS are missing a rejection option and 
therefore we cannot identify these species-specific cells automatically. Although we observed 
that TACTiCS usually assigns a low matching score to these species-specific cell types, it is, 
however, important to realize that the matching score represents the average accuracy of 
the two classifiers and does not represent an absolute measure of cell type similarity. For 
instance, if two human cell types are very similar, predictions for a mouse cell type may be 
split over these two human cell types (e.g. both get a score of 0.5). This is, for instance, the 
case with the Vip cross-species clusters in Figure 5A. This lower score indicates that there 
are similar human cell types in the data that both look like this mouse cell type. A high score, 
however, does not guarantee that the two cell types are very similar. It only indicates that 
these two cell types are most similar to each other and that they are transcriptionally very 
distinct from the other cell types in the dataset. In other words, the scores are summaries 
of the classification results, and as such, they are very much dependent on the cell types 
present in both datasets (i.e. the scores will change if one cell type is missing from one of the 
2 species).

When inspecting the cell embeddings in the low dimensional space, we notice that the cells 
from difference species are not well mixed. Matching cell types, however, are closest to each 
other and species-specific cell types are more separated from all other cells. There are many 
data integration methods developed for single-cell data, such as scVI [25], that would achieve 
a significantly better integration. Since data integration is not the main goal of TACTiCS, we 
did not add an explicit mixing component to the loss function. The current loss function 
enforces that neighboring cells from the other species can predict the other cell’s gene 
expression profile. This enforces cells of the same cell type to be the closest, but not to fully 
overlap. Adding a component to the loss that forces cells to be mixed (e.g. to have neighbors 
of both species) could greatly improve the integration. Alternatively, if good integration is a 
user’s desire, an option would be to replace the component of TACTiCS that generates the 
cell embeddings with another data integration method such as scVI. The flexible architecture 
of TACTiCS allows the individual components (gene matching, cell embedding, and cell 
classification) to be easily replaced, extended, or integrated with different methods.

With TACTiCS we showed that using protein embeddings to match genes is a viable 
alternative to BLAST when matching cell types based on their scRNA expression levels across 
species. TACTiCS can accurately match cell types at different resolutions for large datasets, 
outperforming Seurat and SAMap. We envision that this fast and accurate cell type matching 
method, will make comparative analyses across species considerably easier, contributing to, 
e.g. to the study of cell type evolution or translational research.
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Most regulatory elements, especially enhancer sequences, are cell population-specific. One 
could even argue that a distinct set of regulatory elements is what defines a cell population. 
However, discovering which non-coding regions of the DNA are essential in which context, 
and as a result, which genes are expressed, is a difficult task. Some computational models 
tackle this problem by predicting gene expression directly from the genomic sequence. 
These models are currently limited to predicting bulk measurements and mainly make tissue-
specific predictions. Here, we present a model that leverages single-cell RNA-sequencing 
data to predict gene expression. We show that cell population-specific models outperform 
tissue-specific models, especially when the expression profile of a cell population and the 
corresponding tissue are dissimilar. Further, we show that our model can prioritize GWAS 
variants and learn motifs of transcription factor binding sites. We envision that our model can 
be useful for delineating cell population-specific regulatory elements.

6.1 Introduction
In multicellular organisms, every cell has the same DNA apart from somatic mutations. Yet its 
function and the related proteins and genes expressed vary enormously. This is among others 
caused by transcriptional and epigenetic regulation. Proteins that bind the DNA sequence 
around the transcription start site (TSS) control whether a gene is transcribed in a cell [1,2]. 
Which transcription factors, and thus which DNA binding motifs, are essential differ per cell 
population [1–4]. As such, mutations in regulatory regions might affect specific tissues or cell 
populations differently. Improving our understanding of these regulatory mechanisms will 
help us relate genomic functions to a phenotype. 

For example, while promoter sequences are identical across the four major human brain 
cell populations (neurons, oligodendrocytes, astrocytes, and microglia), almost all enhancer 
sequences, the regions in the DNA where a transcription factor binds, are cell population-
specific [3]. These population-specific regulatory elements are discovered by combining 
single-cell measurements of different data types, including chromatin accessibility, ChIP-
seq, and DNA methylation. Bakken et al., for instance, identified differentially methylated 
and differentially accessible regions across neuronal cell populations in the human brain, 
albeit with little overlap [5]. This emphasizes the complexity of transcriptional regulation and 
the need for more measurements to fully resolve these mechanisms at the cell population-
specific level.

An alternative approach would be to train a computational model that directly predicts 
gene expression from the genomic sequence around the TSS. This way, we can learn which 
regulatory elements are important for transcriptional regulation in different contexts. Several 
computational methods have been developed for this task [6–12]. These methods have in 
common that they one-hot encode the DNA sequence and input this to either a convolutional 
neural network (CNN) or transformer. ExPecto, Xpresso, and ExpResNet predict expression 
measurements from bulk RNA-sequencing, while Basset, Basenji, BPNet, and the Enformer 
model predict regulatory signals, such as cap analysis gene expression (CAGE) reads or TF 
binding from CHIP-nexus. 
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A promising application of these models is to prioritize variants that have been identified 
using genome-wide association studies (GWAS) [6,13]. Using GWAS many potential disease-
associating variants have been identified [14–16]. Within each locus, however, it is often 
challenging to pinpoint which variant is causal and which gene is affected by the variant. 

These current computational gene prediction models, however, are designed for predicting 
bulk gene expression data. This means that they are either tissue-specific or could be applied 
to FACS-sorted cells [13]. Since transcriptional regulation is even more context-specific, the 
resolution of current methods is not sufficient for heterogeneous tissues where single-cell 
RNA-sequencing (scRNA-seq) has revealed hundreds of cell populations [5,17,18]. To increase 
the resolution, the models would ideally be trained on scRNA-seq data.

Here, we present scXpresso, a deep learning model that uses a CNN to learn cell population-
specific expression in scRNA-seq data from genomic sequences. Since single-cell and bulk 
data have different characteristics and distributions, we explored whether this type of model 
is suitable for single-cell data. We show that (i) cell population-specific models outperform 
tissue-specific models on several tissues from the Tabula Muris, (ii) increasing the resolution 
improves the predictions for human brain cell populations, and (iii) in-silico saturation 
mutagenesis of the input sequence can be used to prioritize GWAS variants.

6.2 Materials and methods

6.2.1 Architecture of scXpresso

scXpresso is a one-dimensional convolutional neural network (CNN) adapted from the (bulk 
gene expression-based) Xpresso model [9] (Figure 1A, S1). The input to the CNN is four 
channels with the one-hot encoded sequence around the transcription start site (TSS) (7kb 
upstream and 3.5kb downstream). Every channel represents one of the four nucleotides (A, 
C, T, G). For some positions, the exact nucleotide is not known (e.g. any nucleic acid (N) or a 
purine nucleotide (R)). The exact coding scheme for such positions is shown in Table S1. The 
CNN consists of two convolutional layers. The output of the convolutional layers is flattened 
and concatenated with the half-life time features. Together, this is subsequently fed into a 
fully connected (FC) layer(s). The output of the FC layers is the aggregated expression per 
tissue or for each cell population.

Comparing scXpresso to Xpresso, there are three main differences: 1) we designed 
scXpresso as a multitask model so that it predicts the expression of multiple cell populations 
simultaneously. 2) We decreased the number of half-life time features from eight to five; 
the three features we removed (5’ UTR, ORF, and 3’ UTR GC content) correlated less with 
half-life time, so we removed them to make the model less complex [9,19,20]. Furthermore, 
removing these three half-life time features from the original Xpresso model did not lower its 
performance (Table S2). 3) For the multitask model, there is only one FC layer. For the other 
models, which we use to make tissue-specific predictions as a comparison, we used two FC 
layers. 
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Figure 1. Schematic overview of scXpresso and performance on Tabula Muris datasets. A) We one-hot encode 
the DNA sequence around the transcription start site (TSS) and input this to a one-dimensional convolutional neural 
network (CNN). The output of the CNN is flattened and concatenated with the five half-life time features. The fully 
connected layers output the cell population's specific gene expression levels simultaneously (Figure S1, see Methods). 
B) Schematic overview of the experiment. C-D) Performance of scXpressot,b (tissue-specific (t) model on bulk (b) 
data) and scXpressot,pb (tissue-specific model on pseudo-bulk (pb) data), respectively. Every dot is the performance 
(Pearson correlation) across one fold of the 20-fold CV. E) Performance of scXpressocp,pb (cell population-specific 
(cp) model on pseudo-bulk data) summarized per tissue. Every dot represents the model’s performance on a cell 
population in that tissue (median Pearson correlation across the 20 folds). F) Performance of scXpressocp,pb on the 
different lung cell populations. The grey line indicates the median performance across all cell populations. Every dot 
is the performance across one fold of the 20-fold CV.
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6.2.2 Training scXpresso

We split the genes into a train, validation, and test dataset and evaluated using 20-fold cross-
validation. These sets are the same across all experiments (i.e. one train, validation, and test 
set for mouse genes and one for human genes) such that the results of different models 
can be compared. We update the weights of scXpresso using the Adam optimizer based on 
the mean square error loss on the training set. The initial learning rate is set to 0.0005 and 
if the loss on the validation set is not improved from 5 epochs, the learning rate is reduced 
by a factor of 10. We train the model for 40 epochs and the model with the lowest loss 
on the validation set is used for evaluation on the test dataset. Since there is always some 
stochasticity when training a CNN, we always train 5 models and average the predictions. We 
used the following software packages for training the model: Pytorch (version 1.9.0) [21], 
CUDA (version 11.1), cuDNN (version 8.0.5.39), and Python (version 3.6.8). 

6.2.3 Datasets

Tabula Muris. The single-cell Tabula Muris data [22] for the five different tissues (gland, 
spleen, lung, limb muscle, and bone marrow) and two different protocols (10X and FACS-
based Smart-seq2) were downloaded from: https://figshare.com/projects/Tabula_Muris_
Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_
single_cell_resolution/27733. To extract input features, we downloaded the reference 
genome (MM10-PLUS) that was used during the alignment from: https://s3.console.
aws.amazon.com/s3/object/czb-tabula-muris-senis?region=us-west-2&prefix=reference-
genome/MM10-PLUS.tgz.

The four bulk datasets (spleen, lung, limb muscle, and bone marrow) from the Tabula Muris 
were downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040 
[23]. For the bulk data, we used the same reference genome as for the single-cell data.

Human motor cortex data. The human motor cortex data from the Allen Institute [5] 
was downloaded from the Cytosplore Comparison Viewer. We downloaded the reference 
genome (version GRCh38.p2) and corresponding GTF file with information about the location 
of transcription start sites of the genes here: (https://www.gencodegenes.org/human/
release_22.html)

6.2.4 Aggregated expression values

First, we normalized the count matrices. For the single-cell datasets, we performed library size 
normalization in the same way as The Tabula Muris Consortium: i.e. counts per million for the 
smart-seq2 data and counts per ten thousand for the 10X data [22]. For the bulk Tabula Muris 
data, we performed TPM normalization. For the single-cell datasets, we used the annotations 
defined by the authors to aggregate the expression values per tissue or per cell population 
using log10(mean(x)) (without pseudocount) into pseudobulk values. The advantage of not 
adding a pseudocount is that the distribution looks more like a normal distribution, which 
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makes it easier to train the models (Figure S2). A limitation, however, is that we could not 
calculate the exact value for genes that were not expressed in any of the cells. For these 
genes, we replaced the pseudobulk values with -4 in the Tabula Muris and -5 in the motor 
cortex dataset, since this extrapolated well (Figure S2). For the bulk data, we aggregated 
over the samples instead of the cells. Here, we set the genes that are not expressed in any 
of the samples to -4. We standardized the expression values before running the model such 
that the average expression of all genes in each cell population or tissue is zero and the 
standard deviation is one. Before analyzing the results and comparing the predictions across 
cell populations, we undid the z-score normalization but kept the log normalization.

6.2.5 Input features

Sequence around the transcription start site. Before extracting the sequences around 
the transcription start site, we removed genes that are transgenes, ERCC spike-ins, genes 
without a coding region, and genes on the Y chromosome. This resulted in 20,467 mouse 
genes and 18,138 human genes. Some genes had multiple transcripts. We downloaded a 
list with canonical transcripts for each gene from biomart and we used the transcript and 
transcription start site belonging to the canonical transcript. If the canonical transcript was 
not defined, we used the transcript that had the longest coding region. After having defined 
the transcription start site for each gene, we used seqkit [24] to extract sequences from the 
FASTA file containing the reference genome. 

Half-life time features. For every gene, we extracted five half-life time features: 5’ UTR 
length, 3’ UTR length, ORF length, intron length, and exon junction density ( #

( )
*exons

ORFlength
1000). 

We obtained these features by first filtering the GTF files for the canonical or longest transcript. 
The 5’ UTR length is the length of the sequence from the start of the first exon to the start 
codon. The 3’ UTR length is the length of the sequence from the last coding sequence to the 
end of the last exon. The ORF length is the sum of the length of the coding sequences. The 
intron length is the length of the transcript minus the length of the ORF, 5’ UTR, and 3’ UTR. 
All features are log-normalized using log10(x + 0.1) and afterwards z-scaled.

6.2.6 Evaluating the predictions

For every gene in the test dataset, we averaged the predictions of the five models we 
trained. We evaluated the performance for every cell population by calculating the Pearson 
correlation between the true and predicted expression of the genes in the test set. To 
evaluate the increase in performance between the tissue-specific (t) pseudobulk (pb) and cell 
population-specific (cp) pseudobulk (pb) model on the Tabula Muris datasets, we calculate: 
�cp t cp pbscEP, ,( )� �median Pearsoncorrelation median Pearsoncoorrelation( ),scEPt pb . On the 
motor cortex dataset, we also evaluated the performance of each gene by calculating the 
Pearson correlation between the true and predicted expression per cell population.
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6.2.7 In-silico saturation mutagenesis

For CACNA1I, we mutated all positions in-silico, which means we tested all possible 
substitutions at every position. We undid the z-score normalization and calculated the 
difference between the original (wild-type) prediction and the mutated prediction. The 
prediction models used during these experiments were the models where CACNA1I itself 
was originally in the test set. For every position, we only plotted one predicted difference 
in expression in Figure 4E. This is the substitution that was predicted to have the largest 
absolute effect. We downloaded the locations of the candidate cis-regulatory elements that 
fall within the input region for CACNA1I from screen registry v3 (release date 2021) [25]. 
When plotting the difference between two cell populations, we ignored the positions where 
one is positive and the other predicts a negative effect. This rarely happened and if it was the 
case, the predicted effect was very small.

For the 2000 highly variable genes, selected using scanpy [26], we applied ISM similar as 
described for CACNA1I. For every position we then calculated the average maximum absolute 
predicted effect:

y i y i y
alt A C G T alt ref pred g ref predmax

{ , , , },
, ,( ) max | ( )� �

� �

1

2000 ,, , ( ) |g altg HVG
i

��
where i indicates the genomic position, HVG is the list of highly variable genes, ref indicates 
the reference allele, and alt indicates the alternative allele.

6.2.8 Comparison to other models

Enformer. Enformer uses the DNA sequence to predict reads for 5,313 human tracks which 
include CAGE, DNAse, CHIP, and ATAC-seq [11]. Here, we only looked at the effect of a variant 
on the CAGE tracks that are related to the brain (77 tracks in total, see Table S3). Enformer 
predicts the effect of variants on 128bp bins. When predicting the effect of a variant on the 
CAGE reads, we looked at the effect on the bin containing the TSS.

ExPecto. ExPecto predicts gene expression for 218 tissues and cell lines [8]. Here, we only 
focused on 27 outputs that are related to the brain (Table S4). We used the ExPecto web 
server to predict the effect of the variants (https://hb.flatironinstitute.org/expecto/?tabId=3). 
ExPecto is trained using Hg19 instead of Hg39. We used the R-package SNPlocs.Hsapiens.
dbSNP155.GRCh37 (v 0.99.23) to lift-over the variants. Using ExPecto we could not predict the 
effect of all variants, since for some variants there was no location in Hg19 found, some were 
too far away from a TSS, and some were linked to a different gene than we were interested in 
(see Table S5 for an explanation per variant).

Xpresso. We trained the Xpresso model on bulk RNA-seq data from the precentral gyrus [9]. 
The data from two individuals were downloaded from the Allen Human Brain Atlas: https://
human.brain-map.org/static/download (H0351.2001, H0351.2002). We used the normalized 
matrices. Labels were created as described in the Xpresso paper: we took the median 
expression across the 6 precentral gyrus samples, log-normalized the output using log10(x + 
0.1), and z-score normalized the expression. Similar to scXpresso, we trained the model using 
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20-fold cross-validation. Per fold, we trained 10 runs and used the model with the lowest 
MSE on the validation data (as described in [9]). Afterwards, we predicted the effect of the 
variants. We could not predict the effect of all variants, since some genes were not measured 
in the bulk RNA-seq data and for some genes, there were no Xpresso input features defined 
(see Table S5 for an explanation per variant). 

6.3 Results

6.3.1 Predicting cell population-specific gene expression using 
scXpresso

Here, we present scXpresso, a multitask convolutional neural network (CNN) to predict 
cell population-specific gene expression using genomic sequences only (Figure 1A, S1). We 
developed scXpresso by adapting the Xpresso model [9], which was originally designed for 
bulk data, to single-cell data. Similar to Xpresso, we use two types of input to the model: (1) 
the DNA sequence around the transcription start site (TSS) (7kb upstream - 3.5kb downstream) 
to model transcription, and (2) five half-life time features (5’ UTR length, 3’ UTR length, ORF 
length, intron length, and exon junction density) to model mRNA degradation. We input the 
one-hot encoded DNA sequence into a CNN. The output of the CNN is concatenated with the 
half-life time features and fed to a fully connected network (see Methods). Since our model is 
a multitask CNN, the desired output of the fully connected network is the gene expression for 
every cell population. We predict expression per cell population instead of per cell to achieve 
more stable predictions with less noise as single-cell data is known to be quite sparse. To 
obtain one expression value per cell population, we aggregate the single-cell expression into 
pseudobulk measurements (see Methods). 

Since single-cell and bulk data have different characteristics, we tested whether scXpresso 
performs equally well on single-cell and bulk data. We used scRNA-seq data from five different 
tissues (limb muscle, spleen, gland, marrow, and lung) from the Tabula Muris [22] (Table S6). 
Here, we used cells isolated via FACS that were sequenced using the Smart-seq2 protocol. 
Using the annotations defined by the authors, we aggregate the values per cell population 
and per tissue into pseudobulk values. For four tissues (limb muscle, spleen, marrow, and 
lung), there are also bulk RNA-sequencing datasets available (Table S7). We compared the 
pseudobulk to the bulk expression per tissue and noticed that these are indeed correlated 
(rmuscle = 0.69, rspleen = 0.71, rmarrow = 0.50, rlung = 0.67) (Figure S3).

Next, we trained three different models: 1) a tissue-specific (t) model on the bulk (b) values 
(scXpressot,b), 2) a tissue-specific model on the pseudobulk (pb) values (scXpressot,pb), 3) a 
cell population-specific (cp) model on the pseudobulk values (scXpressocp,pb) (Figure 1B). 
The cell population-specific model is, in contrast to the tissue-specific models, a multitask 
model that predicts the expression of all cell populations in a tissue simultaneously. We 
evaluated the performance of the models by calculating the Pearson correlation between 
the true and predicted expression values. In general, the tissue-specific models trained 
on pseudobulk reach higher performance than the models trained on bulk (Figure 1C-D). 
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Even though the bulk and pseudobulk values are correlated, the pseudobulk distributions 
are bimodal compared to the normally distributed bulk data (Figure S3-4). This turns the 
problem more into a classification problem (is a gene low or high expressed), which might 
be easier to learn. On average, predicting cell population-specific expression is more difficult 
than predicting tissue-specific expression (Figure 1D-E): scXpressocp,pb performs slightly worse 
than scXpressot,pb (median correlation of 0.71 vs 0.75), but still better than scXpressot,b (0.58). 

One of the adaptations to Xpresso is that scXpressocp,pb is a multitask model. This slightly 
increases the performance compared to a single-task model (Figure S5) but mainly makes 
the model computationally more efficient. The marrow-FACS dataset, for instance, contains 
22 cell populations. Since the single-task and multitask models need the same training time 
(approximately 30-60 minutes), this gives a 22x speed up. 

The Tabula Muris scRNA-seq datasets were generated using two different protocols: 10X 
Genomics, a droplet-based method, and FACS-based Smart-seq2, a plate-based method. 
When comparing scXpressot,pb and scXpressocp,pb trained on the two different protocols, e.g. 
lung-droplet vs. lung-FACS, we conclude that they perform equally well (Figure 1DE, S6-7). 
Depending on the tissue and cell population, one performs slightly higher than the other, but 
there are no significant differences. This is as expected since the pseudobulk values of both 
protocols are highly correlated (Pearson correlation > 0.85) (Figure S8). Hence, the protocol 
used to create the single-cell dataset does not influence the results. 

For scXpressocp,pb, we tested how the two types of input features, DNA sequence and half-
life time, influence the performance. We tested different lengths of the input sequence and 
whether one of the two features was enough to predict expression (Figure S9). A range of 
different sequence lengths results in the same performance (3.5-3.5, 7-3.5, and 10-5kb 
upstream-downstream). A longer sequence gives more information but also adds more 
noise. Since the model also becomes more complex, more parameters have to be learned 
and it takes more time and memory to train the model. Therefore, we decided to use 7kb 
upstream and 3.5kb downstream for further experiments. We also observed that adding the 
half-life time features results in higher performance, suggesting that these features are not 
easily captured from DNA sequences alone. 

For the cell population-specific models, the performance varies considerably across different 
populations (Figure 1E). Comparing the populations in the lung dataset, for instance, the 
performance of the endothelial cells is very high compared to leukocytes (Figure 1F, S10). In 
general, the performance of scXpresso increases when more genes and cells are measured 
in a population (Figure 1F, S11). The leukocyte population is small (35 cells) and fewer genes 
are non-zero compared to other cell populations in the lung (8,678 out of 20,467 vs. 12,715 
on average). The ciliated cell population, on the other hand, is also small (25 cells), but this 
model reaches a higher performance. In this cell population, however, more genes were non-
zero (11,717) compared to the leukocyte population. Hence, to train the model, we need a 
good representation of the cell population that includes enough expressed genes. 

In all previous experiments, we evaluated scXpresso using 20-fold cross-validation with the 
genes randomly divided over the folds. The results could be positively biased if genes from 
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the same chromosome are in different folds. Therefore, we also evaluated the models using 
cross-chromosomal cross-validation. This slightly reduces the models’ performance, but the 
difference is not significant (lowest p-value = 0.11 for myeloid cells, two-sample Wilcoxon 
rank sum test) (Figure S12).

6.3.2 Cell population-specific models outperform tissue-specific 
models

Now that we know that all models are well-trained, we predicted cell population-specific 
expression using the three different models to see whether increasing the resolution of 
the models increases the performance (Figure 2A). Since scXpressot,b and scXpressot,pb were 
trained using tissue-specific expression values, these models predict the same value for every 
cell population. On all datasets, scXpressocp,pb outperforms the tissue-specific models, which 
shows the benefit of training the models on a higher resolution (Figure 2B, S13A). Especially 
in more heterogeneous tissues, where the gene expression of cell populations is weakly 
correlated to the corresponding tissue, we see a large improvement (Figure 2C, S13B). For 
the lung-FACS dataset, for instance, the performance increases the most for immune cell 
populations (∆cp t, for B cells: 0.11, NK cells: 0.11, T cells: 0.09; see Methods) and the least 
for lung-specific populations (∆cp t, for stromal cells: 0.01, endothelial cells: 0.03, epithelial 
cells: 0.05). In the B cells in the lung, 4,081 genes are not expressed in any of the cells and 
thus have a log-normalized expression of -4, but for which the tissue-specific model predicts a 
positive log-normalized expression value (Figure 2D). In contrast, the model trained on B cells 
predicts a lower expression for these genes (Figure 2E). Almost all these genes, however, are 
expressed in the lung (in the non-B cells), the lung-model learned this correctly too (Figure 
2F).

Some of the Tabula Muris datasets contain similar cell populations. For instance, B cells, 
macrophages, and T cells are measured in four, three, and three tissues, respectively. We 
hypothesized that if our models are cell population-specific, they should accurately predict the 
expression of a cell population in one tissue with a model trained on the same cell population 
but from another tissue (even though a cell’s tissue will slightly change the expression for 
(some) genes). To test this, we predicted the expression for common cell populations using 
three different types of models: 1) scXpressocp,pb trained on the same cell population, but 
from a different tissue, 2) scXpressocp,pb trained on a different cell population, but from the 
same tissue, 3) scXpressot,pb trained on the same tissue (Figure 3A). For example, we predict 
the expression of B-cells in the limb muscle, using 1) a model trained on B-cells in the lung, 2) 
a model trained on endothelial cells in the limb muscle, and 3) a model trained on the limb 
muscle. Again, the cell population-specific models outperform the tissue-specific models, 
even though they predict either a different dataset or a different cell population than they 
were trained on (Figure 3B, S14-15). This indicates that if you want to train a model for a 
cell population from a specific tissue where no single-cell data is available, you are better 
off using a model trained on a similar cell population from a different tissue than relying 
on a tissue-specific model. Whether a model trained on a different cell population and the 
same tissue performs better than a model trained on the same cell population but a different 
tissue, differs per tissue and cell population. For example, when predicting the expression 
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of B cells in the limb muscle, the models trained on B cells in the marrow and lung even 
outperform the model trained on B cells in the limb muscle itself (Figure 3C). But, the models 
trained on different cell populations within the limb muscle perform variably when predicting 
B cells (Figure 3D). The models trained on immune populations, e.g. T cells or macrophages, 
perform similarly, but the muscle-specific populations perform worse. This difference 

Figure 2. Comparison of the three scXpresso models for making cell population-specific predictions. A) Schematic 
overview of the experiment. B) Boxplot showing the performances of scXpressot,b (tissue-specific (t) model on bulk 
(b) data), scXpressot,pb (tissue-specific model on pseudo-bulk (pb) data), and scXpressocp,pb (cell population-specific 
(cp) on pseudobulk (pb) data) on the cell population-specific task. Every point in the boxplot is the performance of a 
model on one cell population in that tissue (median Pearson correlation across the 20 folds). C) Similarity between 
a cell population and corresponding tissue (Pearson correlation between the true pseudobulk expression values) 
vs. the increase in performance (∆

cp t,
, median Pearson correlation of scXpressocp,pb - scXpressot,pb). Every dot is a 

different cell population and the colors represent the different tissues. D-F) Comparing the predictions made by 
the lung tissue model (lung-model) and the B cell population model (B cell-model). Genes where the lung-model 
predicts a too-high value are plotted in orange. D-E) True expression of the B cells vs. predicted expression by the 
D) lung-model and E) B cell-model. F) True expression of the lung cells vs. predicted expression of the lung model. 
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between the B cell and the endothelial, mesenchymal stem cell, and skeletal muscle satellite 
cell models might seem small but is significant across the 20 folds (p-value = 9.5e-07 for all 
three populations, one-sided Wilcoxon rank sum test [27,28]). Even though the differences 
are small, this indicates that our models indeed learn cell population-specific features.

6.3.3 scXpresso learns expression patterns across human brain 
cell populations

Next, we applied scXpresso to a human brain dataset of the motor cortex [5]. This dataset 
is annotated at different resolutions including a class (GABAergic, glutamatergic, and 
non-neuronal) and subclass (20 subclasses) level. Again, we trained models of different 
resolutions: a tissue- (t), class- (c), and subclass-specific (sc) model (scXpressot, scXpressoc, 
and scXpressosc respectively). We used the trained models to predict the subclass-specific 
expression values (Figure 4A). Since scXpressot was trained on the tissue-specific pseudobulk 
expression, it predicts the same expression for all subclasses. The class-specific model, on the 
contrary, is a multitask model. Here, we use the predictions of the parent class to predict the 
expression of each subclass (i.e. subclasses belonging to the same parent class are predicted 
to have the same expression) (Figure S16). Similar to the Tabula Muris, we observed that 
increasing the resolution increases the performance: scXpressosc outperforms scXpressoc 
which outperforms scXpressot, (Figure 4B). For some subclasses, e.g. L2/3 IT, the performance 
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Figure 3. Comparing the predictions of scXpresso across cell populations and tissues. A) Schematic overview of 
the experiment. B) Performance (Pearson correlation) of three different types of models on different cell populations 
(rows) in different tissues (columns). Every dot is the median correlation of one model across the 20 folds. Since 
there are no T cells and macrophages defined in the Marrow and Lung dataset, these boxes are missing. C) Pearson 
correlation of different models when predicting the expression of B cells in different tissues. The rows indicate 
on which tissue scXpressocp,pb is trained, and the columns indicate for which tissue the expression of the B cells is 
predicted. D) Pearson correlation of different scXpressocp,pb when predicting the expression of B cells in the limb 
muscle. Again the rows indicate which model is used.
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barely improves when comparing scXpressosc with scXpressoc, which happens when the true 
expression values of the subclass and corresponding class are strongly correlated, similar as 
for the Tabula Muris case (Figure S17). 

Since genes with variable expression across subclasses are often interesting to study, we 
tested whether scXpressosc can learn the correct pattern for a gene across the subclasses. For 
every gene, we calculate the Pearson correlation between the true and predicted expression 
across the subclasses. If the expression of a gene shows some variance across the subclasses, 
scXpressosc predicts the pattern correctly (Figure 4C). An example is CACNA1I, a gene coding 
for a subtype of voltage-gated calcium channel that has been associated with schizophrenia 
[15,29–32]. Here scXpressosc correctly learns that the expression in neuronal populations is 
higher than in non-neuronal (r = 0.90) (Figure 4D). 

6.3.4 In-silico saturation mutagenesis reveals the most interesting 
GWAS variants

Since scXpresso can predict expression from the DNA sequence, we expect that it can also 
predict how the expression changes when the sequence is mutated. Therefore, we applied 
in-silico mutagenesis (ISM) to the sequence of CACNA1I and evaluated the predicted change 
in gene expression [6,7,11,33]. When comparing scXpressosc predictions for the Sst Chodl 
subclass across all possible mutations, we find mutations in the region around the TSS to 
affect the expression of the CACNA1l gene the most (Figure 4E). When applying ISM to the 
2000 highly variable genes in the data, the maximum absolute predicted effect is highest 
around the TSS as well (Figure S18). Note, that we did not use the TSS location as input to the 
model, consequently, the model correctly identified that this is the most important region for 
transcriptional regulation. No other regions within our input window were found that affect 
the expression that strongly.

Besides visualizing the mutation pattern for one subclass, we can also visualize how ISM 
affects two subclasses differently. As an example, we compared the scXpressosc predictions 
for the Sst Chodl subclass and the L2/3 IT subclass (Figure S19). These predictions show that 
the Sst Chodl subclass is more sensitive to mutations than the L2/3 IT class for CACNA1I, 
which might be explained by the fact that CACNA1I is also higher expressed in Sst Chodl cells.

In addition, ISM can be used to prioritize variants of interest for diseases. CACNA1I is linked to 
18 Schizophrenia-associated variants according to the NHGRI-EBI Catalog [34]. Two of these 
variants, rs7288455 and rs5757730, fall within our input region (7kb upstream and 3.5kb 
downstream of the CACNA1l TSS). Mutating the reference A allele with the C or G variant at 
the position of rs7288455 increases the predicted expression for all cell populations (Figure 
4F). The disease-associated variant, the A allele, is expected to decrease the expression 
[15,34], which is in line with our predictions, although it is not known whether this is 
subclass-related. Our model suggests that the expression of CACNA1I increases the most in 
the Sst Chodl subclass. Interestingly, for the Sst Chodl subclass, this mutation results in one 
of the largest differences in CACNA1l expression amongst all other induced mutations (top 
1% mutations with the strongest effect) (Figure S20). For the other variant, rs5757730, which 
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Figure 4. Performance of scXpresso on the human motor cortex. A) Schematic overview of the experiment. We train 
a tissue- (t), class- (c), and subclass-specific (sc) model (scXpressot, scXpressoc, scXpressosc respectively) to predict 
the subclass-specific expression levels. B) Boxplots showing the Pearson correlation between the true and predicted 
values. Every point in the boxplot is the performance on a fold (n=20). C) Scatterplot showing the relation between 
the variance of a gene across the pseudobulk values of the subclasses and the Pearson correlation between the true 
and predicted values across the subclasses. Every dot is a gene. D) True and predicted expression for CACNA1I. Every 
dot is the expression in a subclass. Dots are colored according to their class. E) Mutation profile for CACNA1I for the 
Sst Chodl subclass. For every position, we calculated the difference in expression for all three possible substitutions 
and visualized the substitution with the highest absolute predicted effect. Mutations that are predicted to increase 
or decrease the expression are plotted in blue and orange, respectively. The grey rectangle highlights the region 
around the TSS. The grey boxes indicate the positions of candidate cis-Regulatory Elements (cCREs) derived from 
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lies in an intronic region, we see no difference in expression (Figure S21). Further supporting 
our predictions, rs7288455, but not rs5757730, overlaps with an ENCODE candidate cis-
regulatory element. These results show that scXpresso can be used to prioritize GWAS hits.

In total, there are 3,971 GWAS variants associated with Schizophrenia in the NHGRI-EBI 
Catalog [34]. We focused on those genes that have two or more variants in the input region 
(20 genes, 49 variants) (Table S5). For these variants, we predicted the effect of all possible 
substitutions to prioritize the likely causal variants (Figure S22). For most genes, scXpresso 
predicts a profound effect for only one of the variants. For instance, when substituting ‘A’ with 
‘C’ for the HLA-B variant rs2507989, the predicted expression of HLA-B decreases, while none 
of the mutations at the other variant positions of HLA-B, i.e. rs139099016 and rs1131275, are 
predicted to affect the expression. Noteworthy, rs1131275 is classified as a missense variant 
and thus not expected to alter transcription [34]. For some genes, however, all variants seem 
to barely affect the expression. 

Next, we checked if we could interpret the model predictions by characterizing the genomic 
sequences identified by scXpresso to have a strong effect on gene expression. For the MROH-6 
variant rs10866912, two substitutions are predicted to create an opposite effect. Substituting 
the reference ‘T’ with a ‘C’ is predicted to decrease the expression while mutating with a ‘G’ 
is predicted to increase the expression (Figure 4G). This variant is part of a binding site for the 
transcription factor INSM1, a transcriptional repressor [35] (Figure 4H). When substituting the 
‘T’ with a ‘C’, the sequence of the reference genome becomes more similar to the consensus 
motif, while substituting with a ‘G’ makes the two sequences more dissimilar. This supports 
the predictions from scXpresso.

We compare our scXpresso predictions for these Schizophrenia variants to the predictions 
of Enformer, ExPecto, and Xpresso. For Enformer and ExPecto we used their pre-trained 
models which predict the expression for 5,313 and 218 tissues/cell lines, respectively. Here, 
we only focused on the predictions related to the healthy brain (77 tracks for Enformer, 27 for 
ExPecto). For Xpresso, there were no pre-trained models for the brain available, so we trained 
the Xpresso model ourselves using bulk RNA-seq samples from the precentral gyrus, which is 
the region containing the motor cortex (see Methods). The expression values of the precentral 
gyrus are correlated to the pseudobulk expression values of the motor cortex (Figure S23A, 
r = 0.68). Similar to scXpresso, we used a 20-fold cross-validation to train the Xpresso model. 
The model is well-trained and reached a similar median correlation on the precentral gyrus as 
the scXpresso models on the motor cortex subclasses (Figure 4B, S23B-C, r = 0.69). Figure S24 
shows the predictions for all models for the variants related to Schizophrenia. Using Xpresso 
and ExPecto we could not predict the effect of all variants, since some genes were missing 
from the data and some variants were lost during conversion from Hg38 to Hg19 (Table S5) 
(see Methods). It’s challenging to compare the predictions of the different methods since all 
models are trained on different brain regions or cell lines. Enformer usually predicts the same 

ENCODE data [25]. F-G) Predicted effect, the predicted difference between the reference and alternative allele, of 
the three substitutions for F) rs7288455 on CACNA1I expression, and G) rs10866912 on MROH6 expression. Every 
dot is one subclass and the dots are colored according to the class. H) Sequence logo and the consensus sequence 
for the INSM1 transcription factor motif together with the sequence of the reference genome (bottom line).
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effect for the three different possible nucleotide mutations, e.g. for rs1131275 it predicts 
that all three substitutions decrease the expression. This variant, however, is classified as a 
missense variant, so we don’t expect it to alter transcription [34]. For rs7288455, the variant 
close to CACNA1I, both scXpresso and Xpresso predict a similar effect, while Enformer and 
ExPecto predict only a very minimal effect. For rs10866912, the variant close to MROH-6, we 
showed that scXpresso could learn the TF binding site of INSM1 while all the other models 
miss this pattern. These results overall illustrate the benefit of training prediction models on 
single-cell data.

6.4 Discussion
We presented scXpresso, a model to predict cell population-specific gene expression using 
the genomic sequence. We showed that scXpresso outperforms tissue-specific bulk and 
pseudobulk models especially when the expression profile of a cell population is dissimilar 
to that of the corresponding tissue. All scXpresso models reach a Pearson correlation of 
approximately 0.7 regardless of the cell population or tissue trained on. Additionally, the 
model learned the importance of the region around the TSS, transcription factor binding 
motifs (such as for INSM1), and the expression pattern of genes across different cell 
populations. Together, our findings show the potential of using single-cell data for predicting 
gene expression from sequence information in complex heterogeneous tissues. 

We showed that it is possible to prioritize GWAS variants using scXpresso. Considering the 
expression of CACNA1I, we noticed that one variant, which overlaps with an ENCODE cis-
regulatory element, is predicted to have a large effect, while another variant was predicted 
to have a negligible effect. The latter could be because the variant might affect splicing (which 
our model does not differentiate), the variant could be in a linkage disequilibrium block with 
other (associating) variants, or the variant could affect a more distant gene. 

Comparing the predicted effects for mutations by scXpresso to other sequence-to-expression 
prediction models quantitatively is difficult as the true effect of these variants on specific 
brain regions and/or cell populations is unknown. We have shown that for a previously 
identified variant close to CACNA1I gene, both Xpresso and scXpresso predict an increase 
in expression, while ExPecto and Enformer predict a marginal effect. Note that, ExPecto 
and Enformer are not trained on specific brain regions, or cell population-specific data, but 
contain bigger structures such as the frontal cortex or frontal lobe. Hence, these models miss 
the cell population-specific effect of this variant. Training these models on cell population-
specific scRNA data could be an interesting next step.

Using our model, it is not possible to test trans-effects of variants as our model uses a limited 
genomic sequence region as input. Consequently, we could only test two variants related to 
Schizophrenia for CACNA1I, out of the 18 variants associated with CACNA1I [34]. Ideally, we 
would increase the length of the input sequence, however, it is not easy to learn long-range 
interactions using CNNs. The Enformer model, which uses a 200kb sequence as input, tackles 
this problem by combining transformers and CNNs [11]. Unfortunately, the Enformer model 
predicts CAGE reads instead of expression values, so we cannot trivially extend it or use it 
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for single-cell data. An alternative approach might be to use their well-trained model to get 
an embedding for every input sequence and use this embedding to predict cell population-
specific expressions.

We input the DNA sequence and five half-life time features to scXpresso. However, certain 
transcript features, which are related to the half-life time features, can predict zeros in the 
scRNA-seq data [36]. Whether the observed zeros in scRNA-seq data are technical artifacts 
or biologically informative is an ongoing debate. We believe that the zeros are biologically 
informative since binarized data can be used for downstream analysis, resulting in comparable 
results to those obtained using scRNA-seq counts [37]. Furthermore, we would like to highlight 
that the performance of the cell population-specific pseudobulk models when trained on 
sequence-only information is also not much lower as compared to both sequence and half-
life time features (Figure S9). This observation supports our conclusion that the half-life time 
features are not biasing the models towards scRNA-seq artifacts.

Two future enhancements that we envision that could improve the performance of our model 
are related to the half-life time features and the output of the model. Currently, we extract five 
features from the mRNA sequence to approximate the half-life time. Recently, a new model, 
Saluki, was developed that could predict mRNA degradation rates directly from the sequence 
of the gene [38]. Replacing the currently used features with those predicted by the Saluki 
model, or combining these features, might improve the cell population-specific predictions. 
A second potential improvement relates to the current output of scXpresso, which is the 
pseudobulk expression for every cell population, i.e. the average gene expression across all 
cells from that population. However, this ignores the variance within the population. It might 
be more beneficial to predict the distribution of gene expression across each population, 
instead of just one aggregated value. 

In summary, we have shown the potential of predicting cell population-specific gene 
expression from genomic sequences by leveraging the resolution of single-cell data, opening 
the way for many new developments in this area. 

6.5 Code and data availability
The pseudobulk expression values, trained models, and predictions are available on Zenodo: 
https://doi.org/10.5281/zenodo.7044908. 

The code to reproduce the figures, train your own models, show the effect of variants, and do 
in-silico saturation mutagenesis can be found on GitHub: https://github.com/lcmmichielsen/
scXpresso. 
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Alternative splicing contributes to molecular diversity across brain cell types. RNA-binding 
proteins (RBPs) regulate splicing, but the genome-wide mechanisms remain poorly 
understood. Here, we used RBP binding sites and/or the genomic sequence to predict 
exon inclusion in neurons and glia as measured by long-read single-cell data in human 
hippocampus and frontal cortex. We found that alternative splicing is harder to predict in 
neurons compared to glia in both brain regions. Comparing neurons and glia, the position of 
RBP binding sites in alternatively spliced exons in neurons differ more from non-variable exons 
indicating distinct splicing mechanisms. Model interpretation pinpointed RBPs, including 
QKI, potentially regulating alternative splicing between neurons and glia. Finally, using our 
models, we accurately predict and prioritize the effect of splicing QTLs. Taken together, our 
models provide new insights into the mechanisms regulating cell-type-specific alternative 
splicing and can accurately predict the effect of genetic variants on splicing.

7.1 Introduction
During RNA splicing, introns are removed from the precursor mRNA. Different combinations of 
exons result in different mRNA isoforms, which may differ in function [1–3]. This mechanism, 
called alternative splicing, causes most of the complexity of human tissues and cell types; 
approximately 95% of all human genes are believed to be spliced in multiple ways [4,5]. 
Across different tissues, the brain has the highest levels of exon skipping and one of the most 
distinctive patterns of alternative splicing [6]. 

Alternative splicing (AS) is partly regulated by RNA-binding proteins (RBPs) [7,8], which 
can activate or inhibit spliceosome assembly or splice site recognition. RBFOX proteins, for 
instance, instruct neuronal differentiation by regulating splicing of NIN which in turn affects 
the localization of the corresponding Ninein protein [9,10]. Additionally, splicing regulation 
often relies on the combinatorial binding of multiple RBPs. For example, the inclusion of 
exon 9 of Gabrg2 is dependent on the binding of RBFOX and NOVA [11]. Splicing simulators 
have taken into account splicing enhancers and silencers [12] and a splicing code for tissue-
dependent splicing has been elaborated [13–15]. However, the genome-wide mechanisms 
regulating splicing across different cell types remain largely unknown.

Long-read sequencing is an emerging technology that has made important contributions to 
RNA biology since its inception [16–20]. Long-read single-cell and single-nuclei sequencing 
in fresh [21,22] and frozen [23] tissue allows the study of alternative splicing at the cell-
type level in the brain and other complex tissues. Such analyses revealed that most mouse 
genes show differential isoform expression across at least one pair of cell types, regions, 
and/or developmental time points in the brain [24,25]. In accordance with prior studies [26–
28], single-nuclei isoform RNA sequencing (SnISOr-Seq) of the human adult frontal cortex 
revealed that exons associated with autism spectrum disorder (ASD) are variably included 
across cell types [23]. 

To understand (alternative) splicing mechanisms and the influence of RBPs, several 
computational methods have been developed. AVISPA, for instance, predicts alternative 
splicing in four tissues by extracting regulatory features, such as the length of the exon or 
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the presence of RBP binding sites, from the mRNA sequence [14]. Other methods, including 
SpliceAI, DNABERT, Pangolin, and MTSplice, directly use the pre-mRNA sequence as input 
to their models [29–32]. However, none of the current methods predict cell-type-specific 
alternative splicing in a genome-wide manner, which is crucial for understanding splicing in 
heterogeneous tissues such as the brain. 

Here, we present two methods to predict cell-type-specific exon inclusion using the pre-
mRNA sequence and/or the presence of RBP binding sites in the hippocampus and frontal 
cortex. After training our machine learning models, we used model interpretation to study 
the mechanisms governing cell-type-specific exon inclusion. We focused on variable exons 
which we defined as exons for which the inclusion rates differ in neurons and glia. We found 
that the presence of RBP binding sites in variable exons compared to non-variable exons 
differs more in neurons than in glia. This indicates that the alternative splicing mechanism 
in neurons deviates more from the non-variable mechanism. Furthermore, we show that 
some RBPs, including QKI, have a big effect on exon inclusion in glia, that the regions close to 
the splice sites are most important for predicting exon inclusion, and that we can correctly 
predict and prioritize the effect of splicing QTLs and prioritize their effects.

7.2 Results

7.2.1 Predicting exon inclusion is more difficult in neurons than 
in glia

To define the rules governing exon inclusion in distinct cell types, we trained different models 
to predict cell-type-specific percent spliced-in (Ψ) values in the brain (Figure 1A). We focused 
on neurons and glia in two human brain regions, hippocampus (HPC) and frontal cortex 
(FC), and calculated Ψ values per exon by aggregating single-nuclei isoform RNA sequencing 
(SnISOr-Seq) reads from multiple individuals (Table 1, Methods) [23,25]. Most exons are 
either almost always included (Ψ ≈ 1) or excluded (Ψ ≈ 0) in an mRNA molecule (Figure 1B, 
S1A-C). Furthermore, most exons have similar values in neurons and glia (Figure 1C, S1D). 
We define exons with different inclusion rates in neurons and glia ( | | .�� glia neur� � 0 25 ) as 
variable exons. In HPC and FC, 2,244 and 943 exons are variable respectively (Table 1). In 
contrast to non-variable exons, these values show a uniform distribution of Ψ (Figure 1B). 
Even though we used a minimum of 10 reads per exon to calculate a Ψ value (Methods), we 
believe these values are reliable. When comparing the Ψ values of the variable exons per 
individual in neurons and glia, there is a clear separation between neurons and glia (Figure 
S2). Since most exons are almost always included, we downsampled these exons when 
training the models (Methods).

First, we used a logistic regression (LR) model to predict Ψ values from RBP binding sites of 
122 RBPs from the ENCODE project [8]. These RBPs were measured in two cell lines (K562, 
HepG2), implying that this data is not brain cell-type-specific. We generated a count matrix, 
indicating the number of binding sites per exon for each RBP. Since the position of an RBP 
can influence its function [33,34], we split these binding sites based on six possible binding 

Thesis_LM_final.indd   155Thesis_LM_final.indd   155 24-04-2024   18:55:1624-04-2024   18:55:16



156

CHAPTER 7

locations: 1) upstream of the exon (up to 400bp), 2) overlapping the 3’ splice site, 3) in the 
exon, 4) spanning the exon, 5) overlapping the 5’ splice site, and 6) downstream of the exon 
(up to 400bp) (Figure 1A). 

Any model is strongly influenced by its training data. A model trained on all exons might 
be dominated by the rules governing non-variable exons, while cell-type-specific inclusion 
effects might be overlooked. Therefore, we trained three different models using 10-fold 
cross-validation and either: A) all exons (LRall), B) exons with | | .�� glia neur� � 0 1 (LRvar0.1), or 
C) exons with | | .�� glia neur� � 0 25 (LRvar0.25) as training data (Table S1). When evaluating the 
models on all exons, LRall showed the highest median Spearman correlation between true 
and predicted Ψ values on all four datasets followed by LRvar0.1 and LRvar0.25 (Figure 1D, S3). 
On hippocampal variable exons, however, LRvar0.1 outperformed the other models (Figure 
1D). The performance increase when training on variable exons indicates that the splicing 
mechanism in these variable exons is somewhat different from the mechanism in non-variable 
exons. In the frontal cortex, the performance on neurons increased when the training data 
became more specific, while the performance on glia decreased (Figure S3). Surprisingly, 
we predicted Ψ values more accurately in glia than neurons in both brain regions (median 
Spearman correlation of 0.54 vs. 0.23 in HPC, and 0.57 vs. 0.10 in FC) (Figure 1D-F, S3-4). 
Furthermore, using LRvar0.25 to predict Ψ values of all exons resulted in lower performance 
for neurons compared to glia in both HPC and FC (Figure 1D, S3). Indicating that the learned 
splicing patterns for variable exons in neurons do not generalize to non-variable exons - likely 
because the underlying molecular grammar is different in the two exon sets. 

7.2.2 Primary sequence is more informative for neurons

The RBP binding sites used to train the logistic regression models were measured in immune 
and liver cancer cell lines and are thus not cell-type specific  - and may reflect glial more 
than neuronal splicing as shown above. Furthermore, some RBPs known to be important 
for splicing in the brain, such as NOVA1 and NOVA2, are not included in the ENCODE data 
[35,36]. To test whether this caused the low performance of the models on neurons, we 
trained sequence-based models - which are independent of any RBP data and comparable 
across different cell types. We adapted the Saluki model, a hybrid convolutional and recurrent 
neural network that uses mRNA sequences to predict mRNA degradation rates [37], to predict 
Ψ values (Methods) (Figure 1A, S5). The input sequence is 6,144 bp with the exon of interest 
centered in the middle. Since deep learning models need large training datasets, we trained 
a model using all exons (DLall-seq) and a model using exons with | | .�� glia neur� � 0 1 (DLvar0.1-seq). 

Individuals Measured exons Variable exons

HPC [25] 6 68,215 2,244

FC [23] 2 56,427 943

Table 1. The number of measured exons (exons for which at least 10 reads were sequenced in both the neurons and 
glia) and variable exons (| | .��

glia neur�
� 0 25) in the hippocampus (HPC) and frontal cortex (FC). 
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Figure 1. Overview and performance of the Ψ prediction models. A) Schematic overview of the models used to 
predict cell-type-specific Ψ values. B) Distribution of Ψ values of glia in the hippocampus. C) Distribution of ΔΨglia-neur 
for the hippocampus. D) Performance of the different models during 10-fold cross-validation on all exons and the 
variable exons in glia and neurons in the hippocampus. E-F) Scatterplot showing the predictions of LRvar0.1 for variable 
exons in glia and neurons. 
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In HPC, the LRall model outperformed the DL models when evaluating performance on 
all exons, but on variable exons, DLall-seq outperformed LRvar0.1 for neurons (Figure 1D). For 
the variable exons in neurons, primary sequence is more informative than the measured 
ENCODE-derived RBP-binding-site data. Even though the performance increases for neurons, 
the performance gap between neurons and glia remains. Thus, neuronal splicing patterns 
probably have more complex regulation mechanisms that we do not capture with the 
current models. In FC, the performance of the DL models on all exons and variable exons was 
considerably lower compared to HPC (Figure 1D, S6). This is likely related to the size of the 
training data which is significantly smaller for FC than HPC (Table S1). 

Next, we combined sequence and RBP binding sites by adding a channel for every RBP which 
indicates the presence of a binding site (DLall-seq-RBP) (Figure 1A, S5). This outperformed the LR 
models and resulted in the best-performing model for glia (median Spearman correlation of 
0.54 vs. 0.57 in HPC, and 0.57 vs. 0.65 in FC) (Figure 1D, S3, S6). This improvement indicates 
that we can capture regulatory information from sequence beyond those present in RBP data 
alone. For neurons, however, DLall-seq-RBP had lower performance than DLall-seq, again confirming 
that the ENCODE RBP data is more informative for glia than neurons. 

We also trained DL models that do not use splice sites or only use RBPs as input for the 
neurons and glia in HPC to understand how the input channels affect performance (Figure 
S7). Omitting splice sites only slightly decreased the performance, which indicates that the 
model can recognize the splice sites quite easily from the sequence itself. For glia, using the 
RBPs as the only input feature results in a comparable performance to the LRall model (median 
Spearman correlation of 0.55 vs. 0.54) and an even better performance than sequence and 
splice sites only (median Spearman correlation of 0.49). However, for neurons, we observe 
the opposite; using RBP binding sites reduces performance compared to the DLall-seq model 
(median Spearman correlation of 0.23 vs. 0.30). 

7.2.3 Exon inclusion mechanisms are conserved between human 
and mouse

As cell-type-specific alternative splicing is partially conserved between humans and mice [25], 
we hypothesized that adding mouse data to our model would increase performance. We 
combined human HPC data with mouse HPC [25]. Since mouse FC data is not available, we 
combined human FC with data from the mouse visual cortex (VIS). While these two cortical 
regions are not identical, they do share many common characteristics. Especially in mouse 
HPC, few exons are variable (528) compared to VIS (1,404) (Table S2, Figure S8). Although 
DLall-seq-RBP performed best in glia, we only trained models with sequence and splice sites as 
input channels (DLall-seq-m, DLvar01-seq-m) since RBP binding sites were not measured in mouse 
cell lines. In HPC, the performance on variable exons of both cell types slightly increased by 
adding the mouse data (Figure 1D). On FC, the performance on all exons increased as well 
(Figure S6), supporting our hypothesis that not enough training data was available to train 
these models on human exons alone. Similar to the human data, glial Ψ values were easier to 
predict than neuronal ones in mice (Figure S9). 
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7.2.4 The splicing mechanisms in neurons diverged more than in 
glia

Our above results show that neuronal Ψ values are harder to predict than glial regardless of 
the model or input data. Hence, splicing mechanisms in neurons might be different than in 
glia and more complex. However, Ψ values could be biased, making it easier to predict in glia. 
To exclude the latter, we used the hippocampus data to assess whether glia and neurons are 
similar in terms of 1) Ψ -value distributions, 2) heterogeneity within each cell type, and 3) 
variation across individuals. 

First, comparing Ψ distributions, more values are close to 0 or 1 in glia than neurons (Figure 
S10AB), which is most apparent for the non-variable exons (two-sided Kolmogorov-Smirnov 
test, p-value < 2.2e-16). For variable exons (Figure S10B), however, both distributions are 
not different (two-sided Kolmogorov-Smirnov test, p-value = 0.44). Thus, data distribution 
differences cannot explain all observed differences between neurons and glia. 

Second, to quantify the heterogeneity within a cell type, we measured the difference in Ψ 
values between finer cell-type classifications. For neurons, we compared the inhibitory and 
excitatory neurons, and for glia, we compared oligodendrocytes and astrocytes. Within glia, 
we have more variable exons (| | .�� � 0 25) compared to neurons (831 vs. 745). In neurons, 
more exons have an extreme difference (| | .�� � 0 5) (92 vs. 70) (Figure S10CD). Compared 
to the total exon number defined for both cell types in neurons and glia (28,296 and 27,047 
respectively), both numbers are small. Thus, this cannot explain the difference in performance 
between neurons and glia. 

Third, to compare the variance across individuals for glia and, separately, for neurons, we 
calculated Ψ values per individual instead of using the aggregated counts. We calculated the 
variance for an exon only if ≥3 individuals have ≥10 reads for that exon in both neurons and 
glia. For both non-variable and variable exons, the variance is higher in glia (two-sided paired 
Wilcoxon signed-rank test, p-value = 1.3e-28 and 8.9e-5 respectively) (Figure S10E). Thus, the 
data do not explain observed differences in performance between neurons and glia. 

We then hypothesized that splicing mechanisms regulating variable exons in neurons 
might differ from the non-variable exons. To test this hypothesis, we compared the RBP 
binding profiles between variable and non-variable exons in neurons and glia (Figure 2A). 
We performed these comparisons for exons with a high (≥ 0 5. ) and a low Ψ value (< 0 5. ) 
separately. The binding profiles between variable and non-variable exons differ significantly 
more in neurons compared to glia in HPC (Figure 2B) and FC (Figure 2C). Non-variable exons 
with high Ψ values more often have a binding site at the 3’ splice site for splicing factors such 
as U2AF1, U2AF2, and SF3B4 compared to non-variable exons with low Ψ values (Figure 2D, 
S11AB). In glia, variable exons show a similar pattern (Figure 2E, S11AB). However, binding 
sites for these splicing factors cannot differentiate between exons with high and low Ψ values 
in neurons (Figure 2F, S11AB), indicating that these RBP binding sites are likely not used in 
neurons. In the hippocampus, PTBP1 differs the most between neurons and glia (Figure S11C). 
PTBP1 is a position-dependent RBP: binding within or upstream of an exon represses splicing 
while binding downstream activates splicing in HeLa cells [38]. Our RBP binding profiles 
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contradict these known mechanisms. In HeLa cells, however, PTBP1 is highly and PTBP2 is 
lowly expressed, while this is vice versa in the hippocampus (Figure S12). PTBP1 RBP binding 
profiles obtained from non-brain cell lines are thus less likely to reflect splicing mechanisms 
in the hippocampus. Strikingly, the binding profile of PTBP1 in variable exons in neurons is 
again considerably different from the variable exons in glia and the non-variable exons. There 
is no position-dependent regulation and no difference between exons with a high and low Ψ 
value. In the hippocampus, only one RBP, HNRNPC, showed the opposite pattern with larger 
differences in glia compared to neurons (Figure S11D). 

7.2.5 Interpretation of LR models reveals cell-type-specific splicing 
mechanisms

To further pinpoint the factors underlying differences in splicing between glia and neurons, 
we analyzed the coefficients of the logistic regression models. These coefficients reflect the 
importance of each RBP binding position in regulating cell-type-specific splicing. We compared 
the coefficients of four models for the hippocampus (two cell types, and two training sets) 
and focused on features present in at least 50 exons and with a coefficient > 0.05 in at least 

Figure 2. The difference in RBP binding profiles between non-variable and variable exons. A) Schematic over-
view showing how to generate the RBP binding profiles of non-variable (| | .��

glia neur�
� 0 25) and variable 

( | | .��
glia neur�

� 0 25 ) exons in neurons in the hippocampus. We generated these RBP binding profiles for every RBP 
and split the exons based on their Ψ value (threshold = 0.5) and their variability. We calculated the mean-squared 
error (MSE) between the profiles in non-variable and variable exons. We do this for the exons with a high and low Ψ 
value resulting in four comparisons per RBP. B-C) Boxplot showing the MSE between the RBP profiles in non-variable 
and variable exons in neurons (blue) and non-variable and variable exons in glia (orange) for the B) hippocampus 
and C) frontal cortex. Every point in the boxplot is one RBP. P-values are calculated using a two-sided paired Wilcox-
on signed-rank test. D-F) Binding profile of U2AF1 in D) non-variable exons, E) variable exons in glia, and F) variable 
exons in neurons. 
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one model (191 out of 732 features). The model coefficients first cluster based on which 
exons are used during training (all vs. variable) (Figure 3A). This clustering indicates that the 
mechanisms for non-variable and variable exons, represented by the LRall and LRvar0.1, differ 
more than the cell-type-specific mechanisms. The RBPs cluster into two groups: features with 
positive and features with negative coefficients (Figure 3A). As expected, splicing repressors, 
which are part of the heterogeneous nuclear ribonucleoproteins (hnRNP) family [39], have 
a largely negative weight in all models (Figure 3B). PTBP1, for which we saw a difference 
between the non-variable and variable exons in the hippocampus, is a member of the hnRNP 
family and has a potential position-dependent effect in glia based on the RBP binding profiles 
(Figure S11C). The LRvar0.1-glia-HPC model correctly learned this effect: PTBP1 binding at the 3’ 
splice site and within the exon have coefficients of -0.05 and 0.01 respectively. The model 
coefficient for PTBP1 binding at the 3’ splice site is among the ten features that differ the 
most between glia and neurons (Figure 3C, LRvar0.1-glia-HPC vs LRvar0.1-neur-HPC) which indicates a 
potential cell-type-specific effect corresponding to the established switch between PTBP1 
and PTBP2 [40–42]. 

Figure 3. Interpretation of the logistic regression models. A) Heatmap showing the coefficients for the RBP-location 
features in the different logistic regression models. The input features are filtered using a minimum of 50 RBP sites 
and a value of at least 0.05 in one of the models. The values are clipped between  -0.2 and 0.2. B) Heatmap showing 
coefficients of hnRNPs in the different models. C) Heatmap showing the top 10 cell-type-specific input features with 
the biggest difference between HPC-glia (var) and HPC-neur (var). D-E) Binding profiles of QKI in variable exons in 
neurons and glia.
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QKI binding at the 3’ splice site has the strongest cell-type-specific effect in the hippocampus 
(model coefficient = -0.15 vs. 0.12 for glia and neurons respectively), which reflects differences 
in the RBP binding profiles (Figure 3D-E). In glia, a binding site that overlaps the 3’ splice site 
leads to lower inclusion rates, while the opposite happens in neurons. In the scRNA-seq data, 
QKI has higher expression in glia compared to neurons in the hippocampus (Wilcoxon rank 
sum test, adj. p-value < 2.2e-16) (Figure S13). Both observations correspond to the known 
mechanism of QKI, which inhibits splicing by competing with the core splicing machinery 
[10,43]. In mice, QKI is important during myelination and oligodendrocyte differentiation 
[44,45]. Its role in the human brain is less studied, but a role in oligodendrocyte formation 
and Schizophrenia has been suggested [46,47]. Interestingly, variable exons are enriched for 
QKI binding sites compared to non-variable exons (Fisher’s exact test, adj. p-value = 1.6e-13). 
Besides the 3’ splice site, QKI binding downstream of an exon is also in the top 10 cell-type-
specific features. The effect of QKI downstream of an exon is the opposite compared to QKI 
binding at the 3’ splice site, which indicates a potential position-dependent effect of QKI. 
Such position-dependent regulation of QKI has been shown in lung cancer [48] but, to our 
knowledge, not in the brain. 

In contrast to QKI, most of the cell-type-specific RBPs identified using our LR models are 
neither differentially expressed nor differentially spliced. Exceptions are STAU2, which is 
upregulated in neurons (Wilcoxon rank sum test, adj. p-value < 3.39e-16), and EWSR1, which 
is differentially spliced (Table S3). The latter could indicate that distinct isoforms of EWSR1 
influence RNA splicing in different ways. 

7.2.6 The sequence close to the splice sites is most important for 
predicting exon inclusion 

Given that the RBP-binding-site data is not brain-specific and that it lacked measurements 
from some key RBPs, we set out to identify sequence features that influence Ψ predictions 
in the deep learning models. We used in-silico saturation mutagenesis (ISM, Methods) 
to systematically predict how nucleotide substitutions in the input sequence affect the 
predicted Ψ value [49–52]. Since DLvar0.1 performed considerably worse than DLall (Figure 1D), 
we focused on interpreting DLall for glia in the hippocampus, which had higher prediction 
accuracy than neurons, instead of looking for cell-type-specific effects. 

Since ISM is computationally expensive, we mutated the input sequence of the 9,929 exons 
with | | .�� glia neur� � 0 1  instead of all exons. The ISM score indicates how much a mutation 
increases or decreases the predicted Ψ value compared to the average prediction at that 
position for that sequence (Methods). As expected, mutations around the splice sites and 
within the exon strongly affect the predicted Ψ value (Figure 4A). These results reflect the 
known importance of the splice site’s consensus sequence to be recognized by the splicing 
machinery. The two nucleotides before and after the exon  -the AG acceptor and GU donor 
dinucleotides- have the strongest predicted effects. Looking at the maximum absolute 
ISM score, only mutations within a range of 50bp upstream of the 3’ splice site and 150bp 
downstream of the 5’ splice site have a value > 0.1 (Figure S14). This is in line with a recent 
computational model that predicted human splice sites using a window of 400bp on each 
side of the splice site and obtained an overall accuracy of 96% [53]. However, smaller values 
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of >0.05 could be observed across almost the whole input sequence. Although distant 
splicing regulators have been reported [54], potential variability in distant motifs and/or their 
position may prevent their detection by our model.

Besides the region around the exon of interest, we observed higher-than-average ISM scores 
within nearby exons and their flanking region (Figure S15). The enrichment of RBP binding 

Figure 4. Interpretation of the deep learning model for glia in the hippocampus. A) Average absolute ISM score 
across the 9,929 exons. The mutations within the exons are binned in 300 bins. The zoomed-in plot ranges from 
200bp upstream of the 3’ splice site to 200bp downstream of the 5’ splice site. B) Mutation profile for an exon in 
XRN2. The colors of the exons below the profile indicate the exon of interest and the neighboring exons which have 
an ISM score in the top 10. C) Single-cell long reads for XRN2. Each line is a single cDNA molecule. The bottom black 
track shows the Gencode annotation. D) Mutation profile for an exon in TPCN1. In the exon, a motif corresponding 
to RBM45 is found. E) Schematic overview of the sQTL analysis. F) Scatterplot showing the predicted effect for each 
variant. The color of the points indicates the distance to the closest splice site. A grey dot means that a variant falls 
within the exon of interest. The numbers in black and red indicate the number of predictions in a quadrant when no 
threshold and a threshold of 0.005 are used respectively. G) ISM scores for two variants related to the same exon of 
RARS1. A negative effect, corresponding to the positive slope, is predicted for the first variant. A smaller, but positive 
effect is predicted for the second variant.
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sites in these regions could explain the higher scores. Alternatively, our model potentially 
recognized coordinated events between exons. To test this, we selected the top 10 exons 
with the highest absolute ISM scores within their neighboring exons and visualized the 
single-cell long reads from our data that span both exons (Methods). These reads can inform 
whether the two exons pair non-randomly (thus in coordination [21,23,55,56]) or randomly. 
Exon 24 in XRN2 appeared twice in the top 10 list with two neighboring exons (exons 21 
and 22) strongly influencing its Ψ value (Table S4). All three exons (21, 22, and 24) have a 
Ψ value of around 0.8 and the exons are either all included or all excluded in the single-
cell long-read data, suggesting these exons are mutually associated (Figure 4BC). Mutations 
affecting the inclusion of one of these exons will most likely affect the other exons as well. In 
the top 10 scores, four other cases could pinpoint exon coordination events (Figure S16-19). 
In the remaining four cases, the exons pair randomly, so there is no evidence of exon-exon 
coordination (Figure S20-23). 

To further interpret sequences with a high ISM score, we used TF-MoDISco [57] to identify 
motifs in sequences with large effects on exon inclusion. Since the region around the splice 
site had the highest ISM scores, many of the top motifs identified by TF-MoDISco correspond 
to the consensus splice sites and associated motifs, including the well-known AG acceptor 
dinucleotide, the poly-pyrimidine tract (PPT) upstream of the exon, and the extended splice 
donor motif with the GU dinucleotide (Supplementary File 1, Figure S24). We also found 
motifs that match known RBP binding motifs, which were not in our input data for the LR 
model, and hence could not be tested for cell-type-specific effects. For example, we found 
a motif corresponding to RBM45 in exon 12 of TPCN1 (Figure 4D, Table S4), which seems 
to promote exon inclusion. RBM45 regulates constitutive splicing and can probably activate 
or repress the inclusion of an exon, but the exact mechanisms are currently unknown [58]. 
Taken together, characterizing important sequence features from DL models can identify 
splicing regulators beyond those we can identify based on available RBP measurements. 

7.2.7 Prioritizing the effect of splice QTLs using the DL models

So far, we showed how LR and DL model interpretations can be used to reveal the regulatory 
mechanisms of RBPs governing cell-type-specific exon inclusion. Besides this fundamental 
knowledge, we can use our DL models to predict the effects of genetic variants on splicing. 
Accurately predicting these effects can help prioritize variants of interest. To test the rele-
vance of our model predictions for genetic variants, we used splicing quantitative trait loci 
(sQTLs) from the hippocampus data from GTEx v8 [59]. Variants in this dataset are linked to 
intron-excision ratios instead of exon inclusion. We extracted introns and their corresponding 
variant(s) that span an exon in our data and predicted the effect of the variant(s) on that exon 
(Figure 4E). In total, 326 variants are within the input range of our model. These variants 
correspond to 122 introns and 158 exons. Some introns thus span multiple exons and most 
introns have multiple variants linked. For every variant, a slope indicates whether the corre-
sponding intron is excised more or less compared to the reference allele. We expect negative 
slopes to correspond to an increased Ψ value of the exon of interest which would result in 
�ISMalt ref� � 0. Conversely a positive slope would result in�ISMalt ref� � 0 (Figure 4E). How-
ever, more complex scenarios, such as a variant affecting adjacent exons, may arise as well. 
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Using our model, we predicted an effect (| | .�ISMalt ref� � 0 005) for 71 out of 326 variants 
which corresponds to 61 of the 122 introns. For 83% (59 out of 71) of these variants, our 
model predicts the expected effect correctly (Figure 4F, S25). Most of the variants with an 
effect are very close to the splice sites: 74.6% are within the exon or a distance of 15bp to 
either the 3’ or 5’ splice site. These cases most likely affect exonic splicing enhancers or the 
binding of U1 and U2 snRNA. For 14 of 61 introns where our model did not predict an effect, 
all corresponding variants are outside of the intron itself. Here, the splicing of adjacent exons 
is most likely altered instead of our exon of interest. For 2 of these 14 exons, all variants are 
even outside of the gene itself.

Three exons have multiple corresponding variants with a predicted effect. For exon 15 in 
ZNF880 (Table S4), three variants have a predicted expected effect. The other two exons, 
however, have two variants with a contradicting predicted effect. In both cases, the variant 
with the biggest predicted effect is in line with the slope of the sQTL of the intron. For exon 
25 in RARS1 (Table S4), for instance, variant one is located in the exon (168,498,025; G → 
T) and variant two is located before the exon (168,497,923; C → T). For variant one, our 
model predicted the expected effect, while our model predicted the opposite for variant two 
(Figure 4G). Variant one, the variant with the biggest and correctly predicted effect, is located 
in a binding site for SRSF1 according to eCLIP data [8]. RNA recognition motif 2 (RRM2) of 
SRSF1 interacts with the GGA motif. A G → T mutation in the first nucleotide will thus hinder 
the binding of SRSF1 [60]. Variant two is located in a stretch of G’s. At this location, there’s 
a binding site for ELAVL1, a protein regulating mRNA stability, and hnRNP family member 
HNRNPK, which tends to repress splicing [8]. Using the DL models, we can thus correctly 
predict the effect for most sQTLs and prioritize their effects. 

7.3 Discussion
We trained logistic regression and deep learning models to predict cell-type-specific exon 
inclusion in human brain samples. Since this is the first attempt to leverage long-read single-
cell sequencing data for this task, we can use our models to decipher the grammar underlying 
cell-type specificity of splicing. Using model interpretation, we pinpointed interesting RBPs, 
such as QKI, that could drive differential splicing between neurons and glia. Furthermore, we 
show that the location of RBP binding sites differs more between variable and non-variable 
exons in neurons compared to glia. This indicates that the splicing mechanisms controlling 
exon inclusion in neurons are more different compared to the general mechanism. 

For most RBPs, RBP binding profiles of non-variable exons with high and low Ψ values 
showed distinct patterns. Considering U2AF1 for example, exons with a high Ψ value are 
more likely to have a binding site close to the 3’ splice site compared to exons with a low 
Ψ value. These RBPs behave differently in variable exons in neurons, and for most RBPs the 
difference between exons with a low and high Ψ value is missing. These features are thus 
not informative for neurons, which explains the low performance of the logistic regression 
models on neurons. The U2AF heterodimer, composed of U2AF1 and U2AF2, is believed to 
bind every polypyrimidine tract and AG dinucleotide in 3’ splice site regions [61–63]. Binding 
may not happen on specific sites repressed by other factors. The potential binding sites are 
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still there, but they might be used by a competing RBP in neurons. Interestingly, most RBPs are 
not differentially expressed or differentially spliced between neurons and glia. For these RBPs, 
post-translational modifications, such as phosphorylation, might differ between neurons and 
glia and could change their function [64,65]. Furthermore, RBP binding sites measured in 
non-brain cell lines might not always be representative of splicing in the hippocampus and 
frontal cortex. The expression of RBPs can differ dramatically between the non-brain and 
brain tissues as was seen for PTBP1.

The deep learning models, however, also perform poorly on the variable exons in neurons. 
The model trained on all exons focuses only on learning the general splicing mechanisms, 
and the model trained on the variable exons might not have enough training data. In glia, 
the model trained on all exons performs well on the variable exons. Again indicating that the 
variable exons in glia follow the rules of the general splicing mechanisms more. The worse 
performance of the DLall-seq models on neurons, in combination with the distinct RBP binding 
profiles, supports our conclusion that the splicing mechanisms in variable exons in neurons 
diverged from the mechanisms in non-variable exons. 

A potential explanation, in line with the diverged RBP binding sites, is that splicing in neurons 
is less sequence-dependent. Other factors, such as chromatin features and polymerase speed 
[66–79], RNA methylation [80–82] as well as other modifications, and transcription factor 
binding sites [83], influence splicing as well. These features might explain the difference 
between neurons and glia. Altered chromatin accessibility or RNA methylation, could, for 
instance, explain why certain RBP binding sites are not used in neurons anymore. Furthermore, 
neuronal genes - by definition more expressed in neurons - are more susceptible to missplicing 
[84]. While we did not focus on missplicing, this indicates that splicing mechanisms might be 
different in neurons. Also, the gene expression of human neurons diverged faster from other 
primates compared to glia [85]. A similar divergence could have occurred with the splicing 
mechanisms.

For the deep learning model, we tested the effect of different lengths for the input sequence. 
Even though all lengths showed a very similar performance, we used a relatively long input 
sequence (6,144 bp) which had the advantage that we could predict the effect of more 
mutations. When predicting the effect of sQTLs, however, we predict a strong effect mainly 
for variants close to the exon of interest. The region close to the splice sites, however, still 
contributes the most to the predictions. This is in contrast to splice site predictions from 
SpliceAI, for which an input sequence of 10kb significantly outperforms 400 bp [29]. SPLAM, 
however, outperforms SpliceAI while only using 400 bp [53]. Of note, this does not preclude 
the mechanistic influence on splicing decisions by motifs further upstream. Rather, these data 
suggest that such distant RNA binding sites are highly variable regarding their position to the 
exon. This variability in position could prevent the model from detecting such motifs. Similar 
observations have been made for models that predict gene expression. Even though the best-
performing model uses a long input sequence (196kb), only one-third of the receptive field is 
used during predictions and distal enhancers are not captured by the model [51,86].

Another possible advantage of a longer input sequence is that it would be possible to look 
at coordinated events. Exons in the human brain are often mutually associated or mutually 
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exclusive [23,55,87–89]. Such events can even be cell-type-specific. For instance, two 
neighboring exons in WDR49 are perfectly coordinated in astrocytes only [23]. Using our 
model, the ISM scores within neighboring exons are higher than the ISM scores of the rest of 
the sequence. For some exons, these higher scores indeed indicate that there is exon-exon 
coordination. Since exon-exon coordination is so common, predicting such events might be 
more beneficial than focusing on individual exons. 

Furthermore, the longer input sequence enables predicting the effect of more sQTLs. 
However, most variants the model predicted an effect for are near the splice sites. For these 
variants, the model obtained a high accuracy (83%) and could be used to prioritize the effect 
of sQTLs as well. Nonetheless, a limitation of the current DL models is that they lack cell-type 
specificity. The DL models need substantial training data, so training on all exons yielded 
the highest performance. As a consequence, these models focused on the general splicing 
mechanisms and yielded better performance on variable exons in glia than neurons.

In conclusion, to increase our understanding of (alternative) splicing in the brain, we trained 
two types of models to predict exon inclusion in neurons and glia of the hippocampus and 
frontal cortex. Ideally, these models make perfect predictions such that they can be used 
in the clinic for predicting the effects of variants or for personal splicing predictions. The 
performance of our models, however, is not optimal yet. Nevertheless, we show how model 
interpretation yields important biological discoveries including the different mechanisms in 
neurons and glia. This demonstrates the potential of using long-read single-cell data for this 
task. 

7.4 Methods

7.4.1 Calculating cell-type-specific Ψ values

For the human data, we combined SnISOr-Seq data from 6 individuals for the hippocampus 
and 2 individuals for the frontal cortex (Table 1). For the mouse data, we combined ScISOr-
Seq2 data from two mice for the hippocampus and two mice for the visual cortex (Table S2). 
Scisorseqr was used to map and align reads to GRCh38 for human and mm10 for mouse to 
identify splice sites for each dataset separately [24]. We used IsoQuant to correct the splice 
sites [90]. Using all exons appearing as an internal exon in a read, we calculated:

●	 The number of long-read molecules containing this exon (both splice sites included): 
Xin 

●	 The number of long-read molecules assigned to the same gene as the exon, which 
skipped the exon but includes 50 bases on both sides: Xout 

●	 The number of long-read molecules supporting the acceptor of the exon and ending 
on the exon: Xacc In

●	 The number of long-read molecules supporting the donor of the exon and ending 
on the exon: Xdon In

●	 The number of long-read molecules overlapping the exon: Xtot
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Non-annotated exons with one or two annotated splice sites, ≥70 bases of non-exonic (in the 
annotation) bases, were excluded as intron-retention events or alternative acceptors/donors 
We then calculated: 

●	 �overall
X X X

X X X X
in accIn donIn

in accIn donIn out
� � �

� � �

●	 �acceptor
X X

X X X
in accIn

in accIn out
� �

� �

●	 �donor
X X

X X X
in donIn

in donIn out
� �

� �
 

If 0.02 ≤ Ψi ≤ 0.98 where i ∈ {overall,acceptor,donor} in the pseudo-bulk data, the exon was 
kept. Next, we filtered exons based on the number of reads. We only calculate Ψoverall for 
a cell type in a certain brain region if at least 10 long-read UMIs are sequenced across the 
different individuals (Xtot ≥ 10). Since individuals of different datasets were sequenced using 
a different read depth, we normalized the read counts by dividing it by the total number of 
reads for an individual before calculating Ψoverall. We then calculated Ψoverall for each cell type 
(Ψneur and Ψglia) for the hippocampus and frontal cortex. If there were not enough reads, for 
that exon and cell type Ψoverall was set to “NA”. We used the cell-type labels defined in the 
original datasets. For neurons, we grouped the inhibitory and excitatory neurons. For glia, we 
grouped the oligodendrocytes, astrocytes, and oligodendrocyte precursor cells. 

7.4.2 Downsampling cell-type-specific Ψ values

In the human data, many exons (30,273 out of 68,215 for the hippocampus and 45,680 
out of 56,427 for the frontal cortex) have Ψneur > 0.9, Ψglia > 0.9, and | | .�� glia neur� � 0 03. 
We downsampled these to 5,000 to make the distribution less skewed towards one. In the 
mouse hippocampus data, 18,351 out of 23,857 exons have Ψ = 1 in neurons and glia, so we 
downsampled these to 5,000 as well. For the visual cortex, 27,073 out of 48,515 exons have 
Ψneur > 0.9, Ψglia > 0.9, and | | .�� glia neur� � 0 03. We downsampled these to 5,000.

7.4.3 RBP-binding-site data

We downloaded the eCLIP data for 122 RBPs from the ENCODE portal (https://www.
encodeproject.org/metadata/?status=released&internal_tags=ENCORE&assay_title=e-
CLIP&biosample_ontology.term_name=K562&target.investigated_as=RNA+binding+pro-
tein&biosample_ontology.term_name=HepG2&assembly=GRCh38&type=Experiment&files.
processed=true). From this file list, we used the BED files that store the peaks per replicate. 
We merged peaks from different replicates or cell lines to ensure one BED file per RBP. 

7.4.4 Logistic regression models

The logistic regression model is implemented as one fully connected layer between the input 
features (the RBP binding sites) and the output (the Ψ value) with a sigmoid activation function 
to scale the output between 0 and 1. The models are single-task models which means that 
a separate model was trained for each cell type. When training the model, we use a binary 
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cross entropy loss with L1 and L2 regularization (alpha = 0.001, and L1-ratio = 0.7), a learning 
rate of 0.005, and a batch size of 256. As input for the logistic regression models, we counted 
the number of peaks in the BED files for every RBP and exon at six locations: 1) upstream of 
the exon (maximum 400 bp away from the splice site), 2) overlapping the 3’ splice site, 3) 
within the exon, 4) spanning the exon, 5) overlapping the 5 splice site, and 6) downstream of 
the exon (maximum 400 bp away from the splice site). Since we used the eCLIP data of 122 
RBPs and there are 6 possible locations, this resulted in 732 input features for every exon 
(Figure 1A). If peaks of different replicates were overlapping, we counted those peaks only 
once. The logistic regression model is implemented in PyTorch Lightning [91,92]. 

7.4.5 Deep learning models

We adapted the architecture of the Saluki model [37] by removing one convolutional layer, 
shortening the maximum sequence from 12,288 to 6,144 bp, and changing the final activation 
function to a sigmoid activation function (Figure S5). The exon of interest was centered in 
the middle of the input sequence. The input channels of the model depend on the input 
features used (sequence, splice sites, and/or RBP binding sites). For the sequence, we one-
hot encoded the sequence which results in four channels. If the splice sites were used as 
input, this added an extra channel that indicates the start and end of the exon of interest. 
When adding the RBP binding sites, we add a channel for every RBP which one-hot encodes 
whether there is a binding site in any of the replicates of the eCLIP data for that RBP based on 
the BED files. Similar to the logistic regression models, we trained a model for every cell type 
separately. Even though we adapted the Saluki model, we retrained all the weights in the 
model. When adding the mouse data, we adapted the same approach as Saluki and made the 
model a multi-head model where the weights of the convolutional and recurrent neuronal 
network layers are shared and the weights of the fully connected layer are species-specific 
(Figure S5).When training the model, we used the same hyperparameters, including the 
learning rate, batch size, etc., as the original Saluki model (Figure S5). For the hippocampus, 
we tested how input-sequence length and the number of convolutional layers affect the 
performance. The benefit of a longer input sequence is that the model can learn how long-
distance interactions of regulatory elements affect splicing, but these models contain more 
parameters and are more difficult to train. The different models performed similarly which 
indicates that the most important information is close to the splice sites of the exon (Figure 
S26). The model using 6,144 bp and five channels performed slightly better for both neurons 
and glia and therefore we used it during all the experiments. 

7.4.6 Evaluation

We evaluated the performance of the models using a 10-fold cross-validation. We ensured 
that the same set of exons was always in the same test fold such that we could compare 
the performance of the models. Exons from the same gene were always in the same test 
fold. When training the deep learning models on human and mouse data simultaneously, we 
ensured that human-mouse homologs were in the same test fold. We used biomart to obtain 
the human-mouse homologs. Some exons do not have any binding sites measured for any 
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of the RBPs (5,560 exons in the hippocampus and 3,462 in the frontal cortex). This could for 
instance happen if certain genes were not expressed in the cell lines when the RBP binding 
sites were measured. Since the logistic regression model could not predict a Ψ value for these 
exons, we filtered these from the training set used for the logistic regression model and from 
all test sets (to enable a fair comparison between the logistic regression and deep learning 
models). The deep learning models are thus trained on more exons (Table S1). In the test set, 
there are 1,827 and 1,072 variable exons for the hippocampus and frontal cortex respectively.
We trained all models five times for every fold and averaged the predictions across these five 
runs. We evaluated the performance by calculating the Spearman correlation between the 
true and predicted Ψ values. 

7.4.7 RBP binding profiles

We generated RBP binding profiles by calculating the fraction of exons with an RBP binding 
site at every location (400 bp upstream of the exon - 400 bp downstream of the exon). Since 
exons have variable lengths, we bin the exons in 50 bins and only include exons that are 
at least 50 bp long in the analysis. We also filter out exons without RBP binding sites. We 
calculate these profiles for four different groups of exons: 1) non-variable exons with Ψ ≥ 0.5, 
2) non-variable exons with Ψ < 0.5, 3) variable exons with Ψ ≥ 0.5, and 4) variable exons 
with Ψ < 0.5. To define how much the mechanisms in the variable exons diverged from non-
variable exons, we calculate the mean-squared error between the RBP binding profiles of the 
non-variable and variable exons. We do this for the exons with a high and low Ψ separately.

7.4.8 RBP expression data

We used the 10X scRNA-seq data from the same samples to look at the gene expression 
of the RBPs that were measured using the eCLIP data. We used Seurat v4 for the analysis 
[93]. To create the heatmap in Figure S13, we normalized the data per dataset using log 
normalization and a scale factor of 1e6. Next, we averaged the expression over all the cells. 
We plotted the log(x + 1) values. We used the FindConservedMarkers() function 
using the default parameters (including Bonferroni multiple testing correction) from Seurat 
to find differentially expressed RBPs between neurons and glia. This tests for differentially 
expressed genes per individual and merges the results.

7.4.9 Interpretation of logistic regression model

For the interpretation of the logistic regression models, we looked at the coefficients of the 
input features. To obtain one value per input feature, we average the coefficients of the 10 
folds and 5 runs per fold (so the average across 50 models in total). We only compared the 
coefficients across models, if there were at least 50 exons with a binding site for that input 
feature. 
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7.4.10 In-silico saturation mutagenesis

We used in-silico saturation mutagenesis (ISM) to interpret how nucleotide substitutions in 
the input sequence affect the predictions. We did this for 9,929 exons using the DLall-seq-m 
model trained on glia in the hippocampus. For every exon, we used the fold for which that 
exon was in the test set. We averaged the predictions across the 5 runs. The ISM score is 
defined as follows:

 ISMe p n pred e p n pred e p ii A C G T, , , , , , , ,, , ,
� �

��� �1

4
 

where e is the exon we predict the Ψ value for, and p and n are the position and nucleotide 
used at that position respectively. To visualize the ISM scores across the input sequence, we 
binned the upstream region, exon, and downstream region since they all had varying lengths.

7.4.11 Analysis of neighboring exons

We compared the ISM scores at the exon of interest, the neighboring exons, and the remaining 
sequence. We extracted the locations of annotated exons from GENCODE v35 [94]. The ISM 
scores for the exon of interest and the neighboring exons include the flanking sequence of 
150 bp upstream and downstream of the exon. Next, we selected ten exons on the positive 
strand with the highest absolute ISM scores in a neighboring exon. We visualized the long-
reads spanning both exons using ScisorWiz [95]

7.4.12 Motif discovery

We used TF-MoDISco-lite (v2.2.0) [57] to discover motifs using the ISM scores as input. When 
creating the report, we compare the found motifs to the position weight matrices from 
oRNAment which includes motifs found using RNAcompete and RNA-bind-n-seq experiments 
[8,96,97]. TF-MoDISco-lite is designed for DNA instead of RNA and tries both the forward 
strand and its reverse complement when finding seqlets (parts of the sequence with high 
ISM scores). We used the results file, to check whether the forward or reverse complement 
was used to generate a motif. We kept forward motifs if at least for 25 sequences the 
forward strand was used. We kept the reverse motif if at least for 25 sequences the reverse 
complement was used. 

7.4.13 sQTL analysis

We used the sQTLs defined for the hippocampus in GTEx v8. These variants are linked to 
introns instead of exons. We predicted the effect for variants that are linked to an intron that 
spans an exon in our dataset (Figure 4E). For most introns, there are multiple variants linked 
to them. We only predicted the effect for the best variants (the variants with the lowest 
p-value for an intron). For most introns, there were still more than two after this filter. 
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7.4.14 Exon naming

We named exons after their position in the transcript by counting their position in the GTF 
file. A conversion from exon names to genomic coordinates can be found in Table S4.

7.5 Code and data availability
The Ψ values, predictions, and RBP binding profiles are available on Zenodo: https://zenodo.
org/doi/10.5281/zenodo.10669666. The code to reproduce the figures, and train your 
logistic regression or deep learning models can be found on GitHub: https://github.com/
lcmmichielsen/PSI_pred.
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Single-cell RNA sequencing (scRNA-seq) has massively increased our understanding of tissue 
compositions, cellular interactions, and developmental processes. Especially in heterogeneous 
tissues such as the brain, this single-cell resolution led to many newly discovered cell types, 
insights into the specificity of cell types for particular brain regions or layers, and the 
proportions of cell types across the brain [1–5]. Besides generating massive datasets, smaller 
publicly available datasets are combined into tissue-specific reference atlases, such as the 
Human Lung Cell Atlas [6]. However, analyzing individual datasets or creating these atlases is 
still mainly done using unsupervised methods. 

In this thesis, we introduced several supervised methods to solve two broad tasks: 1) 
automatic cell-type identification in scRNA-seq data, and 2) understanding cell-type-specific 
(post-)transcriptional regulation. In part I, we benchmarked different cell-type classification 
methods for scRNA-seq data (chapter 2), developed scHPL (chapter 3) and treeArches 
(chapter 4) to automatically match cell types across datasets to construct a reference atlas 
with corresponding cellular hierarchy, and developed TACTiCS to match cell types across 
species (chapter 5). In part II, we showed how scRNA-seq with the corresponding cell-type 
labels can improve our understanding of transcriptional regulation (chapter 6) and alternative 
splicing (chapter 7) by developing cell-type-specific feature-prediction models. However, for 
both tasks, several challenges remain that we will discuss in the sections below.

8.1 What is a cell type?
In simple eukaryotic organisms, such as C. Elegans, every adult consists of the same amount 
of cells - 959 in hermaphrodites and 1031 in males [7,8]. This low and consistent number of 
cells allows researchers to study every cell individually. Studying more complex organisms, 
such as humans, similarly is challenging since we consist of approximately 37 trillion cells, 
and this number varies across individuals due to, for instance, differences in height [9]. 
Categorizing all these cells into cell types enhances our understanding of cells and facilitates 
effective communication and comparison of results across studies. 

Is this discrete grouping that we use repeatedly throughout this thesis optimal, or would a 
continuous spectrum be beneficial? At least at a high level, cell types seem separate categories. 
For example, a muscle fiber differs from a neuron regarding its function, morphology, and the 
genes expressed. Still, both arise from the same stem cell and become continuously more 
specialized. At what stage during development would one consider these cells differentiated 
enough to call them different cell types?

Furthermore, due to perturbations, such as stimulations or pathogens, cells can transition to 
another cell type or state. Should these possible responses be considered in our definition as 
well [10]? In the pancreas, some alpha cells can, for instance, change into beta cells, which 
can occur naturally in persons with diabetes [11]. Also in the immune system, naive T-cells 
transition into memory cells after activation [12]. Both are considered different cell types 
with a gradient containing the transitioning cells in between. 
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Despite this evidence for a more continuous spectrum, we still focus on cell-type classification 
since most downstream methods require cells from the same cell type or cell-type labels as 
input. This downstream analysis can be a relatively simple task, such as testing for differentially 
expressed genes between healthy and diseased cells of the same cell type. But for more 
complex tasks, such as detecting expression quantitative trait loci (eQTLs), the cell-type labels 
may be beneficial as well. A cell-type-specific eQTL analysis can reveal the effect of variants 
that were previously hidden when analyzing the complete sample [13]. Also in Chapters 6 and 
7, we rely on the cell-type labels to improve our understanding of transcriptional regulation 
and alternative splicing. Especially for heterogeneous tissues, using this increased cell-type-
specific resolution improved the performance. 

A potential alternative could be to redevelop current downstream methods such that they 
produce similar results, but do not rely on cell-type labels. An example is Milo, which tests for 
differential abundance between two samples [14]. First, cells are assigned to neighborhoods 
and afterwards, Milo tests whether cells from a certain condition are enriched or depleted 
within each neighborhood. Cell-type labels are unneeded during this analysis and will thus 
not bias the results. For the sequence-based models, this problem could be overcome by 
predicting the features at the cell instead of cell-type resolution as is done by scBasset [15] 
and seq2cells [16]. As datasets grow bigger and bigger, this might become computationally 
too expensive at some point. However, the results of cell-type-agnostic methods might be 
harder to interpret. As a solution, cells could be aggregated into cell types again solely for 
interpretation. Then, at least the cell-type labels do not bias the analysis itself.

Since cells exist in a continuous spectrum, a second alternative is moving from binary to fuzzy 
cell-type labels. Using fuzzy labels, a cell can belong to multiple cell types simultaneously with 
different probabilities. A probability above zero for two cell types can indicate that a cell is 
transitioning between these two. For scRNA-seq data, this approach has been explored for 
clustering methods [17,18], but not yet for classification methods. During classification, the 
posterior probability could easily indicate which cell types a cell belongs to.

8.2 Consistent cell-type classification
Since most downstream methods rely on discrete cell-type labels, cells must be labeled con-
sistently to enable combining or comparing information from different datasets. For instance, 
the sc-eQTL consortium aims to find how variants affect gene expression in immune cell 
types by combining datasets from multiple labs containing hundreds of individuals [19]. In 
every individual, the cell types should thus be defined similarly. A high precision in cell-type 
annotations might be even more important than a high accuracy. Since unsupervised meth-
ods are subjective and time-consuming, an automatic supervised approach is needed here.

Ideally, such a classifier is trained on a reference atlas that combines data from enough 
individuals so that inter-individual variation and rare cell types are captured. The cell types 
in such a reference atlas should not be characterized as in a periodic table but in a hierarchy 
[20]. A hierarchical classifier divides the classification problem into smaller subproblems 
which improves the classification performance. We showed that a hierarchical linear SVM 
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outperforms a flat linear SVM in Chapter 3. Besides, when using a hierarchical classifier, 
users can easily choose their resolution of interest. Using Azimuth [21], an easy-to-use web 
portal, cells can also be annotated at different resolutions. However, these resolutions are 
not connected in a hierarchy. Consequently, a cell can, for instance, be labeled as a CD8+ 
T-cell and CD4+ memory T-cell, which is impossible and therefore inconsistent.

Reference atlases exist for many human and mouse tissues and can be downloaded from 
platforms, such as Azimuth [21] or CELLxGENE [22,23]. For these reference atlases, either 1) 
one big dataset is used (e.g. the human PBMC reference containing eight individuals [21]), 
2) multiple datasets are combined and re-annotated manually (e.g. the human lung cell 
atlas containing 107 individuals from 14 datasets [6]), or 3) multiple annotated datasets are 
combined using scHPL and their labels are manually refined (e.g. the mouse kidney atlas 
combining data from 59 mice from 8 datasets [24]). 

However, many datasets are still annotated using unsupervised methods even though a 
reference atlas for that specific tissue is available [25–27]. Why is this the case? Researchers 
might not trust supervised methods since their performance is not perfect yet. In Chapter 
2, however, we showed that cell-type classification is a relatively easy problem at a low 
resolution since almost all methods perform (nearly) perfectly. The performance of most 
methods drops when increasing the resolution or complexity of the data. For most reference 
atlases, however, the performance is not benchmarked per resolution, making it hard to 
know how consistent label transfer will be. 

Another complicating factor is the batch effects between the reference atlas and the 
unlabeled dataset. Batch effects are technical variations between datasets due to variations 
in labs, protocols, sequencing depths, etc. This technical variation has to be removed while 
preserving the biological variation. This is a complex problem since the effects are usually 
non-linear and the ground truth is unknown. Benchmark studies showed that methods 
including scVI [28] and Harmony [29] perform well for this task. For most methods, however, 
parameters have to be tuned for optimal performance, which might decrease the usability.

Interestingly, researchers are imperfect when annotating a scRNA-seq dataset manually as 
well. In Chapter 3, we applied scHPL to multiple annotated PBMC datasets, which resulted 
in a hierarchy with unexpected edges. Visualizing marker genes in the individual datasets 
indicated that cells had been wrongly annotated in the original datasets. Amongst others, 
the authors had swapped two cell-type labels, which explained the incorrect hierarchy. We 
experienced that scHPL is a great tool for discovering such misannotations. Cells can be 
relabeled based on this unexpected hierarchy.

Besides being subjective and time-consuming, another problem with manual annotation 
is a missing naming convention for cell types. CELLxGENE resolves this problem by forcing 
users to use Cell Ontology terminology when uploading their datasets. A downside of the 
Cell Ontology is that this hierarchy only consists of names but lacks information about the 
cell type, such as its function, morphology, or transcriptomic profile. Consequently, cell types 
from different datasets with the same name could have a different underlying expression 
pattern. The most straightforward solution might seem to add marker genes to Cell Ontology, 
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which can be used to identify cell types. In the benchmark in Chapter 2, however, we noticed 
that methods relying on marker genes perform worse during cell-type identification, most 
likely because of the sparsity of scRNA-seq data.

Ideally, all datasets from a similar tissue in CELLxGENE are not harmonized based on the 
names but based on the expression profile in a data-driven way using tools such as scHPL 
and treeArches. These tools can be enhanced by reflecting (inter-individual) variation in the 
width of a branch and allowing for fuzzy labels at the leaf nodes. The growing amount of data 
poses a challenge and as such both methods must become computationally more efficient. 
The resulting reference atlases should be updated continuously with newly generated data. 

8.3 Automatically detecting new cell types
Even though many reference atlases are being constructed [6,21,24], these will never be 
complete since rare and diseased cell types might be missing. In the human lung cell atlas, 
for instance, six rare cell types were not defined in any of the individual datasets and had 
not been defined in the lung before, but could be discovered when combining multiple 
datasets [6]. Besides, new viruses, such as SARS-Cov-2, can infect cells from different tissues 
and perturb these cells [30,31]. Identifying such diseased cell types is important for drug or 
therapy development. Adding such data to a reference atlas leads to new insights in both 
healthy and diseased samples. 

To detect rare or diseased cell types automatically, a classifier needs a rejection option. 
In Chapter 2, we benchmarked the rejection options of scRNA-seq cell-type identification 
methods by removing a cell type completely from the data. Here, we noticed that the linear 
SVM, which had the highest classification performance, performed poorly since it relied 
on the posterior probability. In Chapters 3 and 4, we introduced scHPL and improved the 
rejection option by incorporating distance metrics. This improved the detection of unknown 
cells but still did not perform perfectly. Diseased cells, such as inflamed monocyte-derived 
macrophages, are immediately rejected (labeled “unknown”) instead of labeled as internal 
node (e.g. macrophages), which would be preferred. 

A hierarchical classifier that can return internal nodes of the hierarchy, so-called “partial 
rejection”, is beneficial according to a recent benchmark [32]. Here, they only evaluated how 
a full or partial rejection option affected the classification performance and not whether 
new cell types could be detected. Detecting new cell types using reference atlases should 
be benchmarked properly in upcoming benchmarks. An example experiment would be to 
remove one cell type from the training data and test whether the classifier correctly rejects 
cells from that cell type in the test dataset.

Ideally, cell-type identification and data integration methods should be benchmarked 
simultaneously. Data integration considerably influences whether these new cell types can 
be detected. During data integration biological variation should be preserved and technical 
variation should be removed. If the difference between a diseased and healthy cell type of 
two samples is seen as a technical artifact, this difference can be removed as well. Regardless 
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of the cell-type identification method used afterwards, the cell type will never be detected as 
a new cell type. Ideally, a diseased and healthy sample are sequenced together, so there are 
no batch effects. As such the difference between biological and technical variations between 
the reference atlas and these new samples can be detected more easily [33]. 

8.4 Towards cell-type-specific sequence-based models
Studying tissues untargeted and at a high resolution using scRNA-seq has led to the discovery 
of many new cell types. Since these cell types are defined based on their transcriptional 
profile, the underlying transcriptional regulation must be unique for every cell type. In 
Chapter 6, we aimed to unravel these cell-type-specific mechanisms by training sequence-
based models using scRNA-seq data with the corresponding cell-type labels to predict gene 
expression. In Chapter 7, we focused on alternative splicing mechanisms by training models 
to predict cell-type-specific exon inclusion in the brain. Interpreting which motifs guide the 
model to make certain predictions, increases our understanding of the biological mechanisms 
underlying transcriptional regulation and alternative splicing. 

Furthermore, these models aid in understanding how variants affect a cell type. Approximately 
95% of the GWAS variants fall in non-coding regions [34]. Usually, only an association between 
a group of variants and a trait is discovered, but it remains unclear which variant causes a trait 
due to linkage disequilibrium, through which mechanism a variant acts, and which cell type is 
most disrupted. Models that use the genome to predict, for instance, transcription or splicing 
in a cell-type-specific way can address these problems.

In Chapter 6, we showed that cell-type-specific models always outperformed the tissue-
specific models when predicting cell-type-specific gene expression levels. The difference in 
performance becomes most apparent if a tissue and cell type are dissimilar. Even though this 
increase was significant, we were unable to pinpoint what caused this increase such as cell-
type-specific transcription factor binding sites. 

To reliably predict the cell-type-specific effect of variants, our models, as well as other state-
of-the-art sequence-based models, such as Enformer [35] and SpliceAI [36], have to overcome 
several limitations: 1) missing cell-type-specificity, 2) ignoring distal regulatory elements, and 
3) incorrectly predicting personalized gene expression. I will discuss these limitations and 
potential solutions in the coming sections. 

8.5 Missing cell-type-specificity of sequence-based models
The cell-type-specificity or tissue-specificity of sequence-based models is not thoroughly 
evaluated. Enformer is trained on 5,313 genomic tracks including different tissues and 
measurement techniques such as CAGE and DNase-seq reads, and predicts different values 
for very dissimilar cell types, such as keratinocytes and monocytes. However, an evaluation 
for more similar tracks, such as 77 CAGE tracks related to the brain, is missing. We noticed 
the same for Pangolin [37], a model to predict tissue-specific splicing. Pangolin outperformed 
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SpliceAI, the tissue-agnostic model, but no tissue-specific regulatory elements were discussed. 
Ideally, the models should be evaluated using cell-type-specific variants, but the ground truth 
for most variants is missing. A missing ground truth makes proper benchmarking impossible. 
A feasible alternative is to evaluate the models’ performance on marker genes for specific 
cell types or whether the models correctly learn in which cell type a gene is higher expressed 
using for instance the log-fold change or the difference between two cell types.

Exploiting the current models as pre-trained models could be beneficial for learning cell-type-
specific mechanisms. Some cell types are so similar that it is challenging to train a complete 
model with millions of parameters from scratch to learn these subtle differences. Seq2cells, 
for instance, extracts an embedding from Enformer and trains a simple model, a multi-layer 
perceptron, to predict the cell-type-specific gene expression [16]. Seq2cells assumes that all 
regulatory features are stored in the embeddings and the simpler model only needs to learn 
how to combine these during the fine-tuning step.

8.6 Limited context of sequence-based models
In our models, the region around the transcription start site and splice sites contributed most 
to the predictions of gene expression and exon inclusion. These regions are most important for 
transcription and splicing since RNA polymerase and the spliceosome bind there respectively. 
However, this signal dominates the predictions entirely, and as such the predicted effect of 
mutations further away is negligible. While mutations in enhancers far away or deep intronic 
variants can cause a disease [38–40]. A recent benchmark showed that other models do not 
capture distal regulatory elements either [41]. Even though Enformer inputs a sequence of 
196kb, it incorrectly predicts the effect of variants in distal regulatory elements. 

For splicing models, this has yet to be investigated, but since the model architectures and 
training strategies are similar, we can assume the models suffer here as well. Interestingly, 
SpliceAI, which inputs 10kb around the splice sites, was recently outperformed by Splam [42], 
a model that only uses 400 bp, indicating that regions further away might not be needed to 
predict splicing accurately. However, SpliceAI and Splam are both classification methods that 
predict whether a certain site is a splice junction instead of how often the junction is used. 
Distal variants may affect the latter more.

8.7 Sequence-based models are data-hungry
Current sequence-based models still suffer from limited training data. For instance, only a few 
genes are cell-type-specific or regulated by distal regulatory elements. Few examples in the 
training data make it difficult for models to learn the patterns. However, the number of genes 
or exons in the human genome limits the size of the training data, so this cannot be easily 
increased. To overcome this, several models, including Enformer, are trained on human and 
mouse data simultaneously to increase the size of the training data [35,43]. The weights of 
the first layers in the model are shared across the species exploiting that regulatory elements 
are partially conserved. The final fully connected layer is species-specific to allow learning of 
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species-specific mechanisms as well. In Chapter 7, we applied this trick when training exon-
inclusion models, which improved their performance. In general, the current models only 
combine human and mouse, while data from more closely related species is available. For 
instance, for a cell-type-specific model predicting gene expression in the brain, scRNA-seq 
data from five primates could be combined [44]. 

8.8 Personalized sequence-based models
The third limitation is that current sequence-based models cannot predict variation of gene 
expression across individuals yet [45,46]. Ideally, for every individual genome, these models 
would predict the correct expression level, i.e. making personalized predictions. However, 
when evaluating models using variants found across individual genomes, Enformer predicted 
the wrong direction of effect for one-third of the tested variants. We did not evaluate making 
personalized predictions in our models, but since our models rely on models that were 
evaluated in the benchmark, we assume they incorrectly predict this as well.

State-of-the-art expression and splicing prediction models are all trained on the reference ge-
nome. However, the predicted genomic features were measured in individuals with specific 
variants in their genomes. Recent benchmarks suggested that training on individual genomes 
could improve personalized gene expression predictions [45,46]. Training on individual ge-
nomes might enhance learning of the effect of distal regulatory elements as well because of 
the increased variance in the training data. Recently, BigRNA [47] was released which predicts 
gene expression in 51 tissues for 70 individuals. For each individual, both haplotypes are in-
put to identical instances of the model and the output is combined. Their results look prom-
ising, but the personalized gene expression task has not been evaluated for this model yet. 

8.9 What should sequence-based models predict?
One might also question whether predicting gene expression or exon inclusion directly from 
the sequence is the most optimal approach to reach the goal of predicting the effect of 
mutations. Measurement techniques are noisy and the measured gene expression does not 
directly reflect how often a gene is transcribed in a cell. A gene can be highly transcribed but 
rapidly degraded as well due to (aberrant) splicing isoforms. Also in healthy tissues or cell 
types, alternative splicing is a way to control gene expression levels [48,49]. If the inclusion 
of an exon activates nonsense-mediated decay, this exon might not be measured or only in 
low levels even though it was originally highly included. An alternative would be to train the 
models on RNA-sequencing data of samples where nonsense-mediated decay was blocked, 
but this data is scarce.

Instead of predicting gene expression directly, it might be beneficial to predict intermediate 
layers, such as chromatin accessibility. Models trained to predict cell-type-specific chromatin 
accessibility in the drosophila brain [50] or for human melanoma [51] could be used to 
design cell-type-specific enhancers [52]. These models are not limited by the number of 
genes in the genome but are trained on differentially accessible regions between cell types. 
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This increased the size of the training data and might explain the cell-type-specificity of the 
models. However, the designed enhancers are only 500 bp. The effect of these enhancers 
was tested using a luciferase assay which means that these enhancers are inserted before the 
transcription start site of the luciferase gene. The effect of distal enhancers is thus not tested 
during the design. ExPecto [53] and their recent successor ExPectoSC [54] try to overcome 
this by first predicting 2002 regulatory features for the 40kb region around the transcription 
start site and using this to train a simpler model to predict gene expression. 

An alternative could be to input chromatin accessibility measurements, or similar regulatory 
features, to the models [55]. This improves the cell-type-specificity since the input data 
is different now for every cell type or tissue. Another advantage is that these models can 
extrapolate to new cell types as long as chromatin accessibility data is available for that cell 
type. Evaluating the effect of variants or model interpretation becomes more complicated 
though since the input sequence cannot be in-silico mutated anymore as it is unknown how 
a mutation will affect the chromatin accessibility input track.

ENCODE-rE2G [56] combines a cell-type-specific input with an interesting training strategy: 
instead of training on healthy data, the model is trained on perturbation data. This logistic 
regressor predicts whether an element, a part of the DNA sequence, regulates a gene based 
on extracted features from the cell-type-specific DNase and cell-type-agnostic features, such 
as the distance between the element and the gene of interest. Since the model learns the 
relation between an element and the gene, it is not biased towards features close to the 
transcription start site and learns distal regulatory elements as well. However, they assume 
that a variant that falls in an element is always linked to the gene, and the direction of effect is 
not predicted. Instead of using the extracted features, a sequence-based model with a similar 
training strategy might be beneficial here. 

8.10 Final remarks
Single-cell RNA sequencing has revolutionized our understanding of heterogeneous tissues. 
In this thesis, we presented several methods to automatically identify cell types in scRNA-seq 
data and use scRNA-seq data to increase the resolution of current sequence-based models. 
However, when analyzing scRNA-seq data, or using this data to train sequence-based models, 
we should remember that cells or cell types are not isolated compartments, but that they 
interact and communicate with each other. Many spatial transcriptomics datasets are now 
generated to focus on this. Ideally, we integrate this spatial information into the sequence-
based models.

Not only do neighboring cells influence which genes are expressed, but the expression of 
other genes in a cell can influence the gene of interest as well. A more holistic view might 
be needed instead of predicting the expression of one gene at a time. Also when predicting 
splicing, we know that exons are very often coordinated. Using a different transcription start 
site might determine the complete isoform used. Predicting the inclusion of individual exons 
might be very difficult or near impossible in such a case. Ideally, sequence-based models 
would predict the expression of multiple isoforms simultaneously in the future.
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