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SUMMARY
Tissues in the human body, and especially the brain, are heterogeneous and consist of many 
different	cell	 types.	Cell	 types	can	be	defined	by	 the	genes	expressed	 in	a	cell,	and	 these	
expressions	 are	 controlled	 by	 unique	 cell-type-specific	 (post-)transcriptional	mechanisms.	
Diseases	 can	 perturb	 these	 control	 mechanisms,	 and	 thus	 affect	 cell	 types	 differently.	
Consequently,	understanding	which	cell	type	is	affected	by	a	disease	is	crucial	 information	
when	developing	new	drugs	or	treatments.	Single	nucleotide	polymorphisms	(SNPs)	in	the	
DNA can be associated with diseases, but approximately 95% of such SNPs fall in the non-
coding region of the DNA. Usually, it is unknown whether these variants are causal, and which 
gene	and	cell	type	they	affect.	Studying	gene	expression	at	the	single-cell	level	could	reveal	
such disrupted mechanisms.

Current advances in single-cell RNA sequencing have greatly improved our understanding of 
heterogeneous	tissues	and	led	to	the	discovery	of	many	new	cell	types.	However,	this	new	
technology	also	presents	computational	challenges.	For	example,	when	comparing	datasets	
from	different	cohorts	(e.g.,	across	many	different	individuals)	it	is	important	to	annotate	cells	
consistently.	To	ensure	such	consistency,	it	is	essential	to	annotate	cells	using	classification	
methods	 instead	 of	 currently	 practiced	 clustering	methods	 that	 are	 subjective	 and	 time-
consuming.	To	facilitate	this	transition,	in	this	thesis,	we	benchmarked	cell-type	classification	
methods	 and	 developed	 computational	methods	 to	 automatically	 build	 reference	 atlases	
using	multiple	already	labeled	single-cell	datasets.	We	show	how	such	reference	atlases	can	
be	deployed	to	automatically	annotate	new	(unlabeled)	single-cell	datasets,	as	well	as	how	
they	can	be	updated	continuously	using	new	labeled	single-cell	datasets.	

Having	 established	 a	more	 consistent	 cell-type	 annotation	 across	 single-cell	 datasets,	 we	
return	to	establishing	a	relationship	between	mutations	and	their	effect	on	gene	expression.	
Hereto,	we	study	sequence-to-expression	models	that	can	predict	an	alteration	in	expression	
when	a	mutation	is	observed.	Given	that	gene	expression	mechanisms	are	cell-type	specific,	
we introduce sequence-to-expression models based on single-cell data to make cell-type-
specific	predictions.	We	use	these	models	to	show	that	certain	mutations	are	indeed	changing	
gene	expression,	increasing	our	understanding	of	transcriptional	regulation.

Next	to	differences	in	gene	expression	between	cell	types,	cell	types	might	express	different	
isoforms	of	 a	 gene	 (i.e.,	 different	 combinations	of	 exons	 included	 in	 an	mRNA	molecule).	
Again,	 this	 can	 be	 altered	 by	 mutations	 in	 the	 DNA.	 Advances	 in	 single-cell	 long-read	
sequencing	enabled	measuring	which	cell	types	express	which	isoforms.	We	leveraged	this	
data and propose a novel approach in which we adapted our sequence-to-expression models 
to	predict	cell-type-specific	isoform	usage.	This	opens	a	new	avenue	for	looking	at	cell-type-
specific	alterations.

Taken	together,	we	introduce	a	variety	of	computational	methods	to	enhance	single-cell	RNA	
sequencing data to improve our understanding of cellular heterogeneity. 

7
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SAMENVATTING
Weefsels	in	het	menselijk	lichaam,	in	het	bijzonder	de	hersenen,	zijn	heterogeen	en	bestaan	
uit	veel	verschillende	celtypen.	Celtypen	kunnen	worden	gedefinieerd	door	de	genen	die	tot	
expressie	komen	in	een	cel,	wat	gecontroleerd	wordt	door	unieke	celtypespecifieke	(post-)
transcriptionele	mechanismen.	Ziekten	kunnen	deze	controlemechanismen	verstoren	en	dus	
een	 verschillend	effect	hebben	op	 celtypes.	Begrijpen	welk	 celtype	wordt	beïnvloed	door	
een	ziekte	is	daarom	cruciaal	bij	het	ontwikkelen	van	nieuwe	medicijnen.	Single-nucleotide-
polymorfismen	(SNPs)	in	het	DNA	kunnen	geassocieerd	worden	met	ziekten,	maar	ongeveer	
95% van de SNPs maakt deel uit van het niet-coderende DNA. Meestal is het onbekend of een 
SNP	de	oorzaak	van	een	ziekte	is	en	welk	gen	en	celtype	wordt	beïnvloed.	Het	bestuderen	van	
genexpressie op celniveau zou zulke verstoorde mechanismen kunnen onthullen.

De	vooruitgang	in	single-cell	RNA	sequencing	heeft	ons	begrip	van	heterogene	weefsels	sterk	
verbeterd en geleid tot de ontdekking van veel nieuwe celtypes. Deze nieuwe technologie 
brengt	echter	ook	computationele	uitdagingen	met	zich	mee.	Bij	het	vergelijken	van	datasets	
van	verschillende	cohorten	(bijvoorbeeld	van	veel	verschillende	individuen)	is	het	belangrijk	
om	cellen	consistent	te	annoteren.	Om	deze	consistentie	te	garanderen,	is	het	essentieel	om	
cellen	te	annoteren	met	behulp	van	classificatiemethoden	in	plaats	van	de	huidige	cluster-
methoden,	die	subjectief	en	tijdrovend	zijn.	Om	deze	overgang	te	vergemakkelijken,	hebben	
we	in	dit	proefschrift	classificatiemethoden	voor	celtypen	gebenchmarkt	en	computationele	
methoden	ontwikkeld	om	automatisch	referentie-atlassen	te	bouwen	met	behulp	van	meer-
dere	 reeds	gelabelde	 single-cell	datasets.	We	 laten	 zien	hoe	dergelijke	 referentie-atlassen	
kunnen	worden	ingezet	om	automatisch	nieuwe	(ongelabelde)	single-cell	datasets	te	annote-
ren	en	hoe	ze	continu	kunnen	worden	bijgewerkt	met	behulp	van	nieuwe	single-cell	datasets.	

Met	de	meer	consistente	annotatie	van	celtypen	in	single-cell	data,	gaan	we	terug	naar	de	
relatie	 tussen	mutaties	en	hun	effect	op	genexpressie.	Hiertoe	bestuderen	we	 sequentie-
naar-expressie modellen die een verandering in expressie kunnen voorspellen wanneer een 
mutatie	 wordt	 waargenomen.	 Aangezien	 genexpressie	 celtypespecifiek	 is,	 introduceren	
we	 sequentie-naar-expressiemodellen	 getraind	 op	 single-cell	 data	 om	 celtypespecifieke	
voorspellingen	te	doen.	We	gebruiken	deze	modellen	om	aan	te	tonen	dat	bepaalde	mutaties	
inderdaad	genexpressie	veranderen,	wat	ons	begrip	van	transcriptionele	regulatie	vergroot.

Naast verschillen in genexpressie tussen celtypen, kunnen celtypen ook verschillende 
isovormen	van	een	gen	tot	expressie	brengen	(d.w.z.	verschillende	combinaties	van	exonen	
in	een	mRNA-molecuul).	Ook	dit	kan	worden	veranderd	door	mutaties	in	het	DNA.	Single-cell	
long-read sequencing maakt het mogelijk om expressie van isovormen in celtypes te meten. 
We	gebruiken	deze	data	en	stellen	een	nieuwe	aanpak	voor	waarbij	we	onze	sequentie-naar-
expressiemodellen	gebruiken	om	celtypespecifiek	isovormgebruik	te	voorspellen.	Dit	opent	
een	nieuwe	weg	voor	het	bekijken	van	celtypespecifieke	veranderingen.

Alles	bij	elkaar	introduceren	we	een	scala	aan	computationele	methoden	om	single-cell	RNA	
sequencing data te gebruiken om ons begrip van cellulaire heterogeniteit te verbeteren.

9
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In	the	17th	century,	Robert	Hooke	discovered	something	fascinating	when	analyzing	a	piece	
of	cork	under	a	microscope:	the	cork	consists	of	tiny	pores.	This	reminded	him	of	the	cells	
in a monastery and therefore he called these pores ‘cells’ [1]. Almost two centuries later, 
Matthias	Jakob	Schleiden	and	Theodor	Schwann	formulated	the	first	concept	of	cell	theory:	
every	organism	consists	of	either	one	or	multiple	cells,	and	cells	are	the	building	blocks	of	life	
[2,3].	We	estimate	that	the	human	body	consists	of	~3.7e13	cells	[4].

Looking	at	our	own	human	body,	we	know	that	cells	have	different	functions.	For	example,	
immune	cells	fight	against	pathogens,	skeletal	muscle	cells	help	us	move,	and	sensory	nerve	
cells	receive	information	from	the	outside	world.	How	is	it	possible	that	all	these	cells	share	
the	same	DNA	yet	execute	such	a	variety	of	functions?	To	explain	this,	we	must	understand	
the	central	dogma	of	molecular	biology	that	describes	the	genetic	flow	of	information	in	a	
cell	 (Figure	1)	 [5,6]. In every cell, there are chromosomes, very long DNA molecules, that 
provide	the	genetic	code	for	an	organism.	Some	parts	of	the	DNA	sequence,	called	genes,	
are	transcribed	into	RNA	molecules.	Even	though	many	different	types	of	RNA	exist	with	all	
important	 functions,	we	will	 focus	on	messenger	RNA	 (mRNA)	here.	As	 the	name	already	
suggests, these mRNA molecules come from protein-coding genes and are translated into 
proteins.	The	resulting	protein	has	a	specific	function	in	a	cell.	

Except	for	some	somatic	mutations,	however,	every	cell	in	an	organism	has	the	same	DNA.	
How	could	a	cell	know	which	genes	have	to	be	transcribed?	Different	control	mechanisms	
tightly	regulate	transcription	and	translation	to	ensure	the	expression	of	the	correct	genes	
and	proteins	in	a	cell.	For	instance,	transcription	of	protein-coding	genes	starts	when	RNA	
polymerase II and auxiliary factors bind the promotor region, the DNA sequence around the 
transcription	start	site	(TSS)	(Figure	2).	A	group	of	proteins,	transcription	factors	(TFs),	can	bind	
parts	of	the	DNA	sequence,	called	enhancers	and	silencers,	and	either	activate	or	repress	the	
binding	of	RNA	polymerase	II	or	the	auxiliary	factors.	This	way,	transcription	factors	control	

Figure 1. The central dogma of molecular biology. DNA is transcribed into mRNA, which is translated into proteins. 
[7]
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which genes are transcribed in a cell and to which extent. Since humans have approximately 
1,400 TFs [9]	 that	can	also	act	combinatorially,	 the	exact	 regulation	mechanisms	 for	each	
gene	 are	 incompletely	 understood.	 Understanding	 transcriptional	 regulation	 is	 important	
since	a	mutation	in	a	TF,	aberrant	expression	of	a	TF,	or	a	mutation	in	a	TF	binding	site	can	
cause diseases and disorders ranging from cancer, autoimmune diseases, and diabetes to 
neurological disorders [10-14]. 

Humans	 have	 approximately	 20,000	 protein-coding	 genes	 [15,16]. Some genes, however, 
can	produce	different	proteins	with	different	 functions	 [17,18].	How	can	 the	 same	mRNA	
molecule	encode	different	proteins?	After	transcription,	 the	resulting	mRNA	molecule	has	
to be processed and spliced before the mature mRNA is transported to the nucleus and 
translated	into	a	protein	(Figure	3A).	During	the	processing,	the	head	and	tail	are	modified	to	
promote	stability	and	export	to	the	nucleus.	Splicing,	on	the	other	hand,	can	lead	to	different	
proteins. The pre-mRNA molecule consists of exons, the coding regions, and introns. During 
splicing, the spliceosome, an RNA-protein complex, binds the RNA and catalyzes the removal 
of	 the	 introns.	Exons	 from	 the	 same	gene	can	be	 joined	 in	different	 combinations,	which	
we	call	alternative	splicing	(Figure	3B).	Multiple	forms	of	alternative	splicing	are	recognized	
(Figure	3C).	For	instance,	exons	can	be	included	or	skipped	completely,	but	alternative	splice	
sites	can	be	used	as	well.	 In	humans,	approximately	90-95%	of	the	genes	are	alternatively	
spliced [19,20],	which	occurs	most	often	in	the	brain	[21]. 

We	can	draw	a	parallel	 between	 the	 regulation	of	 (alternative)	 splicing	and	 transcription.	
Where	TFs	binding	the	DNA	sequence	regulate	 transcription,	RNA	binding	proteins	 (RBPs)	
regulate	 splicing.	 RBPs	 can	 either	 activate	 or	 repress	 the	 binding	 of	 the	 spliceosome	 and	
thereby control the splicing of exons or introns [22]. Aberrant splicing, for instance, caused by 
mutations	in	RBP	binding	sites,	is	a	hallmark	of	many	neurological	diseases	[23,24].

Figure 2.	Transcriptional	regulation.	RNA	polymerase	 II	and	co-factors	must	bind	to	the	promoter	region	to	start	
transcription.	Other	proteins,	called	activators,	can	bind	enhancer	regions	and	stimulate	this	process.	The	opposite	
can happen as well. Repressors can bind a silencer region and prevent the RNA polymerase II complex from binding 
and	thus	inhibit	transcription.	[8]
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Figure 3. mRNA processing and splicing. A) The 5’ cap is added, the tail is polyadenylated, and the introns are spliced 
out.	Afterwards,	 the	mRNA	can	be	 transported	 to	 the	nucleus	and	 translated	 into	a	protein.	 [25]	B)	 Alternative	
splicing.	The	pre-mRNA	can	be	spliced	 in	different	ways.	Different	combinations	of	exons	can	be	 included	 in	 the	
mRNA	molecule	which	will	 result	 in	 different	 proteins	 after	 translation.	 [25,26]	C) Overview	 of	 different	mRNA	
splicing types. [27]
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1.1 Measuring transcription 
To	increase	our	understanding	of	cells	 in	health	and	disease,	we	quantify	which	genes	are	
expressed. RNA sequencing is a high-throughput technique to measure the number of 
mRNA	molecules	 in	 a	 sample.	 This	 is	often	done	using	next-generation	 sequencing	 (NGS)	
technologies such as Illumina and Ion Torrent [28].	 The	 general	workflow	 consists	 of	 the	
following	steps:	1)	isolating	the	RNA	from	the	cells,	2)	fragmenting	the	RNA,	3)	converting	the	
mRNA	into	cDNA	using	reverse	transcription,	4)	 ligating	sequence	adapters,	5)	sequencing	
using	 a	 sequencing	 platform,	 6)	 mapping	 the	 reads	 to	 the	 reference	 transcriptome,	 7)	
constructing	a	count	matrix	(Figure	4).	The	final	count	matrix	indicates	how	often	a	gene	was	
measured in a sample.

NGS	technologies	generate	relatively	short	reads.	For	instance,	the	read	length	is	only	150	
bp	for	most	Illumina	platforms.	This	short	read	length	makes	it	impossible	to	study	complete	
isoforms since the average length of human protein-coding transcripts is approximately 2.8kb 
[29].	Some	reads	map	to	splice	junctions,	so	from	such	reads,	we	can	extract	whether	exons	
are	skipped	or	if	alternative	3’	or	5’	splice	sites	are	used.	

1.1.1 Single-cell RNA sequencing 

NGS	techniques	have	been	developed	to	measure	transcription	in	groups	of	cells.	This	has	the	
downside	that	the	signal	is	evened	out.	If	a	gene’s	expression	differs	between	two	samples,	it	
is impossible to know whether the sample consists of the same cells with altered expression 
or	whether	the	cell-type	composition	changed	(Figure	5A).	This	is	especially	disadvantageous	
when	analyzing	heterogeneous	tissues,	such	as	the	brain.	

In	2009,	a	new	revolution	began:	single-cell	RNA	sequencing	(scRNA-seq)	[30]. Using scRNA-
seq,	 the	tissue	 is	dissociated	and	the	gene	expression	of	 individual	cells	can	be	measured	

Figure 4.	Overview	of	next-generation	sequencing.	[36]
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instead [31-35]	 (Figure	5B).	The	process	 is	quite	similar	to	sequencing	 in	bulk,	except	that	
the	cells	are	physically	separated	from	each	other	and	a	barcode	is	attached	to	every	cDNA	
molecule	after	reverse	transcription.	This	barcode	informs	which	reads	originated	from	the	
same	cell	during	the	mapping	step	later.	After	barcoding,	all	material	is	pooled	and	sequenced	
together	using	an	NGS	platform.	During	the	mapping	step,	the	reads	are	split	into	the	barcode	
and cDNA sequence. Based on the barcode, we know which cell the molecule came from, 
and based on the cDNA we know which gene was expressed. 

In general, the data generated by all scRNA-seq protocols is sparse  -around 90% of the 
values in the count matrix are zeros. Furthermore, when more cells are measured during 
an experiment, the sparser the data becomes [38].	Both	biological	and	technical	limitations	
explain	this	sparsity.	Even	essential	genes	will	not	always	be	expressed	in	a	cell.	Transcriptional	
bursting	 is	 the	 phenomenon	 in	 which	 genes	 are	 actively	 transcribed	 for	 a	 short	 period	
followed	by	a	longer	period	of	silence,	which	causes	temporal	fluctuation	in	gene	levels	[33]. 
Furthermore,	since	the	mRNA	content	in	a	cell	is	low,	it	is	difficult	to	capture	all	molecules.	

Broadly, scRNA-seq methods can be split into two groups: either the full transcript is 
sequenced,	which	is	similar	to	bulk	analysis	(e.g.,	using	Smart-Seq2	[34]),	or	only	the	3’	or	

Figure 5. Single-cell RNA sequencing. A) The	disadvantage	of	bulk	RNA	sequencing.	Multiple	scenarios	can	explain	
the decreased expression of gene A in sample 2. For instance, the expression of gene A decreased in the green cell 
type,	or	the	cell-type	composition	changed	which	resulted	in	fewer	green	cells	in	sample	2.	B) The general pipeline 
of single-cell RNA sequencing. This is similar to bulk RNA sequencing, except that cells are physically separated and 
cellular	barcodes	are	attached	to	the	cDNA.	[36,37]
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5’	end	of	 the	molecule	can	be	captured	and	counted	(e.g.,	using	10x	Chromium	 [35]).	An	
advantage of Smart-Seq2 is that the cells are sequenced deeper, which results in less sparse 
data.	Furthermore	-similar	to	bulk	RNA	sequencing	-	the	reads	can	cover	splice	junctions.	On	
the	other	hand,	10x	optimized	their	pipeline	for	sequencing	many	cells	simultaneously	at	a	
low cost. Up to hundreds of thousands of cells can be sequenced per experiment compared 
to	 thousands	with	Smart-Seq2.	However,	10x	only	captures	 the	3’	or	5’	end	of	 the	mRNA	
molecule	and	~100	nucleotides	are	measured.	This	short	part	of	the	sequence	is	enough	to	
differentiate	between	all	genes	but	lacks	information	about	splice	sites.

1.1.2 Long-read single-cell sequencing

To	study	alternative	splicing,	one	would	ideally	sequence	the	whole	mRNA	molecule	instead	
of	looking	at	short	fragments.	Two	technologies	facilitate	this	nowadays:	Oxford	Nanopore	
[39,40] and PacBio [41].	Using	Oxford	Nanopore	either	the	RNA	molecule	or	the	cDNA	passes	
through a pore, which creates a changing electrical current. A base caller deciphers the order 
of	nucleotides	that	generated	these	currents.	PacBio	uses	single-molecule	real-time	(SMRT)	
sequencing which means that the cDNA molecule of interest is replicated using DNA poly-
merase.	The	incorporated	new	nucleotides	are	all	fluorescent,	with	the	four	different	bases	
each	having	a	different	fluorescent	tag.	When	a	nucleotide	is	incorporated,	the	fluorescent	
tag	is	cut	off	and	a	detector	detects	the	fluorescent	signal	to	decode	the	order	of	nucleotides.	

Many	different	human	tissues	have	been	sequenced	using	such	long-read	protocols,	which	
enhanced the discovery of more than 70.000 new transcripts [42]. This, however, is all 
in	bulk.	 These	protocols	have	been	applied	 to	 single	 cells	 as	well,	 but	 initially,	 only	up	 to	
a hundred cells could be sequenced [43,44]. Several protocols have been developed to 
increase the throughput of long-read single-cell sequencing methods [45–47]. For example, 
some	protocols	combine	short-	and	long-read	sequencing	(Figure	6)	[48,49].	The	single	cells	
are	barcoded	using	the	10x	approach.	After	amplification,	the	cDNA	is	split	into	two	pools.	
One	pool	is	sequenced	using	Illumina	and	the	other	using	Oxford	Nanopore	or	PacBio.	Due	to	

Figure 6.	Schematic	overview	of	long-read	single-cell	sequencing.	The	pooled	barcoded	cDNA	is	split	into	two	pools.	
The	first	part	is	sequenced	using	short-read	technologies,	which	can	be	used	for	cell-type	identification.	The	second	
part is sequenced using long-read technologies. Since the barcodes of the short- and long-read data are similar, the 
data	can	be	combined	to	study	cell-type-specific	isoforms.	Figure	adapted	from	Joglekar	et	al.	(2021)	[50].
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the high costs of long-read sequencing, the coverage of the short reads generated by Illumina 
is	usually	higher,	which	results	 in	better	gene	quantification	and	can	be	used	to	group	the	
cells	into	specific	cell	types	(see	Section	1.2.1).	The	short-read	barcodes	are	also	present	in	
the long-read data and can assign a cell and a cell type to every long-read. The long reads can 
be	grouped	per	cell	type	and	be	used	to	study	cell-type-specific	isoform	usage.

1.2 Cell types
Studying individual cells in scRNA-seq data is challenging since the data is sparse. Therefore, 
cells are grouped into cell types, which greatly reduces the complexity of the analysis, espe-
cially	for	organisms	with	as	many	cells	as	humans.	But	what	is	a	cell	type?	How	do	we	define	
them?	The	concept	of	a	cell	type	might	seem	intuitive,	but	a	clear	definition	is	still	missing.	

In	 the	 past,	 cells	 were	mainly	 studied	 under	 the	microscope,	 so	 cell	 types	were	 defined	
based	on	morphology.	Camillo	Golgi,	for	instance,	developed	a	staining	technique	to	visualize	
neurons	 that	 could	 later	 be	 used	 to	 classify	 them	based	on	 their	 dendritic	 patterns	 [51]. 
Nowadays, more and more features are measured, which changes our groupings of cells into 
cell	types.	With	these	new	techniques,	we	can	define	a	cell	type	based	on	which	genes	or	
proteins are expressed in a cell [52].

Even	though	the	definition	of	cell	types	is	dynamic,	Cell	Ontology	[53]	attempts	to	structure	
all	 identifiable	 cell	 types	 into	 a	 hierarchy.	Most	 cells	 can	 be	 classified	 at	 different	 levels.	
For	instance,	a	cell	can	be	a	blood	cell,	a	lymphoid	cell,	a	T	cell,	and	so	on	(Figure	7).	This	
hierarchical structure is inherent to cell types since all cells develop from the same cell and 
become gradually more specialized. The hierarchy shows that some cell types are more similar 
to	one	another.	However,	the	cell-type	hierarchy	does	not	always	align	with	development.	

Figure 7.	Example	of	a	cell-type	hierarchy	for	blood	cells.	Figure	adapted	from	Monga	et	al.	(2022)	[54]
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1.2.1 Discovering cell types in scRNA-seq data

In	scRNA-seq	data,	the	cell	type	of	a	cell	is	defined	based	on	which	genes	are	measured	in	
a cell. Because the data is sparse, we cannot determine the cell type of individual cells by 
looking	only	 at	 the	expression	of	marker	 genes.	As	 a	 solution,	we	first	 group	 cells	with	 a	
similar	gene	expression	profile	and	annotate	these	groups	based	on	the	expression	of	the	
marker	genes	(Figure	8A).	The	standard	pipeline	from	a	raw	(short-read)	scRNA-seq	count	
matrix	consists	of	different	preprocessing,	clustering,	and	visualization	steps	to	annotate	the	
clusters, which we will discuss in more detail below [55,56].	Several	computational	toolkits,	
such as Scanpy [57] and Seurat [58], have been developed to analyze scRNA-seq data, and all 
steps	discussed	below	can	be	performed	with	these	tools.	After	annotating	the	cells,	other	
downstream	analysis	 tasks,	 such	as	 testing	 for	differentially	expressed	genes	between	cell	
types, can be applied. 

1.2.1.1 Preprocessing scRNA-seq data

Preprocessing starts with quality control to ensure that only high-quality, viable cells are 
in	 the	data.	Here,	 for	 instance,	we	filter	out	apoptotic	cells	based	on	 the	high	content	of	
mitochondrial genes [59,60].	 Next,	 we	 normalize	 the	 data	 to	 remove	 differences	 in	 read	
depth	between	the	cells.	Most	often,	the	data	is	normalized	using	library	size	normalization	
and	log-transformed.	After	these	steps,	the	dimensionality	of	the	count	matrix	is	still	huge	
since	~20.000	genes	are	measured.	Some	of	these	genes	are	uniformly	expressed	across	all	
the	cells	and	uninformative	 for	downstream	tasks.	We	select	1000-5000	genes	 that	 show	

Figure 8.	 Annotating	 cell	 types	 in	 single-cell	RNA-sequencing	data.	A) Mystery cells are grouped based on their 
expression	 pattern	 and	 these	 groups	 are	 annotated.	B) Clusters are annotated by visualizing the expression of 
marker genes in two dimensions using t-SNE or UMAP.
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the	most	variance	in	the	dataset.	Usually,	the	genes	with	the	highest	variance-to-mean	ratio	
are selected. Next, we reduce the dimensions to 30-50 using principal component analysis 
(PCA).	PCA	is	a	linear	dimensionality	reduction	method	that	reduces	the	data	to	a	new	set	
of	features	that	is	a	linear	combination	of	the	old	features	that	explain	most	of	the	variance.	
Instead	of	 linear	dimensionality	reduction	methods,	non-linear	methods	can	be	applied	as	
well. For instance, scVI [61],	a	variational	autoencoder,	can	map	the	cells	to	a	latent	space	of	
10-50 dimensions. 

1.2.1.2 Identifying cell types in scRNA-seq data

After	preprocessing,	the	data	is	ready	for	downstream	analysis	such	as	cell-type	identification.	
First,	we	cluster	the	data	into	groups	of	similar	cells.	We	construct	a	k-nearest-neighbor graph 
in which every cell is connected to the k	cells	with	the	most	similar	gene	expression	pattern.	
Next, we detect clusters in this graph using Louvain [62] or Leiden [63]	community	detection.	
Here,	 the	 resolution	 parameter	 influences	 the	 number	 of	 clusters	 found.	 The	 resulting	
clusters can be visualized in two dimensions using t-SNE [64] or UMAP [65]	(Figure	8B).	To	
annotate the clusters, we visualize the expression of marker genes in, for instance, the two-
dimensional	space	or	a	dot	plot.	However,	marker	genes	might	be	unknown	or	not	clearly	
expressed	in	scRNA-seq	data,	which	makes	annotating	some	clusters	challenging.

1.3 Supervised learning for scRNA-seq data
In scRNA-seq data, cells are commonly annotated using clustering methods, an example of 
unsupervised	 learning.	Unsupervised	 learning	means	that	the	data	 itself	 is	unlabeled	(i.e.,	
the	cell	types	are	unknown)	and	the	goal	is	to	find	groups	in	the	data.	However,	unsupervised	
methods	 have	 drawbacks:	 they	 are	 subjective	 and	 time-consuming.	 Different	 parameters	
yield	different	clusterings,	and	the	number	of	clusters	or	cell	types	discovered	in	scRNA-seq	
data is even correlated with the number of sequenced cells [66-68]. 

A	shift	towards	supervised	methods	is	needed	to	overcome	this	subjectiveness.	Supervised	
models	learn	the	relation	between	input	data	(e.g.,	the	measured	gene	expression)	and	the	
label	(e.g.,	the	cell	type).	The	trained	model	can	annotate	new,	unlabeled	data	automatically.	
In	 this	 example,	we	predict	 the	 cell	 types	 that	 are	discrete	 categories	 (classification),	 but	
supervised	models	can	also	be	used	to	predict	continuous	outcomes	(regression).	

Many	different	types	of	supervised	methods	exist.	Some	rely	on	relatively	simple	principles	
and	try	to	find	a	linear	decision	boundary	between	different	groups,	such	as	linear	discriminant	
analysis	or	the	linear	support	vector	machine	(SVM)	(Figure	9A).	Other	methods,	such	as	a	
k-nearest	neighbor	(kNN)	or	nearest	mean	classifier,	look	at	which	samples	of	the	different	
groups of samples are closest and transfer the closest-group label to the new, unlabeled 
sample	 (Figure	9B).	Deep	 learning	models,	 such	 as	 neural	 networks,	 convolutional	 neural	
networks	(CNN),	and	recurrent	neural	networks	(RNN),	can	learn	more	complex	relationships	
between	 the	 input	 features	 and	 the	 label	 (Figure	 9C).	 Deep	 learning	 models	 have	 the	
disadvantage	 that	much	 training	data	 is	needed	and	 the	models	 are	difficult	 to	 interpret.	
With	 the	 linear	models,	we	can	easily	see	which	 input	 features	guided	the	decision	while	
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this	is	impossible	to	know	exactly	for	deep	learning	models.	Approximation	methods,	such	as	
Shapley values, exist though [69,70].

Automatic	cell-type	identification	is	one	example	of	applying	supervised	models	on	scRNA-seq	
data. In this thesis, we will focus on two types of models: either we use the measured gene 
expression	to	predict	the	cell-type	label	(Section	1.4),	or	we	know	the	cell-type	label	and	use	
a	generic	input	(e.g.,	the	DNA	sequence)	to	predict	gene	expression	or	splicing	(Section	1.5).	

1.4 Part I  - Learning cell identities in scRNA-seq data
Ideally,	we	want	 to	annotate	the	cells	 in	a	new	scRNA-seq	dataset	automatically	and	con-
sistently	by	using	a	classifier	trained	on	an	annotated	dataset	to	transfer	the	labels	to	this	
new dataset. Several methods have been developed for this task, each varying considerably 
in	 their	underlying	principles.	Some	rely	on	 relatively	 simple	machine	 learning	 techniques	
such	as	a	kNN	classifier	[71,72], SVM [73,74],	or	random	forest	(RF)	[75–77], while others 
rely on more complex deep learning architectures [78,79].	We	can	also	categorize	methods	
by	whether	their	approach	is	flat	or	hierarchical.	Hierarchical	methods	exploit	the	inherent	
hierarchical	structure	of	cell	types;	instead	of	learning	the	differences	between	all	cell	types	
in	one	go,	they	split	the	problem	into	smaller	subproblems.	Flat	classifiers,	on	the	other	hand,	
do	not	benefit	from	this	advantage.	Another	notable	example	of	classifiers	is	methods	that	
leverage	the	Cell	Ontology	[80,81].	Leveraging	this	ontology	might	be	beneficial	in	the	future,	
but	currently,	many	newly	discovered	cell	types	are	still	missing	in	their	hierarchy.

1.4.1 Challenges for cell-type identification

Even	 though	 many	 classification	 methods	 exist,	 we	 still	 face	 several	 challenges	 when	
automatically	annotating	cells.	

Figure 9. Supervised learning. A)	Linear	classifiers	learn	a	linear	decision	boundary	between	the	class	1	and	class	2	
samples. B) The k-nearest	neighbor	classifier	looks	at	the	neighboring	samples	and	classifies	new	samples,	for	ex-
ample,	using	a	majority	vote.	In	this	case,	the	gray	unlabeled	sample	would	be	classified	as	class	1.	C) Deep learning 
models can learn complex decision boundaries. 
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1.4.1.1 Choosing the training dataset

An enormous amount of scRNA-seq datasets is publicly available, but it remains unclear 
which	one	 is	most	optimal	 to	 train	 the	 classifier.	 Even	datasets	 from	 the	 same	tissue	will	
contain	different	cell	types	since	these	datasets	are	annotated	using	unsupervised	methods.	
Most	research	groups	are	 interested	 in	different	cell	compartments.	Their	cells	of	 interest	
might	be	annotated	at	a	fine-grained	resolution,	while	the	other	cells	are	annotated	at	a	low	
resolution	-again	relating	to	the	inherent	hierarchy	of	cell	types.	Comparing	the	annotations	
of	different	datasets	can	be	challenging	since	a	naming	convention	is	missing.	

An extra challenge is that most individual studies are incomplete. Rare cell types might be 
missing	completely,	or	more	difficult	to	discover	when	looking	at	one	study	only.	Therefore,	
multiple	datasets	should	be	combined	into	a	reference	atlas,	as	demonstrated	by	initiatives	
like	the	Human	Lung	Cell	Atlas	[82].	Here,	scRNA-seq	data	from	14	studies,	107	individuals,	
and	different	anatomical	locations	of	the	respiratory	system	is	combined	into	one	reference	
atlas. The cell-type labels of the datasets were manually harmonized using a group of experts, 
which	 is	 very	time-consuming.	 Ideally,	 annotated	datasets	 from	 the	 same	tissue	 could	be	
automatically	combined	to	create	a	reference	atlas.	

1.4.1.2 Batch effects between datasets

Unwanted	 technical	 variations	 between	 datasets	 pose	 a	 second	 challenge	 for	 automatic	
cell-type	identification.	These	batch	effects	are	caused	by	variations	in	sequencing	depths,	
handling	 of	 the	 cells,	 protocols,	 laboratories,	 etc.	 Consequently,	 batch	 effects	 between	
datasets	should	be	removed	before	a	classifier	can	be	trained	(Figure	10).	

Removing	batch	effects	is	a	trade-off	between	removing	technical	variation	and	preserving	
biological	variation.	Methods	developed	for	this	task	can	be	categorized	into	three	groups:	
1)	 methods	 that	 correct	 the	 original	 gene	 space,	 2)	 methods	 that	 project	 the	 data	 to	 a	
corrected	latent	space,	and	3)	methods	that	construct	a	batch-corrected	graph.	Methods	in	
the	second	group	usually	yield	the	most	optimal	performance	[83,84]. Another grouping of 
the current methods depends on whether they adjust all input datasets or allow users to pick 
one reference and project the query datasets onto it [72,85].	Even	though	the	latter	is	more	
difficult,	 it	 has	 the	advantage	 that	 the	 reference	 remains	unchanged.	As	 such,	 a	 classifier	

Figure 10.	Schematic	showing	A) unintegrated and B) integrated scRNA-seq data. In the integrated data, the cells 
from datasets 1 and 2 overlap. 
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trained on this reference dataset can be used to annotate any query dataset. Combining these 
reference	mapping	methods	with	an	accurate	classifier	would	thus	yield	a	more	consistent	
annotation	of	the	query	datasets.	

1.4.1.3 Identifying unknown cells

The	 third	 challenge	 for	 current	 classifiers	 is	 classifying	 cells	 as	 ‘unknown’	when	 the	 label	
is	 uncertain.	 This	 can	 be	 achieved	 by	 implementing	 a	 rejection	 option	 in	 the	 classifier.	 A	
correctly	working	rejection	option	is	 important	for	two	reasons.	First,	the	border	between	
two	cell	types	might	not	always	be	very	distinct	(Figure	11A).	If	a	cell	is	close	to	the	decision	
boundary, the label might be ambiguous and we prefer to keep it unlabeled. A low posterior 
probability	of	the	classifier	is	a	good	indicator	of	this.	Second,	some	datasets	contain	new	or	
rare	cell	types	that	are	not	in	the	training	data	(Figure	11B).	Here,	the	posterior	probability	
might not work since this only indicates which cell types look most similar to the new cells, 
but	not	how	similar	they	are.	In	this	case,	a	distance	metric	is	required.	To	correctly	identify	
unknown	cells	in	both	scenarios,	a	classifier	needs	to	use	both	the	posterior	probability	and	
a distance metric to reject cells. 

1.4.2 Learning cell identities across species

Model	organisms,	such	as	mice	and	rats,	are	often	used	to	provide	 insights	 into	biological	
mechanisms	inside	a	cell	or	test	the	effect	of	new	drugs	or	treatments.	Knowing	what	aspects	
are	similar	or	different	between	model	organisms	and	humans	is	crucial	for	understanding	
how results translate. Comparing and matching cell types across species is one fundamental 
step in this process. Some cell types might be well conserved, while others might be species-
specific.	Matching	cell	types	is	thus	interesting	from	an	evolutionary	point	of	view	as	well	and	
aids	in	understanding	cell-type	evolution.	

Besides	the	batch	effects	described	in	Section	1.4.1.2,	an	extra	challenge	during	cross-species	
comparisons	is	that	the	measured	gene	sets	are	different.	Throughout	evolution,	genes	have	
been	duplicated,	deleted,	and	modified,	which	results	in	complex	many-to-many	relations.	
Relations	between	genes	of	different	species	are	established	based	on	their	protein	sequence	
similarity, with the underlying idea that proteins with a similar amino acid sequence will 
probably	 execute	 a	 similar	 function	 [86].	 Traditionally,	 BLAST	 [87] is used for this task. 
However,	a	disadvantage	of	BLAST	is	that	the	whole	protein	sequence	is	weighed	equally,	while	
certain	domains	are	more	 important	for	a	specific	function.	More	recently,	 large	 language	

Figure 11. Examples of cells that should remain unlabeled. 
A) The gray cell is close to the decision boundary and 
therefore it is unclear whether it should be labeled a 
green or orange. The posterior probability of, for instance, 
the	 kNN	 classifier	 will	 be	 ~0.5,	 since	 about	 half	 of	 the	
neighbors are green and half are orange. B) The gray cell 
is far from the other cell types, which could indicate that 
it is a new cell type. The closest cells, however, are all 
orange so the posterior probability will be around one. In 
this case, a distance metric is needed to reject this cell. 
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models, such as SeqVec [88] and ProtBERT [89],	have	been	trained	to	learn	a	representation	
of	proteins	in	a	lower	dimensional	space.	These	embeddings	capture	functional	similarities	
between	proteins	and	could	be	used	to	define	homologous	genes	[90-92]. 

After	matching	the	genes	across	species,	only	one-to-one	orthologous	genes,	which	are	genes	
with exactly one match, are commonly used to compare cell types. The scRNA-seq methods 
developed for same-species data can be applied, which eases downstream analysis. A down-
side,	however,	is	that	much	information	is	ignored.	Some	methods	have	been	developed	for	
cross-species	analysis	and	use	the	many-to-many	relationships	between	genes	[93,94].	How-
ever, these methods currently all rely on the BLAST similarity. Using many-to-many orthologs 
defined	by	the	protein	embeddings	would	thus	greatly	enrich	the	cell	type	matches	made.

1.5 Part II - Using scRNA-seq data to understand (post-) 
transcriptional regulation
(Post-)transcriptional	 regulation	 ensures	 that	 every	 cell	 expresses	 the	 correct	 genes	 and	
isoforms.	 Since	 a	 cell’s	 gene	 expression	 level	 determines	 its	 cell	 type,	 these	 regulation	
mechanisms	must	be	cell-type	specific.	Which	TF	or	RBP	binding	sites	are	used	on	the	DNA	or	
RNA	sequence	will	thus	differ	per	cell	type.

Understanding	cell-type-specific	regulation	aids	in	understanding	the	underlying	fundamental	
biological	 processes	 in	 a	 cell,	 which	 is,	 amongst	 others,	 essential	 for	 drug	 development.	
Furthermore,	 this	 enables	 us	 to	 predict	 the	 effect	 of	 mutations	 in	 non-coding	 regions.	
Mutations	in	a	TF	or	RBP	binding	site	will	only	affect	gene	expression	or	splicing	if	that	binding	
site	is	normally	used	in	that	cell	type.	Knowing	which	mutations	affect	which	cell	types	and	
how,	will	help	to	find	new	targets	for	drugs	or	therapies.	

1.5.1 Genomic feature prediction models

Training	 genomic	 feature	 prediction	 models	 can	 help	 to	 unravel	 (post-)transcriptional	
regulation.	These	models	use	a	generic	input,	such	as	the	DNA	sequence,	to	predict	genomic	
features, such as gene expression or splicing, that were measured in a sample using RNA-seq. 
Why	is	it	interesting	to	train	these	models	though?	The	model	cannot	be	extrapolated	to	new	
genes,	as	the	expression	of	all	genes	was	measured	in	the	RNA-seq	experiment.	However,	if	
a	model	can	accurately	predict	the	measured	gene	expression,	interpreting	why	the	model	
makes	a	high	or	low	prediction	for	a	gene	improves	our	understanding	of	regulation.	Current	
genomic	 feature	prediction	models	can	be	divided	 into	 two	groups:	1)	 feature-extraction-
based	and	2)	sequence-based	methods.	

1.5.1.1 Feature-extraction-based models

Feature-extraction-based	models	extract	 features	 from	the	DNA	sequence	around	the	TSS	
of a gene or the RNA sequence around the splice site. These extracted features are used to 
train	a	relatively	simple	model,	such	as	a	 linear	regressor,	to	predict	expression	or	splicing	
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(Figure	 12A)	 [95–97].	 Examples	 of	 extracted	 features	 are	 the	 gene	 length,	GC	 content	 of	
the	gene,	and	measured	or	predicted	TF	or	RBP	binding	sites.	The	coefficients	in	the	linear	
regressor	directly	inform	us	which	features	were	most	important	for	the	predictions,	which	
makes	these	models	easy	to	interpret.	However,	we	need	prior	knowledge	about	extracted	
features	to	train	a	model.	If	the	preferred	binding	motif	for	a	TF	or	RBP	is	unknown,	we	cannot	
incorporate	it	into	our	models	either.	Furthermore,	evaluating	how	individual	variants	affect	
the	prediction	is	more	complicated	since	the	sequence	is	not	directly	fed	into	the	model.

1.5.1.2 Sequence-based models

Rapid	 developments	 in	 the	 deep	 learning	 field	 enabled	 a	 shift	 towards	 sequence-based	
methods.	 Sequence-based	 methods	 directly	 use	 the	 (one-hot	 encoded)	 DNA	 or	 RNA	
sequence	as	input	to	predict	gene	expression	or	splicing	(Figure	12B)	[98–100]. Depending 
on the task, a window varying from 400bp to 100kb around the TSS or the splice site is 
used as input. This input is unbiased towards known TFs, RBPs, or other extracted features. 
More	complex	models,	such	as	CNNs,	RNNs,	or	transformers,	are	used	to	learn	the	relation	
between the sequence and expression or splicing. 

Training these deep learning models can be challenging since they tend to have millions of 
free parameters, and the sample size of the training data is limited. The training data size 
cannot	be	increased	since	the	number	of	genes	per	organism	is	limited.	As	a	solution,	models	
can	be	trained	on	multiple	species	simultaneously,	assuming	that	the	regulatory	mechanisms	
are	at	least	partially	conserved	[101].

Figure 12.	Schematic	of	A)	feature-extraction-based	and	B) sequence-based models to predict genomic features. In 
this example, the DNA sequence is used to predict gene expression, but the RNA sequence could be used to predict 
splicing similarly. 
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A	second	challenge	 is	 interpreting	 these	black-box	models.	Model	 interpretation	methods	
can	give	 insights	 into	what	 the	model	 learned.	One	example	 is	 examining	 the	 initial	 layer	
of	a	CNN.	The	weights	 learned	by	these	convolutional	weight	matrices	are	comparable	to	
position-weight	matrices,	which	indicate	which	sequences	a	TF	or	RBP	prefers	to	bind	[102]. 
Another	option	is	using	in-silico saturation	mutagenesis	(ISM)	to	systematically	predict	how	
nucleotide	substitutions	in	the	input	sequence	affect	the	predicted	value	[103,104]. Doing 
this	for	many	input	sequences	can	reveal	interesting	patterns	that	can	be	detected	using	TF-
MoDISco [105].	TF-MoDISco	discovers	motifs	that	are	predicted	to	positively	or	negatively	
affect	the	prediction.

1.5.1.3 Tissue-specific models

In the past, these models were trained using data from cell lines and only learned the basic 
principles	of	 regulation.	The	models	became	more	specific	by	 training	 them,	 for	 instance,	
on	bulk	RNA-seq	data	from	different	tissues.	 In	such	cases,	either	a	model	per	tissue	or	a	
multitask	model	can	be	trained.	The	regulation	mechanisms,	however,	are	cell-type-specific.	
Thus, there is a need for training these models on scRNA-seq data instead. 

1.6 Contributions of this thesis
In	this	thesis,	we	address	several	challenges	regarding	identifying	cell	types	in	scRNA-seq	data	
(Part	I,	Chapters	2-5)	and	using	scRNA-seq	datasets	to	improve	our	understanding	of	(post-)
transcriptional	regulation	(Part	II,	Chapters	6-7).	

Part I - Learning cell identities in scRNA-seq data

Chapter 2:	In	Chapter	2,	we	benchmark	sixteen	cell-type	identification	methods	designed	for	
scRNA-seq	data	and	six	off-the-shelf	Python	classifiers.	We	compare	their	performance	on	27	
scRNA-seq	datasets	of	different	sizes,	number	of	cell	types,	species,	and	technologies.	Almost	
all	methods	perform	well	on	most	datasets,	but	their	performance	correlates	negatively	with	
the	complexity	of	the	data.	Most	classifiers	suffer	if	a	dataset	contains	many	or	very	similar	
cell	types.	Overall,	the	linear	SVM,	one	of	the	off-the-shelf	Python	classifiers,	outperforms	
the	methods	designed	for	scRNA-seq	data.	Furthermore,	when	benchmarking	the	rejection	
options	of	the	classifiers,	we	noticed	that	designing	a	proper	rejection	option	is	challenging	
and	that	relying	on	the	posterior	probability	alone	is	not	optimal.	

Chapter 3:	 In	 Chapter	 3,	we	present	 single-cell	Hierarchical	 Progressive	 Learning	 (scHPL).	
scHPL	 combines	 multiple	 labeled	 scRNA-seq	 datasets	 into	 one	 classifier.	 We	 exploit	 the	
unharmonized	 labels	 of	 the	 input	 datasets	 to	 automatically	 create	 a	 cell-type	 hierarchy	
by	matching	 the	cell	 types	of	 the	different	datasets.	This	hierarchy	can	either	be	updated	
progressively	using	new,	labeled	datasets	or	used	as	a	classifier	to	annotate	the	cells	in	an	
unlabeled dataset. For every node in the hierarchy, we train a linear SVM since this performed 
best	 in	the	benchmark	 in	Chapter	2.	Furthermore,	we	 implemented	two	rejection	options	
using	the	posterior	probability	to	reject	cells	between	two	cell	types	and	the	reconstruction	
error	of	the	PCA	to	identify	new	cell	types.	We	show	that	scHPL	can	accurately	construct	the	
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cell-type	hierarchy	for	PBMC	and	brain	datasets	and	that	scHPL	outperforms	the	flat	linear	
SVM	when	annotating	an	unlabeled	dataset.

Chapter 4:	In	Chapter	4,	we	combine	scHPL	and	scArches	[84]	into	a	computational	pipeline	
called	 treeArches.	 Before	 running	 scHPL,	 we	 require	 datasets	 to	 be	 batch-corrected.	 A	
downside	of	most	batch-correction	tools	is	that	the	complete	alignment	has	to	be	repeated	
when adding a new dataset to update the hierarchy. Consequently, the complete hierarchy 
has to be rebuilt in the new integrated space. Since scArches is a reference-mapping 
method, it projects a new dataset on top of the reference, which ensures that the reference 
and corresponding hierarchy do not change. treeArches thus facilitates easy building and 
extending of reference atlases and the corresponding cell-type hierarchy.
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Chapter 5: In Chapter 5, we propose a model to transfer and align cell types in cross-species 
analysis	(TACTiCS).	TACTiCS	matches	genes	of	different	species	using	protBERT	[89],	an	NLP	
model, while allowing for many-to-many matches. Next, it employs a neural network to train 
species-specific	cell-type	classifiers.	Afterwards,	it	cross-predicts	the	other	species’	labels	and	
compares the predicted to the original labels. TACTiCS outperforms state-of-the-art methods 
when matching human, mouse, and marmoset cell types in the primary motor cortex. 

Part II - Using scRNA-seq data to understand (post-)transcriptional regulation

Chapter 6: In Chapter 6, we extend Xpresso, a tool to predict gene expression in bulk RNA-
seq	samples,	to	scXpresso	which	is	a	multitask	model	trained	on	scRNA-seq	data	to	predict	
cell-type-specific	gene	expression.	We	show	that	cell-type-specific	predictions	are	especially	
useful	in	heterogeneous	tissues.	In	all	experiments,	cell-type-specific	models	outperform	the	
tissue-specific	models.	The	difference	becomes	most	apparent	when	the	gene	expression	of	
a	cell	type	and	the	corresponding	tissue	are	dissimilar.	Furthermore,	we	show	that	scXpresso	
learns	 TF	 binding	 sites	 and	 envision	 that	 it	will	 be	 useful	 for	 unraveling	 cell-type-specific	
transcriptional	regulation	mechanisms.	

Chapter 7: In Chapter 7, we leverage long-read single-cell data to predict exon inclusion in 
glia	and	neurons	 in	 the	human	hippocampus	and	 frontal	 cortex.	We	show	 that	 splicing	 is	
more	difficult	to	predict	in	neurons	than	glia.	Comparing	RBP	binding	sites	for	exons	with	high	
and	low	exon	inclusion	between	variable	and	non-variable	exons,	we	found	that	these	differ	
more	in	neurons	than	in	glia,	indicating	that	splicing	mechanisms	in	variable	exons	in	neurons	
diverged	more	from	the	standard	mechanisms.	Furthermore,	we	could	pinpoint	interesting	
RBPs	regulating	alternative	splicing	between	glia	and	neurons.	

Chapter 8:	Finally,	we	discuss	the	contribution	of	our	work	in	both	research	directions.	First,	
we	 discuss	 how	 consistent	 cell-type	 classification	 can	 be	 improved.	 Next,	 we	 discuss	 the	
limitations	of	current	genomic	feature	prediction	models	and	suggest	how	these	could	be	
tackled. 
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Single	cell	transcriptomics	is	rapidly	advancing	our	understanding	of	the	cellular	composition	of	
complex	tissues	and	organisms.	A	major	limitation	in	most	analysis	pipelines	is	the	reliance	on	
manual	annotations	to	determine	cell	identities,	which	are	time-consuming	and	irreproducible.	
The	exponential	growth	 in	the	number	of	cells	and	samples	has	prompted	the	adaptation	
and	development	of	supervised	classification	methods	for	automatic	cell	identification.	Here,	
we	benchmarked	22	classification	methods	that	automatically	assign	cell	identities	including	
single	 cell-specific	 and	 general-purpose	 classifiers.	 The	 performance	 of	 the	methods	was	
evaluated	using	27	publicly	available	single	cell	RNA-sequencing	datasets	of	different	sizes,	
technologies,	species,	and	levels	of	complexity.	We	used	two	experimental	setups	to	evaluate	
the	performance	of	each	method	for	within	dataset	predictions	 (intra-dataset)	and	across	
datasets	(inter-dataset)	based	on	accuracy,	percentage	of	unclassified	cells,	and	computation	
time.	We	further	evaluated	the	methods’	sensitivity	to	the	input	features,	number	of	cells	per	
population,	their	performance	across	different	annotation	levels	and	datasets.	We	found	that	
most	classifiers	performed	well	on	a	variety	of	datasets	with	decreased	accuracy	for	complex	
datasets	with	overlapping	classes	or	deep	annotations.	The	general-purpose	SVM classifier	
has	overall	the	best	performance	across	the	different	experiments.	In	conclusion,	we	present	
a	 comprehensive	 evaluation	 of	 automatic	 cell	 identification	methods	 for	 single	 cell	 RNA-
sequencing	data.	All	the	code	used	for	the	evaluation	is	available	on	GitHub	(https://github.
com/tabdelaal/scRNAseq_Benchmark).	 Additionally,	we	provide	 a	 Snakemake	workflow	 to	
facilitate the benchmarking and to support extension of new methods and new datasets. 

2.1 Background
Single-cell	 RNA-sequencing	 (scRNA-seq)	 provides	unprecedented	opportunities	 to	 identify	
and	 characterize	 the	 cellular	 composition	 of	 complex	 tissues.	 Rapid	 and	 continuous	
technological advances over the past decade has allowed scRNA-seq technologies to scale 
to thousands of cells per experiment [1]. A common analysis step in analyzing single cell 
data	involves	the	identification	of	cell	populations	presented	in	a	given	dataset	.	This	task	is	
typically solved by unsupervised clustering of cells into groups based on the similarity of their 
gene	expression	profiles,	followed	by	cell	population	annotation	by	assigning	labels	to	each	
cluster.	This	approach	proved	very	valuable	in	identifying	novel	cell	populations	and	resulted	
in	cellular	maps	of	entire	cell	 lineages,	organs	and	even	whole	organisms	 [2–7].	However,	
the	annotation	step	is	cumbersome	and	time-consuming	as	it	involves	manual	inspection	of	
cluster-specific	marker-genes.	Additionally,	manual	annotations,	which	are	often	not	based	
on	standardized	ontologies	of	cell	labels,	are	not	reproducible	across	different	experiments	
within and across research groups. These caveats become even more pronounced as the 
number	of	cells	and	samples	increases,	preventing	fast	and	reproducible	annotations.	

To	 overcome	 these	 challenges,	 a	 growing	 number	 of	 classification	 approaches	 are	 being	
adapted	 to	 automatically	 label	 cells	 in	 scRNA-seq	 experiments.	 scRNA-seq	 classification	
methods	predict	the	identity	of	each	cell	by	learning	these	identities	from	annotated	training	
data	(e.g.	a	reference	atlas).	scRNA-seq	classification	methods	are	relatively	new	compared	
to	the	plethora	of	methods	addressing	different	computational	aspects	of	single	cell	analysis	
(such	 as	 normalization,	 clustering,	 and	 trajectory	 inference).	 However,	 the	 number	 of	
classification	methods	 is	 rapidly	 growing	 to	 address	 the	 aforementioned	 challenges	 [8,9]. 
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While	all	scRNA-seq	classification	methods	share	a	common	goal,	 i.e.	accurate	annotation	
of	 cells,	 they	differ	 in	 terms	of	 their	underlying	algorithms	and	 the	 incorporation	of	prior	
knowledge	(e.g.	cell	type	marker	gene	tables).	

In	contrast	to	the	extensive	evaluations	of	clustering,	differential	expression,	and	trajectory	
inference methods [10–12],	 there	 is	 currently	 one	 single	 attempt	 comparing	methods	 to	
assign cell type labels to cell clusters [13]. The lack of a comprehensive comparison of scRNA-
seq	classification	methods	leaves	users	without	indications	as	to	which	classification	method	
best	 fits	 their	 problem.	More	 importantly,	 a	 proper	 assessment	 of	 existing	 approaches	 in	
comparison	 to	 baseline	methods	 can	 greatly	 benefit	 new	 developments	 in	 the	 field	 and	
prevent unnecessary complexity.

Here,	 we	 benchmarked	 22	 classification	 methods	 to	 automatically	 assign	 cell	 identities	
including	 single	 cell-specific	and	general-purpose	classifiers.	 The	methods	were	evaluated	
using	27	publicly	available	single	cell	RNA-sequencing	datasets	of	different	sizes,	technologies,	
species, and complexity. The performance of the methods was evaluated based on their 
accuracy,	 percentage	 of	 unclassified	 cells,	 and	 computation	 time.	We	 performed	 several	
experiments	 to	 cover	 different	 levels	 of	 challenge	 in	 the	 classification	 task,	 and	 to	 test	
specific	features	or	tasks	such	as	the	feature	selection,	scalability	and	rejection	experiments.	
We	 evaluated	 the	 classification	 performance	 through	 two	 experimental	 setups,	 1)	 intra-
dataset	in	which	we	applied	5-fold	cross-validation	within	each	dataset,	and	2)	inter-dataset	
involving	across	datasets	 comparisons.	The	 inter-dataset	 comparison	 is	more	 realistic	and	
more	practical,	where	a	reference	dataset	(e.g.	atlas)	is	used	to	train	a	classifier	which	can	
then	be	applied	to	identify	cells	in	new	unannotated	datasets.	However,	in	order	to	perform	
well	 across	 datasets,	 the	 classifier	 should	 also	 perform	well	 using	 the	 intra-dataset	 setup	
on	 the	 reference	dataset.	 The	 intra-dataset	 experiments,	 albeit	 artificial,	 provide	 an	 ideal	
scenario	 to	 evaluate	 different	 aspects	 of	 the	 classification	 process	 (e.g.	 feature	 selection,	
scalability	 and	 different	 annotation	 levels),	 regardless	 of	 the	 technical	 and	 biological	
variations	 across	 datasets.	 In	 general,	most	 classifiers	 perform	well	 across	 all	 datasets	 in	
both	experimental	setups	(inter-	and	intra-dataset),	including	the	general-purpose	classifiers.	
In	our	experiments,	 incorporating	prior	 knowledge	 in	 the	 form	of	marker-genes	does	not	
improve	 the	 performance.	 We	 observed	 large	 variation	 across	 different	 methods	 in	 the	
computation	time	and	classification	performance	in	response	to	changing	the	input	features	
and	the	number	of	cells.	Our	results	highlight	the	general-purpose	support	vector	machine	
(SVM)	classifier	as	the	best	performer	overall.

2.2 Results
2.2.1 Benchmarking automatic cell identification methods (intra-
dataset evaluation)

We	 benchmarked	 the	 performance	 and	 computation	 time	 of	 all	 22	 classifiers	 (Table	 1)	
across	11	datasets	used	for	 intra-dataset	evaluation	(Table	2).	Classifiers	were	divided	into	
two	 categories:	 1)	 supervised	methods	which	 require	 a	 training	 dataset	 labeled	with	 the	
corresponding	cell	populations	in	order	to	train	the	classifier,	or	2)	prior-knowledge	methods,	
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Table 1.	Automatic	cell	identification	methods	included	in	this	study.

Name Version
Lan-
guage Underlying classifier

Prior 
knowledge

Rejection 
option Ref.

Garnett 0.1.4 R Generalized	linear	model Yes Yes [14]

Moana 0.1.1 Python SVM with linear kernel Yes No [15]
DigitalCell-
Sorter

Github	version:	
e369a34 Python

Voting	based	on	cell	type	
markers Yes No [16]

SCINA 1.1.0 R
Bimodal	distr.	fitting	for	
marker-genes Yes No [17]

scVI 0.3.0 Python Neural Network No No [18]
Cell-Blast 0.1.2 Python Cell-to-cell similarity No Yes [19]

ACTINN
GitHub	version:	
563bcc1 Python Neural Network No No [20]

LAmbDA
GitHub	version:	
3891d72 Python Random Forest No No [21]

Scmapcluster 1.5.1 R Nearest	median	classifier No Yes [22]
Scmapcell 1.5.1 R kNN No Yes [22]
scPred 0.0.0.9000 R SVM with radial kernel No Yes [23]
CHETAH 0.99.5 R Correlation	to	training	set No Yes [24]

CaSTLe
Github	version:	
258b278 R Random Forest No No [25]

SingleR 0.2.2 R Correlation	to	training	set No No [26]
scID 0.0.0.9000 R LDA No Yes [27]
singleCellNet 0.1.0 R Random Forest No No [28]
LDA 0.19.2 Python LDA No No [29]
NMC 0.19.2 Python NMC No No [29]
RF 0.19.2 Python RF	(50	trees) No No [29]
SVM 0.19.2 Python SVM	(linear	kernel) No No [29]
SVMrejection 0.19.2 Python SVM	(linear	kernel) No Yes [29]
kNN 0.19.2 Python kNN	(k	=	9) No No [29]

Dataset No. of 
cells

No. of 
genes

No. of cell 
populations 

(>10 cells)

Description Protocol Ref.

Baron	(Mouse)a 1,886 14,861 13	(9) Mouse Pancreas inDrop [30]
Baron	(Human)a,b 8,569 17,499 14	(13) Human	Pancreas inDrop [30]
Muraroa,b 2,122 18,915 9	(8) Human	Pancreas CEL-Seq2 [31]
Segerstolpea,b 2,133 22,757 13	(9) Human	Pancreas SMART-Seq2 [32]
Xina,b 1,449 33,889 4	(4) Human	Pancreas SMARTer [33]
CellBench  
10Xa,b 3,803 11,778 5	(5) Mixture	of	five	human	

lung cancer cell lines 10X Chromium [34]

CellBench  
CEL-Seq2a,b 570 12,627 5	(5) Mixture	of	five	human	

lung cancer cell lines CEL-Seq2 [34]

Table 2.	Overview	of	the	datasets	used	during	this	study.
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TMa 54,865 19,791 55	(55) Whole	Mus	musculus SMART-Seq2 [6]

AMBa 12,832 42,625 4/22/110	
(3/16/92)

Primary mouse visual 
cortex SMART-Seq v4 [35]

Zheng	sorteda 20,000 21,952 10	(10) FACS sorted PBMC 10X Chromium [36]
Zheng	68Ka 65,943 20,387 11	(11) PBMC 10X Chromium [36]
VISpb	(Mouse) 12,832 42,625 3/36	(3/34) Primary Visual Cortex SMART-Seq v4 [35]

ALMb	(Mouse) 8,758 42,461 3/37	(3/34) Anterior Lateral Motor 
Area SMART-Seq v4 [35]

MTGb	(Human) 14,636 16,161 3/35	(3/34) Middle	Temporal	Gyrus SMART-Seq v4 [37]
PbmcBench 
pbmc1.10Xv2b 6,444 33,694 9	(9) PBMC 10X version 2 [38]

PbmcBench 
pbmc1.10Xv3b 3,222 33,694 8	(8) PBMC 10X version 3 [38]

PbmcBench 
pbmc1.CLb 253 33,694 7	(7) PBMC CEL-Seq2 [38]

PbmcBench 
pbmc1.DRb 3,222 33,694 9	(9) PBMC Drop-Seq [38]

PbmcBench 
pbmc1.iDb 3,222 33,694 7	(7) PBMC inDrop [38]

PbmcBench 
pbmc1.SM2b 253 33,694 6	(6) PBMC SMART-Seq2 [38]

PbmcBench 
pbmc1.SWb 3,176 33,694 7	(7) PBMC Seq-Well [38]

PbmcBench 
pbmc2.10Xv,b 3,362 33,694 9	(9) PBMC 10X version 2 [38]

PbmcBench 
pbmc2.CLb 273 33,694 5	(5) PBMC CEL-Seq2 [38]

PbmcBench 
pbmc2.DRb 3,362 33,694 6	(6) PBMC Drop-Seq [38]

PbmcBench 
pbmc2.iDb 3,362 33,694 9	(9) PBMC inDrop [38]

PbmcBench 
pbmc2.SM2b 273 33,694 6	(6) PBMC SMART-Seq2 [38]

PbmcBench 
pbmc2.SWb 551 33,694 4	(4) PBMC Seq-Well [38]

for	which	either	 a	marker-genes	file	 is	 required	 as	 an	 input	or	 a	 pre-trained	 classifier	 for	
specific	cell	populations	is	provided.	

The	 datasets	 used	 in	 this	 study	 vary	 in	 the	 number	 of	 cells,	 genes	 and	 cell	 populations	
(annotation	level),	in	order	to	represent	different	levels	of	challenges	in	the	classification	task	
and	to	evaluate	how	each	classifier	performs	in	each	case	(Table	2).	They	include	relatively	
typical	 sized	 scRNA-seq	 datasets	 (1,500–8,500	 cells),	 such	 as	 the	 five	 pancreatic	 datasets	
(Baron	Mouse	and	Human,	Muraro,	 Segerstolpe	and	Xin),	which	 include	both	mouse	and	
human	pancreatic	cells	and	vary	 in	 the	sequencing	protocol	used.	The	Allen	Mouse	Brain	
(AMB)	dataset	is	used	to	evaluate	how	the	classification	performance	changes	when	dealing	

a:	used	for	intra-dataset	evaluation 
b:	used	for	inter-dataset	evaluation
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with	different	levels	of	cell	population	annotation	as	the	AMB	dataset	contains	three	levels	
of	annotations	for	each	cell	(3,	16	or	92	cell	populations),	denoted	as	AMB3,	AMB16,	and	
AMB92.	The	Tabula	Muris	 (TM)	and	Zheng	68K	datasets	 represent	 relatively	 large	 scRNA-
seq	datasets	(>50,000	cells),	and	are	used	to	assess	how	well	the	classifiers	scale	with	large	
datasets.	 For	 all	 previous	 datasets,	 cell	 populations	were	 obtained	 through	 clustering.	 To	
assess	how	the	classifiers	perform	when	dealing	with	sorted	populations,	we	included	the	
CellBench	dataset	and	the	Zheng	sorted	dataset,	 representing	sorted	populations	for	 lung	
cancer	cell	lines	and	PBMC,	respectively.	Including	the	Zheng	sorted	and	Zheng	68K	datasets,	
allows	the	benchmarking	of	four	prior-knowledge	classifiers,	since	the	marker-genes	files	or	
pre-trained	classifiers	are	available	for	the	four	classifiers	for	peripheral	blood	mononuclear	
cells	(PBMCs).

2.2.2 All classifiers perform well in intra-dataset experiments 

Generally,	all	classifiers	perform	well	in	the	intra-dataset	experiments,	including	the	general-
purpose	classifiers	(Figure	1).	However,	Cell-BLAST performs poorly for the Baron Mouse and 
Segerstople	pancreatic	datasets.	Further,	scVI has low performance on the deeply annotated 
datasets	TM	(55	cell	populations)	and	AMB92	(92	cell	populations),	and	kNN produces low 
performance for the Xin and AMB92 datasets.

For	 the	 pancreatic	 datasets,	 the	 best-performing	 classifiers	 are	 SVM, SVMrejection, scPred, 
scmapcell, scmapcluster, scVI, ACTINN, singleCellNet, LDA and NMC. SVM is	the	only	classifier	
to	be	 in	 the	 top	five	 list	 for	all	five	pancreatic	datasets,	while	NMC, for example, appears 
only	in	the	top	five	list	for	the	Xin	dataset.	The	Xin	dataset	contains	only	four	pancreatic	cell	
types	 (alpha,	 beta,	 delta	 and	 gamma)	making	 the	 classification	 task	 relatively	 easy	 for	 all	
classifiers,	including	NMC.	Considering	the	median	F1-score	alone	to	judge	the	classification	
performance	 can	be	misleading	 since	 some	classifiers	 incorporate	a	 rejection	option	 (e.g.	
SVMrejection, scmapcell, scPred),	 by	which	 a	 cell	 is	 assigned	as	 ‘unlabeled’	 if	 the	 classifier	 is	
not	confident	enough.	For	example,	for	the	Baron	Human	dataset,	the	median	F1-score	for	
SVMrejection, scmapcell, scPred and SVM is	0.991,	0.984,	0.981,	and	0.980,	respectively	(Figure	
1B).	However,	SVMrejection, scmapcell and scPred assigned 1.5%, 4.2% and 10.8% of the cells, 
respectively,	as	unlabeled	while	SVM (without	rejection)	classified	100%	of	the	cells	with	a	
median	F1-score	of	0.98.	This	shows	an	overall	better	performance	for	SVM and SVMrejection, 
with higher performance and less unlabeled cells.

The	CellBench	10X	and	CEL-Seq2	datasets	represent	an	easy	classification	task,	where	the	five	
sorted lung cancer cell lines are quite separable [34].	All	classifiers	have	an	almost	perfect	
performance	on	both	CellBench	datasets	(median	F1-score	≈	1).

For	the	TM	dataset,	the	top	five	performing	classifiers	are	SVMrejection, SVM, scmapcell, Cell-
BLAST and scPred with	a	median	F1-score	>	0.96,	showing	that	these	classifiers	can	perform	
well	and	scale	 to	 large	scRNA-seq	datasets	with	a	deep	 level	of	annotation.	Furthermore,	
scmapcell and scPred assigned	9.5%	and	17.7%	of	the	cells,	respectively,	as	unlabeled,	which	
shows a superior performance for SVMrejection and SVM, with a higher median F1-score and 
2.9%	and	0%	unlabeled	cells,	respectively.
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Figure 1. Performance comparison of supervised classifiers for cell identification using different scRNA-seq 
datasets.	Heatmap	of	the	A) median F1-scores and B)	percentage	of	unlabeled	cells	across	all	cell	populations	per	
classifier	(rows)	per	dataset	(columns).	Grey	boxes	indicate	that	the	corresponding	method	could	not	be	tested	on	
the	corresponding	dataset.	Classifiers	are	ordered	based	on	the	mean	of	the	median	F1-scores.	Asterix	(*)	indicates	
that	 the	prior-knowledge	 classifiers,	SCINA, DigitalCellSorter, GarnettCV, Garnettpretrained, and Moana, could not be 
tested	on	all	cell	populations	of	the	PBMC	datasets.	SCINADE, GarnettDE, and DigitalCellSorterDE are the versions of 
SCINA, GarnettCV, and DigitalCellSorter	were	 the	marker-genes	are	defined	using	differential	expression	 from	the	
training	data.	Different	numbers	of	marker-genes,	5,	10,	15,	and	20,	were	tested	and	the	best	result	is	shown	here.	
SCINA, Garnett, and DigitalCellSorter	 produced	 the	best	 result	 for	 the	 Zheng	 sorted	dataset	 using	 20,	 15	 and	5	
markers,	and	for	the	Zheng	68K	dataset	using	10,	5	and	5	markers,	respectively.
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2.2.3 Performance evaluation across different annotation levels 

We	 used	 the	 AMB	 dataset	 with	 its	 three	 different	 levels	 of	 annotations,	 to	 evaluate	 the	
classifiers’	 performance	 behavior	 with	 an	 increasing	 number	 of	 smaller	 cell	 populations	
within	the	same	dataset.	For	AMB3,	the	classification	task	 is	relatively	easy,	differentiating	
between	 three	 major	 brain	 cell	 types	 (GABAergic,	 Glutamatergic	 and	 Non-Neuronal).	 All	
classifiers	perform	almost	perfectly	with	a	median	F1-score	>	0.99	(Figure	1A).	For	AMB16,	
the	 classification	 task	 becomes	 slightly	 more	 challenging	 and	 the	 performance	 of	 some	
classifiers	drops,	especially	kNN.	The	top	five	classifiers	are	SVMrejection, scmapcell, scPred, SVM 
and ACTINN, where SVMrejection, scmapcell and scPred assigned 1.1%, 4.9% and 8.4% of the 
cells	as	unlabeled,	respectively.	For	the	deeply	annotated	AMB92	dataset,	the	performance	
of	 all	 classifiers	 drops	 further,	 specially	 for	 kNN and scVI, where the median F1-score is 
0.130	 and	 zero,	 respectively.	 The	 top	 five	 classifiers	 are	 SVMrejection, scmapcell, SVM, LDA, 
and scmapcluster, with SVMrejection assigning less cells as unlabeled compared to scmapcell 
(19.8%	vs	41.9%)	and	once	more	SVMrejection shows improved performance over scmapcell 
(median	F1-score	of	0.981	vs	0.906).	These	results	show	an	overall	superior	performance	for	
general-purpose	classifiers	(SVMrejection, SVM and LDA)	compared	to	other	scRNA-seq	specific	
classifiers	across	different	levels	of	cell	population	annotation.

Instead of only looking at the median F1-score, we also evaluated the F1-score per 
cell	 population	 for	 each	 classifier	 (Figure	 S1).	 We	 confirmed	 previous	 conclusions,	 kNN 
performance	 drops	with	 deep	 annotations	which	 include	 smaller	 cell	 populations	 (Figure	
S1B-C),	 and	 scVI poorly	 performs	 on	 the	 deeply	 annotated	 AMB92	 dataset.	 Additionally,	
we	 observed	 that	 some	 cell	 populations	 are	much	 harder	 to	 classify	 compared	 to	 other	
populations.	For	example,	most	classifiers	had	a	low	performance	on	the	Serpinf1	cells	in	the	
AMB16 dataset.

2.2.4 Incorporating marker-genes does not improve intra-dataset 
performance on PBMC data

For	the	two	PBMC	datasets	(Zheng	68K	and	Zheng	sorted),	the	prior-knowledge	classifiers	
Garnett, Moana, DigitalCellSorter and SCINA could be evaluated and benchmarked with the 
rest	of	the	classifiers.	Although	the	best	performing	classifier	on	Zheng	68K	is	SCINA with a 
median	F1-score	of	0.998,	this	performance	is	based	only	on	3,	out	of	11,	cell	populations	
(Monocytes,	B	cells	and	NK	cells)	for	which	marker-genes	are	provided.	Table	S1	summarizes	
which	PBMC	cell	populations	can	be	classified	by	the	prior-knowledge	methods.	Interestingly,	
none of the prior-knowledge methods showed superior performance compared to other 
classifiers,	despite	the	advantage	these	classifiers	have	over	other	classifiers	given	they	are	
tested	 on	 fewer	 cell	 populations	 due	 to	 the	 limited	 availability	 of	marker-genes.	Garnett, 
Moana, and DigitalCellSorter, could	 be	 tested	 on	 seven,	 seven,	 and	 five	 cell	 populations	
respectively	 (Table	 S1).	 Beside	 SCINA,	 the	 top	 classifiers	 for	 the	 Zheng	 68K	 dataset	 are	
CaSTLe, ACTINN, singleCellNet and SVM. SVMrejection and Cell-BLAST show high performance, 
at	the	expense	of	high	rejection	rate	of	61.8%	and	29%,	respectively	(Figure	1).	Moreover,	
scPred failed	when	tested	on	the	Zheng	68K	dataset.	Generally,	all	classifiers	show	relatively	
lower	performance	on	the	Zheng	68K	dataset	compared	to	other	datasets,	as	the	Zheng	68K	

Thesis_LM_final.indd   42Thesis_LM_final.indd   42 24-04-2024   18:54:0724-04-2024   18:54:07



43

Benchmarking automatic cell-type identification methods

22

dataset	contains	11	immune	cell	populations	which	are	harder	to	differentiate,	particularly	
the	 T	 cell	 compartment	 (6	 out	 of	 11	 cell	 populations).	 This	 difficulty	 of	 separating	 these	
populations	was	 previously	 noted	 in	 the	 original	 study	 [36]. Also, the confusion matrices 
for CaSTLe, ACTINN, singleCellNet and SVM clearly indicate the high similarity between cell 
populations,	such	as	1)	monocytes	with	dendritic	cells,	2)	the	two	CD8+	T	populations,	and	3)	
the	four	CD4+	T	populations	(Figure	S2).	

The	classification	of	the	Zheng	sorted	dataset	is	relatively	easier	compared	to	the	Zheng	68K	
dataset,	as	almost	all	classifiers	show	improved	performance	(Figure	1),	with	the	exception	
that LAmbDA failed	while	being	 tested	on	 the	Zheng	sorted	dataset.	The	prior-knowledge	
methods	show	high	performance	(median	F1-score	>	0.93),	which	is	still	comparable	to	other	
classifiers	 such	 as	 SVMrejection, scVI, scPred and SVM.	 Yet,	 the	 supervised	 classifiers	 do	 not	
require	any	marker-genes,	and	they	can	predict	more	(all)	cell	populations.

2.2.5 The performance of prior-knowledge classifiers strongly de-
pends on the selected marker-genes

Some	prior-knowledge	classifiers,	SCINA, DigitalCellSorter and GarnettCV, used marker-genes 
to	classify	the	cells.	For	the	PBMC	datasets,	the	number	of	marker-genes	per	cell	population	
varies	across	classifiers	(2-161	markers)	and	the	marker-genes	show	very	little	overlap.	Only	
one	B	cell	marker	gene,	CD79A,	is	shared	by	all	classifiers	while	none	of	the	marker-genes	
for	the	other	cell	populations	is	shared	by	the	three	classifiers.	We	analyzed	the	effect	of	the	
number	of	marker-genes,	mean	expression,	dropout	rate,	and	the	specificity	of	each	marker	
gene	(beta	score,	see	Methods),	on	the	performance	of	the	classifier	(Figure	S3).	The	dropout	
rate	and	marker	 specificity	 (beta-score)	are	strongly	correlated	with	 the	median	F1-score,	
highlighting	that	the	performance	does	not	only	depend	on	biological	knowledge,	but	also	
on technical factors.

The	difference	between	the	marker-genes	used	by	each	method	underscores	the	challenge	
of	marker-genes	selection,	especially	for	smaller	cell	populations.	Moreover,	public	databases	
of	cell	type	markers	(e.g.	PanglaoDB	[39] and CellMarker [40])	often	provide	different	markers	
for	 the	 same	 population.	 For	 example,	 CellMarker	 provides	 33	marker-genes	 for	 B	 cells,	
while PanglaoDB provides 110 markers, with only 11 marker-genes overlap between the two 
databases. 

Given	the	differences	between	“expert-defined”	markers	and	the	correlation	of	classification	
performance	 and	 technical	 dataset-specific	 features	 (e.g.	 dropout	 rate),	 we	 tested	 if	 the	
performance	 of	 prior-knowledge	 methods	 can	 be	 improved	 by	 automatically	 selecting	
marker-genes	 based	 on	 differential	 expression.	 Through	 the	 cross-validation	 scheme,	
we	 used	 the	 training	 folds	 to	 select	 the	marker-genes	 of	 each	 cell	 population	 based	 on	
differential	expression	(see	Methods)	and	later	used	these	markers	to	evaluate	the	classifiers’	
performance	on	the	testing	fold.	We	tested	this	approach	on	the	two	PBMC	datasets,	Zheng	
sorted	and	Zheng	68K	for	different	numbers	of	marker-genes	(5,	10,	15,	and	20	markers).	
In Figure 1, the best result across the number of markers for SCINADE, GarnettDE, and 
DigitalCellSorterDE are shown.
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The	 median	 F1-score	 obtained	 using	 the	 differential	 expression-defined	 markers	 is	
significantly	lower	compared	to	the	original	versions	of	classifiers	using	the	markers	defined	
by the authors. This lower performance is in part due to the low performance on challenging 
populations,	such	as	subpopulations	of	CD4+	and	CD8+	T	cell	populations	(F1-score	≤	0.68)	
(Figure	S4).	These	challenging	populations	are	not	identified	by	the	original	classifiers	since	
the	markers	provided	by	the	authors	only	considered	annotations	at	a	higher	level	(Table	S1).	
For example, the median F1-score of SCINADE on	Zheng	sorted	is	0.38,	compared	to	a	median	
F1-score of 1.0 for SCINA (using	the	original	markers	defined	by	the	authors). However,	SCINA 
only	considers	three	cell	populations:	CD14+	monocytes,	CD56+	NK	cells,	and	CD19+	B	cells.	
If	we	only	consider	these	cell	populations	for	SCINADE, this results in a median F1-score of 
0.95. 

We	observed	that	the	optimal	number	of	marker-genes	varies	per	classifier	and	dataset.	For	
the	Zheng	sorted	dataset	the	optimal	number	of	markers	is	5,	15,	and	20	for	DigitalCellSorterDE, 
GarnettDE, and, SCINADE respectively,	while	for	Zheng	68K	this	is	5,	5,	and	10.	All	together,	these	
results	illustrate	the	dependence	of	the	classification	performance	on	the	careful	selection	of	
marker genes which is evidently a challenging task. 

2.2.6 Classification performance depends on dataset complexity

A	major	aspect	affecting	the	classification	performance	is	the	complexity	of	the	dataset	at	
hand.	We	described	the	complexity	of	each	dataset	in	terms	of	the	pairwise	similarity	between	
cell	 populations	 (see	Methods)	 and	 compared	 the	 complexity	 to	 the	 performance	 of	 the	
classifiers	and	the	number	of	cell	populations	in	a	dataset	(Figure	2).	When	the	complexity	
and/or	the	number	of	cell	populations	of	the	dataset	increases,	the	performance	generally	
decreases.	 The	 performance	 of	 all	 classifiers	 is	 relatively	 low	 on	 the	 Zheng	 68K	 dataset,	
which	 can	 be	 explained	 by	 the	 high	 pairwise	 correlations	 between	 the	mean	 expression	
profiles	of	each	cell	population	(Figure	S5).	These	correlations	are	significantly	lower	for	the	
TM	and	AMB92	datasets,	justifying	the	higher	performance	of	the	classifiers	on	these	two	
datasets	(Figure	S6-7).	While	both	TM	and	AMB92	have	more	cell	populations	(55	and	92,	
respectively)	compared	to	Zheng	68K	(11	populations),	these	populations	are	less	correlated	
to	one	another,	making	the	task	easier	for	all	the	classifiers.	

2.2.7 Evaluation across datasets

While	evaluating	the	classification	performance	within	a	dataset	(intra-dataset)	is	important,	
the	realistic	scenario	in	which	a	classifier	is	useful	requires	cross-dataset	(i.e.	inter-dataset)	
classification.	We	used	22	datasets	(Table	2)	to	test	the	classifiers’	ability	to	predict	cell	identities	
in	a	dataset	that	was	not	used	for	training.	First,	we	tested	the	classifiers’	performance	across	
different	sequencing	protocols,	applied	to	the	same	samples	within	the	same	lab	using	the	
two	CellBench	datasets.	We	evaluated	the	classification	performance	when	training	on	one	
protocol	and	testing	on	the	other.	Similar	to	the	intra-dataset	evaluation	result,	all	classifiers	
performed	well	in	this	case	(Figure	S8).	
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Second,	 we	 tested	 the	 classification	 performance	 on	 the	 PbmcBench	 datasets,	 which	
represent a more extensive protocol comparison. PbmcBench consists of two samples 
(pbmc1	and	pbmc2),	sequenced	using	seven	different	protocols	(Table	2)	with	the	exception	
that	10Xv3	was	not	applied	to	the	pbmc2	sample.	We	used	the	pbmc1	datasets	to	evaluate	
the	 classification	 performance	 of	 all	 pairwise	 train-test	 combinations	 between	 the	 seven	
protocols	(42	experiments,	see	Methods).	Moreover,	we	extended	the	evaluation	to	include	
comparisons	 across	 different	 samples	 for	 the	 same	protocol,	 using	 pbmc1	 and	 pbmc2	 (6	
experiments,	see	Methods).	All	48	experiments	results	are	summarized	in	Figure	3.	Overall,	
several	 classifiers	 performed	well	 including	 SCINADE using 20 marker-genes, singleCellNet, 
scmapcell, scID and SVM,	with	an	average	median	F1-score	>	0.75	across	all	48	experiments	
(Figure	3A,	S9A).	SCINADE, GarnettDE, and DigitalCellSorterDE were tested using 5, 10, 15 and 
20	marker-genes,	 Figure	 3A	 shows	 the	 best	 result	 for	 each	 classifier,	 where	 SCINADE and 
GarnettDE	performed	best	using	20	and	5	marker-genes,	respectively,	while	DigitalCellSorterDE 
had	a	median	F1-score	of	zero	during	all	experiments	using	all	different	numbers	of	marker-
genes. DigitalCellSorterDE could	only	identify	B-cells	in	the	test	sets,	usually	with	an	F1-score	
between	0.8	and	1.0,	while	the	F1-score	for	all	other	cell	populations	was	zero.

We	 also	 tested	 the	 prior-knowledge	 classifiers	 on	 all	 13	 PbmcBench	 datasets.	 The	 prior-
knowledge	 classifiers	 showed	 lower	 performance	 compared	 to	 other	 classifiers	 (average	

Figure 2. Complexity of the datasets compared 
to the performance of the classifiers. A) Boxplots 
of	 the	 median	 F1-scores	 of	 all	 classifiers	 for	 each	
dataset	used	during	 the	 intra-dataset	evaluation. B) 
Barplots describing the complexity of the datasets 
(see	 Methods).	 Datasets	 are	 ordered	 based	 on	
complexity. Box- and barplots are colored according 
to	the	number	of	cell	populations	in	each	dataset.
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median	F1-score	<	0.6),	with	 the	exception	of	SCINA which was only tested on three cell 
populations	(Figure	3B,	S9B).	These	results	are	inline	with	our	previous	conclusions	from	the	
Zheng	sorted	and	Zheng	68K	datasets	in	the	intra-dataset	evaluation.	

Comparing	the	performance	of	the	classifiers	across	the	different	protocols,	we	observed	a	
higher	performance	for	all	classifiers	for	specific	pairs	of	protocols.	For	example,	all	classifiers	
performed	well	when	trained	on	10Xv2	and	tested	on	10Xv3,	and	vice	versa.	On	the	other	
hand,	other	pairs	of	protocols	had	good	performance	only	in	one	direction,	training	on	Seq-
Well	produced	good	predictions	on	10Xv3,	but	not	the	other	way	around.	Compared	to	all	
other	protocols,	the	performance	of	all	classifiers	was	low	when	they	were	either	trained	or	
tested on Smart-seq2 data. This can, in part, be due to the fact that Smart-seq2 data does not 
contain	Unique	Molecular	Identifier	(UMI),	in	contrast	to	all	other	protocols.

Figure 3. Classification performance across the PbmcBench datasets. A)	Heatmap	showing	the	median	F1-scores	
of	 the	 supervised	 classifiers	 for	 all	 train-test	 pairwise	 combination	across	different	protocols.	 The	 training	 set	 is	
indicated in the grey box on top of the heatmap, the test set is indicated using the column labels below. Results 
showed	to	the	left	of	the	red	line	represent	the	comparison	between	different	protocol	using	sample	pbmc1.	Sample	
pbmc2 was used as test set then. Results showed to the right of the red line represent the comparison between 
different	 samples	using	 the	 same	protocol,	with	pbmc	1	used	 for	 training	and	pbmc2	used	 for	 testing.	Boxplots	
on	the	right	side	of	the	heatmap	summarize	the	performance	of	each	classifier	across	all	experiments.	The	mean	
of	the	median	F1-scores,	also	used	to	order	the	classifiers,	 is	 indicated	 in	the	boxplots	using	a	red	dot.	Boxplots	
underneath	the	heatmap	summarize	the	performance	of	the	classifiers	per	experiment.	For	SCINADE, GarnettDE, and 
DigitalCellSorterDE	different	numbers	of	marker-genes	were	tested.	Only	the	best	result	is	shown	here.	B) Median 
F1-score	of	the	prior-knowledge	classifiers	on	both	samples	of	the	different	protocols.	The	protocol	is	indicated	in	
the	grey	box	on	top	of	the	heatmap,	the	sample	is	indicated	with	the	labels	below.	Classifiers	are	ordered	based	on	
their mean performance across all datasets.
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We	 also	 tested	 the	 classification	 performance	 using	 the	 three	 brain	 datasets,	 VISp,	 ALM	
and	MTG	(Table	2),	which	allowed	us	to	compare	performances	across	species	(mouse	and	
human)	as	well	as	single-cell	RNA-seq	(used	in	VISp	and	ALM)	versus	single-nucleus	RNA-seq	
(used	for	MTG).	We	tested	all	possible	train-test	combinations	for	both	levels	of	annotation,	
three	major	brain	cell	types	(inhibitory	neurons,	excitatory	neurons	and	non-neuronal	cells)	
and	the	deeper	annotation	 level	with	34	cell	populations	 (18	experiments,	 see	Methods).	
Prediction	of	the	three	major	cell	types	was	easy,	where	almost	all	classifiers	showed	high	
performance	(Figure	4A)	with	some	exceptions.	For	example,	scPred	failed	the	classification	
task	completely	when	testing	on	the	MTG	dataset,	producing	100%	unlabeled	cells	(Figure	
S10A).	Predicting	the	34	cell	populations	turned	out	to	be	a	more	challenging	task,	especially	
when	 the	MTG	 human	 dataset	 is	 included	 either	 as	 training	 or	 testing	 data,	 resulting	 in	
significantly	lower	performance	across	all	classifiers	(Figure	4B).	Across	all	nine	experiments	
at	the	deeper	annotation,	the	top	performing	classifiers	were	SVM, ACTINN, singleCellNet, 
SingleR and LAmbDA,	with	almost	0%	unlabeled	cells	(Figure	S10B).

Finally,	 to	 evaluate	 the	 classification	 performance	 across	 different	 protocols	 and	 different	
labs,	we	used	the	four	human	pancreatic	datasets:	Baron	Human,	Muraro,	Segerstople	and	
Xin.	We	 tested	 four	 combinations	 by	 training	 on	 three	 datasets	 and	 test	 on	 one	 dataset,	
in	which	case	the	classification	performance	can	be	affected	by	batch	differences	between	
datasets.	We	evaluated	the	performance	of	 the	classifiers	when	trained	using	the	original	
data	as	well	as	aligned	data	using	the	mutual	nearest	neighbour	(MNN)	method	[41]. Figure 
S11 shows UMAPs [42]	of	the	combined	dataset	before	and	after	alignment,	demonstrating	
better	grouping	of	pancreatic	cell	types	after	alignment.	

For	the	original	(unaligned)	data,	the	best	performing	classifiers	across	all	four	experiments	
are scVI, SVM, ACTINN, scmapcell and SingleR (Figure	5A,	S12A).	For	the	aligned	data,	the	
best	 performing	 classifiers	 are	 kNN, SVMrejection, singleCellNet, SVM and NMC	 (Figure	 5B,	
S12B).	 Some	 classifiers	 benefit	 from	 aligning	 datasets	 such	 as	 SVMrejection, kNN, NMC and 
singleCellNet,	resulting	in	higher	median	F1-scores	(Figure	5).	On	the	other	hand,	some	other	
classifiers	failed	the	classification	task	completely,	such	as	scmapcell which labels all cells as 
unlabeled.	Some	other	classifiers	 failed	to	run	over	 the	aligned	datasets,	 such	as	ACTINN, 
scVI, Cell-BLAST, scID, scmapcluster and scPred.	These	classifiers	work	only	with	positive	gene	
expression	data,	while	the	aligned	datasets	contains	positive	and	negative	gene	expression	
values.

2.2.8 Rejection option evaluation

Classifiers	developed	for	scRNA-seq	data	often	incorporate	a	rejection	option	to	identify	cell	
populations	in	the	test	set	that	were	not	seen	during	training.	These	populations	cannot	be	
predicted	correctly	and	therefore	should	remain	unassigned.	To	test	whether	the	classifiers	
indeed	 leave	 these	 unseen	 populations	 unlabeled,	we	 applied	 two	 different	 experiments	
using	negative	controls	of	different	tissues	and	using	unseen	populations	of	the	same	tissue.	

First,	 the	 classifiers	were	 trained	 on	 a	 data	 set	 from	one	 tissue	 (e.g.	 pancreas)	 and	 used	
to	predict	 cell	 populations	of	 a	 completely	 different	tissue	 (e.g.	 brain)	 [22]. The methods 
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Figure 4. Classification performance across brain datasets. Heatmaps	show	the	median	F1-scores	of	the	supervised	
classifiers	when	tested	on	A)	major	lineage	annotation	with	three	cell	populations,	and	B)	deeper	level	of	annotation	
with	34	cell	populations.	The	training	set(s)	are	indicated	using	the	column	labels	on	top	of	the	heatmap.	The	test	
set	is	indicated	in	the	grey	box.	In	each	heatmap	the	classifiers	are	ordered	based	on	their	mean	performance	across	
all experiments. 
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should	thus	reject	all	 (100%)	of	the	cells	 in	the	test	dataset.	We	carried	out	four	different	
negative	control	experiments	 (see	Methods,	 Figure	6A).	scmapcluster and scPred have an 
almost	perfect	score	for	all	four	combinations,	rejecting	close	100%	of	the	cells.	Other	top	
performing methods for this task, SVMrejection and scmapcell, failed when trained on mouse 
pancreatic	data	and	tested	on	mouse	brain	data.	All	labeled	cells	of	the	AMB16	dataset	are	
predicted	to	be	beta	cells	in	this	case.	The	prior-knowledge	classifiers,	SCINA, Garnettpretrained, 
and DigitalCellSorter,	could	only	be	tested	on	the	Baron	Human	pancreatic	dataset.	GarnettCV 
could,	on	top	of	that,	also	be	trained	on	the	Baron	Human	dataset	and	tested	on	the	Zheng	
68K dataset. During the training phase, GarnettCV tries	 to	find	 representative	 cells	 for	 the	
cell	 populations	described	 in	 the	marker-genes	file.	 Being	 trained	on	Baron	Human	using	
the	PBMC	marker-genes	file,	it	should	not	be	able	to	find	any	representatives	and	therefore	
all	 cells	 in	 the	 Zheng	 68K	 dataset	 should	 be	 unassigned.	 Surprisingly,	GarnettCV still	 finds	
representatives	for	PBMC	cells	 in	the	pancreatic	data	and	thus	the	cells	 in	the	test	set	are	
labeled.	However,	being	trained	on	the	PBMC	dataset	and	tested	on	the	pancreatic	dataset,	
it does have a perfect performance. 

To	 test	 the	 rejection	 option	 in	 more	 realistic	 and	 challenging	 scenario,	 we	 trained	 the	
classifiers	on	some	cell	populations	from	one	dataset,	and	used	the	held	out	cell	populations	
in	the	test	set	(see	Methods).	Since	the	cell	populations	in	the	test	set	were	not	seen	during	
training,	they	should	remain	unlabeled.	Here,	the	difficulty	of	the	task	was	gradually	increased	

Figure 5. Classification performance across pancreatic datasets. Heatmaps	 showing	 the	 median	 F1-score	 for	
each	classifier	for	the	A) unaligned and B) aligned datasets. The column labels indicate which of the four datasets 
was	used	as	a	test	set,	in	which	case	the	other	three	datasets	were	used	as	training.	Grey	boxes	indicate	that	the	
corresponding	method	 could	 not	 be	 tested	 on	 the	 corresponding	 dataset.	 In	 each	 heatmap,	 the	 classifiers	 are	
ordered based on their mean performance across all experiments.
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(Table	S3).	First	all	the	T-cells	were	removed	from	the	training	set.	Next,	only	the	CD4+	T	cells	
were	removed.	Finally,	only	CD4+/CD45RO+	Memory	T	cells,	a	subpopulation	of	the	CD4+	T	
cells, were removed. The top performing methods for this task are: scmapcell, scPred, scID, 
SVMrejection, and SCINA (Figure	6B). We	expected	that	rejecting	T	cells	would	be	a	relatively	
easy	task	as	they	are	quite	distinct	from	all	other	cell	populations	in	the	dataset.	It	should	
thus	be	comparable	to	the	negative	control	experiment.	Rejecting	CD4+/CD45RO+	Memory	
T	cells,	on	the	other	hand,	would	be	more	difficult	as	they	could	easily	be	confused	with	all	
other	subpopulations	of	CD4+	T	cells.	Surprisingly,	almost	all	classifiers,	except	for	scID and 
scmapcluster, show the opposite. 

To	 better	 understand	 this	 unexpected	 performance	 we	 analyzed	 the	 labels	 assigned	 by	
SVMrejection.	 In	the	first	task	(T	cells	removed	from	the	training	set),	SVMrejection labels almost 
all T cells as B cells. This can be explained by the fact that SVMrejection,	and	most	classifiers	
for	that	matter,	rely	on	classification	posterior	probabilities	to	assign	labels	but	ignores	the	
actual	similarity	between	each	cell	and	the	assigned	population.	 In	task	two	(CD4+	T	cells	
were	removed),	there	were	two	subpopulations	of	CD8+	T	cells	 in	the	training	set.	 In	that	
case,	 two	 cell	 populations	 are	 equally	 similar	 to	 the	 cells	 in	 the	 test	 set,	 resulting	 in	 low	
posterior	probabilities	for	both	classes	and	thus	the	cells	in	the	test	set	remain	unlabeled.	If	

Figure 6. Performance of the classifiers during the rejection experiments. A) Percentage of unlabeled cells during 
the	negative	control	experiment	for	all	the	classifiers	with	a	rejection	option.	The	prior-knowledge	classifiers	could	
not be tested on all datasets, this is indicated with a grey box. The species of the dataset is indicated in the grey 
box	on	top.	Column	labels	indicate	which	datasets	are	used	for	training	and	testing	respectively. B) Percentage of 
unlabeled	cells	for	all	classifiers	with	a	rejection	option	when	a	cell	population	was	removed	from	the	training	set.	
Column	labels	indicate	which	cell	population	was	removed.	This	cell	population	was	used	as	a	test	set.	In	both A) and 
B) the	classifiers	are	sorted	based	on	their	mean	performance	across	all	experiments.
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one	of	these	CD8+	T	cell	populations	was	removed	from	the	training	set,	only	10.53%	instead	
of	75.57%	of	 the	CD4+	T	 cells	were	assigned	as	unlabeled	by	SVMrejection. All together, our 
results	indicate	that	despite	the	importance	of	incorporating	a	rejection	option	in	cell	identity	
classifiers,	the	implementation	of	this	rejection	option	remains	challenging.

2.2.9 Performance sensitivity to the input features 

During	the	intra-datasets	cross-validation	experiment	described	earlier,	we	used	all	features	
(genes)	as	input	to	the	classifiers.	However,	some	classifiers	suffer	from	overtraining	when	
too	many	 features	 are	 used.	 Therefore,	 we	 tested	 the	 effect	 of	 feature	 selection	 on	 the	
performance	of	the	classifiers.	While	different	strategies	for	feature	selection	in	scRNA-seq	
classification	experiments	exist,	selecting	genes	with	a	higher	number	of	dropouts	compared	
to the expected number of dropouts has been shown to outperform other methods [22,43]. 
We	 selected	 subsets	 of	 features	 from	 the	 TM	 dataset	 using	 the	 dropout	method.	 In	 the	
experiments,	we	used	the	top:	100,	200,	500,	1000,	2000,	5000,	and	19791	(all)	genes.	Some	
classifiers	include	a	built-in	feature	selection	method	which	is	used	by	default.	To	ensure	that	
all	methods	use	the	same	set	of	features,	the	built-in	feature	selection	was	turned	off	during	
these experiments. 

Some	methods	are	clearly	overtrained	when	the	number	of	features	increases	(Figure	7A).	
For example, scmapcell shows the highest median F1-score when using less features and 
the	 performance	 drops	when	 the	 number	 of	 features	 increases.	 On	 the	 other	 hand,	 the	
performance	of	other	classifiers,	such	as	SVM, keeps improving when the number of features 
increases.	These	results	 indicate	 that	 the	optimal	number	of	 features	 is	different	 for	each	
classifier.

Looking at the median F1-score, there are several methods with a high maximal performance. 
Cell-BLAST, ACTINN, scmapcell, scPred, SVMrejection and SVM all have a median F1-score higher 
than 0.97 for one or more of the feature sets. Some of these well-performing methods, 
however, leave many cells unlabeled. scmapcell and scPred, for instance, yield a maximum 
median	 F1-score	 of	 0.976	 and	 0.982	 respectively,	 but	 10.7%	 and	 15.1%	 of	 the	 cells	 are	
assigned	as	unlabeled	(Figure	7B).	On	the	other	hand,	SVMrejection has the highest median F1-
score	(0.991)	overall	with	only	2.9%	unlabeled.	Of	the	top	performing	classifiers	only	ACTINN 
and SVM	label	all	the	cells.	Overall	SVM shows the third highest performance with a score of 
0.979. 

2.2.10 Scalability: performance sensitivity to the number of cells

scRNA-seq	datasets	vary	significantly	across	studies	in	terms	of	the	number	of	cells	analyzed.	
To	 test	 the	 influence	 of	 the	 size	 of	 the	 dataset	 on	 the	 performance	 of	 the	 classifier,	 we	
downsampled	the	TM	dataset	in	a	stratified	way	(i.e.	preserving	population	frequencies)	to	1,	
5,	10,	20,	50,	and	100%	of	the	original	number	of	45,469	cells	(see	Methods)	and	compared	
the	performance	of	the	methods	(Figure	7C,	D).	Using	less	than	500	cells	in	the	dataset,	most	
classifiers	have	a	relatively	high	performance.	Only	scID, LAmbDA, CaSTLe, and Cell-BLAST, 
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Figure 7. Classification performance and computation time evaluation across different numbers of features, 
cells, and annotation levels. Line plots show A) the median F1-score, B) percentage of unlabeled cells, and E) 
computation	time	of	each	classifier	applied	to	the	TM	dataset	with	the	top	100,	200,	500,	1000,	2000,	5000,	and	
19791	(all)	genes	as	input	feature	sets.	Genes	were	ranked	based	on	dropout-based	feature	selection.	C) The median 
F1-score, D) percentage of unlabeled cells, and F)	computation	time	of	each	classifier	applied	to	the	downsampled	
TM	datasets	containing	463,	2,280,	4,553,	9,099,	22,737,	and	45,469	(all)	cells.	G)	The	computation	time	of	each	
classifier	is	plotted	against	the	number	of	cell	populations.	Note	that	the	y-axis	is	100^x	scaled	in	A,C and log-scaled 
in E-G. The x-axis is log-scaled in A-F
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have a median F1-score below 0.85. Surprisingly, SVMrejection has almost the same median 
F1-score	when	using	1%	of	the	data	as	when	using	all	data	(0.993	and	0.994	respectively).	It	
must	be	noted	here,	however,	that	the	percentage	of	unlabeled	cells	decreases	significantly	
(from	28.9%	to	1.3%).	Overall,	the	performance	of	all	classifiers	stabilized	when	tested	on	≥	
20%	(9,099	cells)	of	the	original	data.

2.2.11 Running time evaluation 

To	compare	the	runtimes	of	the	methods	and	see	how	they	scale	when	the	number	of	cells	
increases,	we	compared	the	number	of	cells	in	each	dataset	with	the	computation	time	of	
the	classifiers	(Figure	S13).	Overall,	big	differences	in	the	computation	time	can	be	observed	
when	comparing	the	different	methods.	SingleR showed	the	highest	computation	time	overall.	
Running SingleR on	the	Zheng	68K	dataset	took	more	than	39	hours,	while	scmapcluster was 
finished	within	10	seconds	on	this	dataset.	Some	of	the	methods	have	a	high	runtime	for	
the	small	datasets.	On	the	smallest	dataset,	Xin,	all	classifiers	have	a	computation	time	<5	
minutes,	with	most	classifiers	finishing	within	60	seconds.	Cell-BLAST, however, takes more 
than	75	minutes.	 In	general,	all	methods	show	an	increase	in	computation	time	when	the	
number	of	 cells	 increase.	However,	when	comparing	 the	 second	 largest,	 TM,	and	 largest,	
Zheng	 68K,	 dataset,	 not	 all	methods	 show	 an	 increase	 in	 computation	 time.	 Despite	 the	
increase in the number of cells between the two datasets, CaSTLe, CHETAH, and SingleR, 
have	a	decreasing	computation	time.	A	possible	explanation	could	be	that	 the	runtime	of	
these	methods	also	depends	on	the	number	of	genes	or	the	number	of	cell	populations	in	
the	dataset.	To	evaluate	the	run	time	of	the	methods	properly,	we	therefore	investigated	the	
effect	of	the	number	of	cells,	features,	and	cell	populations	separately	(Figure	7E-G).	

To	assess	 the	effect	of	 the	number	of	 genes	on	 the	computation	time,	we	compared	 the	
computation	time	of	the	methods	during	the	feature	selection	experiment	(Figure	7E).	Most	
methods	 scale	 linearly	with	 the	number	of	genes.	However,	LDA does not scale very well 
when the number of genes increases. If the number of features is higher than the number of 
cells, the complexity of LDA is	O(g^3),	where	g is the number of genes [44]. 

The	 effect	 of	 the	 number	 of	 cells	 on	 the	 timing	 showed	 that	 all	 methods	 increase	 in	
computation	time	when	the	number	of	cells	increases	(Figure	7F).	The	differences	in	runtime	
on the largest dataset are larger. scmapcluster, for	instance,	takes	five	seconds	to	finish,	while	
Cell-BLAST takes more than 11 hours.

Finally,	to	evaluate	the	effect	of	the	number	of	cell	populations,	the	runtime	of	the	methods	
on	the	AMB3,	AMB16,	and	AMB92	datasets	were	compared	(Figure	7G).	For	most	methods	
this	shows	an	increase	in	runtime	when	the	number	of	cell	populations	increases,	specially	
singleCellNet. For other methods, such as ACTINN and scmapcell,	 the	 runtime	 remains	
constant.	Five	classifiers,	scmapcell, scmapcluster, SVM, RF, and NMC,	have	a	computation	
time	below	six	minutes	on	all	the	datasets.	
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2.3 Discussion
In	 this	 study,	 we	 evaluated	 the	 performance	 of	 22	 different	 methods	 for	 automatic	 cell	
identification	 using	 27	 scRNA-seq	 datasets.	 We	 performed	 several	 experiments	 to	 cover	
different	 levels	 of	 challenges	 in	 the	 classification	 task,	 and	 to	 test	 specific	 aspects	 of	 the	
classifiers	such	as	the	feature	selection,	scalability	and	rejection	experiments.	We	summarize	
our	 findings	 across	 the	 different	 experiments	 (Figure	 8)	 and	 provide	 a	 detailed	 summary	
of	which	dataset	was	used	for	each	experiment	(Table	S4).	This	overview	can	be	used	as	a	
user-guide	to	choose	the	most	appropriate	classifier	depending	on	the	experimental	setup	
at	 hand.	 Overall,	 several	 classifiers	 performed	 accurately	 across	 different	 datasets	 and	
experiments,	 particularly:	 SVMrejection, SVM, singleCellNet, scmapcell, scPred, ACTINN and 
scVI.	We	observed	relatively	lower	performance	for	the	inter-dataset	setup,	likely	due	to	the	
technical	and	biological	differences	between	datasets,	compared	to	the	intra-dataset	setup.	
SVMrejection, SVM and singleCellNet performed well for both setups, while scPred and scmapcell 
performed	better	in	the	intra-dataset	setup,	and	scVI and ACTINN	had	better	performance	
in	the	 inter-dataset	setup	(Figure	8).	Of	note,	we	evaluated	all	classifiers	using	the	default	
settings.	While	adjusting	these	settings	for	a	specific	dataset	might	improve	the	performances	
it increases the risk of overtraining.

Considering	all	three	evaluation	metrics	(median	F1-score,	percentage	of	unlabeled	cells	and	
computation	time),	SVMrejection and SVM are	 overall	 the	 best	 performing	 classifiers	 for	 the	
scRNA-seq datasets used. Although SVM	has	a	shorter	computation	time,	the	high	accuracy	
of	the	rejection	option	of	SVMrejection,	which	allows	flagging	new	cells	and	assigning	them	as	
unlabeled, results in an improved performance compared to SVM.	Our	 results	 show	 that	
SVMrejection and SVM scale	well	to	large	datasets	as	well	as	deep	annotation	levels.	In	addition,	
they	did	not	suffer	from	the	large	number	of	features	(genes)	present	in	the	data,	producing	
the highest performance on the TM dataset using all genes, due to the incorporated L2-
regularization.	The	comparable	or	higher	overall	performance	of	a	general-purpose	classier	
such as SVM warrants	caution	when	designing	scRNA-seq	specific	classifiers	that	they	do	not	
introduce unnecessary complexity. For example, deep learning methods, such as ACTINN and 
scVI, showed overall lower performance compared to SVM, supporting	recent	observations	
by	Köhler	et al. [45].

scPred	(which	is	based	on	an	SVM with	radial	kernel),	LDA, ACTINN, and singleCellNet performed 
well	on	most	datasets,	yet	the	computation	time	is	long	for	large	datasets. singleCellNet also 
becomes	slower	with	a	large	number	of	cell	populations.	In	addition,	in	some	cases,	scPred 
and scmapcell/cluster	reject	higher	proportions	of	cells	as	unlabeled	compared	to	SVMrejection, 
without	a	substantial	improvement	in	accuracy.	In	general,	incorporating	a	rejection	option	
with	classification	is	a	good	practice	to	allow	the	detection	of	potentially	novel	cell	populations	
(not	present	in	the	training	data)	and	improve	the	performance	for	the	classified	cells	with	
high	confidence.	However,	for	the	datasets	used	in	this	study,	the	performance	of	classifiers	
with	rejection	option,	except	for	SVMrejection,	did	not	show	substantial	improvement	compared	
to	 other	 classifiers.	 Furthermore,	 our	 results	 indicate	 that	 designing	 a	 proper	 rejection	
option	can	be	challenging	for	complex	datasets	(e.g.	PBMC)	and	that	relying	on	the	posterior	
probabilities	alone	might	not	yield	optimal	results.	
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Figure 8. Summary of the performance of all classifiers during different experiments. For each experiment, the 
heatmap	shows	whether	a	classifier	performs	good,	intermediate,	or	poor.	Light-grey	indicates	that	a	classifier	could	
not	be	tested	during	an	experiment.	The	grey	boxes	to	the	right	of	the	heatmap	indicate	the	four	different	categories	
of	 experiments:	 intra-dataset,	 inter-dataset,	 rejection	and	timing.	Experiments	 itself	 are	 indicated	using	 the	 row	
labels.	Table	S4	shows	which	datasets	were	used	to	score	the	classifiers	exactly	for	each	experiment.	Grey	boxes	next	
to	the	heatmap	indicate	the	two	classifiers	categories.	Within	these	two	categories,	the	classifiers	are	sorted	based	
on their mean performance on the intra and inter dataset experiments. 
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For	 datasets	 with	 deep	 levels	 of	 annotation	 (i.e.	 large	 number)	 of	 cell	 populations,	 the	
classification	 performance	 of	 all	 classifiers	 is	 relatively	 low,	 since	 the	 classification	 task	 is	
more challenging. scVI,	in	particular,	failed	to	scale	with	deeply	annotated	datasets,	although	
it	works	well	for	datasets	with	relatively	small	number	of	cell	populations.	Further,	applying	
the	prior-knowledge	classifiers	becomes	infeasible	for	deeply	annotated	datasets,	as	the	task	
of	defining	the	marker-genes	becomes	even	more	challenging.

We	 evaluated	 the	 performance	 of	 the	 prior-knowledge	methods	 (marker-based	 and	 pre-
trained)	on	PBMC	datasets	only,	due	 to	 the	 limited	availability	of	author-provided	marker	
genes.	For	all	PBMC	datasets,	the	prior-knowledge	methods	did	not	improve	the	classification	
performance	over	supervised	methods,	which	do	not	incorporate	such	prior	knowledge.	We	
extended	 some	 prior-knowledge	methods	 such	 that	 the	marker-genes	were	 defined	 in	 a	
data-driven	manner	using	differential	expression	which	did	not	improve	the	performance	of	
these	classifiers,	except	for	SCINADE	(with	20	marker-genes)	for	the	PbmcBench	datasets.	The	
data-driven	selection	of	markers	allows	the	prediction	of	more	cell	populations	compared	
to	 the	number	of	populations	 for	which	marker-genes	were	originally	provided.	However,	
this	data-driven	selection	violates	the	fundamental	assumption	in	prior-knowledge	methods	
that	 incorporating	 expert-defined	 markers	 improves	 classification	 performance.	 Further,	
several	supervised	classifiers	which	do	not	require	markers	to	be	defined	a	priori	(e.g.	scPred 
and scID)	 already	 apply	 a	differential	 expression	 test	 to	find	 the	best	 set	of	 genes	 to	use	
while training the model. The fact that prior-knowledge methods do not outperform other 
supervised	 methods	 and	 given	 the	 challenges	 associated	 with	 explicit	 marker	 definition,	
indicate	that	incorporating	prior	knowledge	in	the	form	of	marker-genes	is	not	beneficial,	at	
least for PBMC data.

In	the	inter-dataset	experiments,	we	tested	the	ability	of	the	classifiers	to	identify	populations	
across	 different	 scRNA-seq	 protocols.	 Our	 results	 show	 that	 some	 protocols	 are	 more	
compatible	with	one	another	(e.g.	10Xv2	and	10Xv3),	Smart-Seq2	is	distinct	from	the	other	
UMI-based	methods,	and	CEL-Seq2	suffers	from	low	replicability	of	cell	populations	across	
samples. These results can serve as a guide in order to choose the best set of protocols that 
can be used in studies where more than one protocol is used. 

The	intra-dataset	evaluation	included	the	Zheng	sorted	dataset,	which	consists	of	10	FACS	
sorted	cell	populations	based	on	the	expression	of	surface	protein	markers.	Our	results	show	
relatively	lower	classification	performance	compared	to	other	datasets,	except	the	Zheng	68K	
dataset.	The	poor	correlation	between	the	expression	 levels	of	these	protein	markers	and	
their coding genes mRNA levels [46] might explain this low performance. 

Overall,	we	 observed	 that	 the	 performance	 of	 almost	 all	methods	was	 relatively	 high	 on	
various	datasets,	while	some	datasets	with	overlapping	populations	(e.g.	Zheng	68K	dataset)	
remain challenging. The inter-dataset comparison requires extensive development in order 
to	deal	with	technical	differences	between	protocols,	batches,	and	 labs,	as	well	as	proper	
matching	between	different	cell	population	annotations.	Further,	the	pancreatic	datasets	are	
known to project very well across studies and hence using them to evaluate inter-dataset 
performance	can	be	misleading.	We	recommend	considering	other	challenging	tissues	and	
cell	populations.
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2.4 Conclusions
We	present	a	comprehensive	evaluation	of	automatic	cell	identification	methods	for	single	
cell	RNA-sequencing	data.	Generally,	all	classifiers	perform	well	across	all	datasets,	including	
the	 general-purpose	 classifiers.	 In	 our	 experiments,	 incorporating	 prior	 knowledge	 in	 the	
form	of	marker-genes	does	not	improve	the	performance	(on	PBMC	data).	We	observed	large	
differences	in	the	performance	between	methods	in	response	to	changing	the	input	features.	
Furthermore,	 the	 tested	methods	vary	considerably	 in	 their	 computation	time	which	also	
varies	differently	across	methods	based	on	the	number	of	cells	and	features.	

Taken together, we recommend the use of the general-purpose SVMrejection	 classifier	 (with	
a	 linear	 kernel)	 since	 it	 had	 better	 performance	 compared	 to	 the	 other	 classifiers	 tested	
across	 all	 datasets.	Other	high	performing	 classifiers	 include:	SVM with a remarkably fast 
computation	time	 at	 the	 expense	 of	 losing	 the	 rejection	option,	 singleCellNet, scmapcell, 
and scPred.	To	support	future	extension	of	this	benchmarking	work	with	new	classifiers	and	
datasets,	 we	 provide	 a	 Snakemake	 workflow	 to	 automate	 the	 performed	 benchmarking	
analyses	(https://github.com/tabdelaal/scRNAseq_Benchmark/).

2.5 Methods

2.5.1 Classification methods

We	 evaluated	 22	 scRNA-seq	 classifiers,	 publicly	 available	 as	 R	 or	 Python	 packages	 or	
scripts	 (Table	 1).	 This	 set	 includes	 16	methods	 developed	 specifically	 for	 scRNA-seq	 data	
as	 well	 as	 six	 general-purpose	 classifiers	 from	 the	 scikit-learn	 library	 in	 Python:	 linear	
discriminant	 analysis	 (LDA),	 nearest	 mean	 classifier	 (NMC),	 k-nearest	 neighbor	 (kNN),	
support	 vector	 machine	 with	 linear	 kernel	 (SVM),	 SVM	with	 rejection	 option	 (SVMrejection) 
and	 random	 forest	 (RF).	 The	 following	 functions	 from	 the	 scikit-learn	 library	 were	 used	
respectively:	 LinearDiscriminantAnalysis(), NearestCentroid(), 
KNeighborsClassifier(n_neighbors=9), LinearSVC(), LinearSVC() 
with CalibratedClassifierCV() wrapper, and RandomForestClassifier(n_
estimators=50). For kNN,	 nine	 neighbors	 were	 chosen.	 After	 filtering	 the	 datasets, 
only	cell	populations	consisting	of	ten	cells	or	more	remained.	Using	nine	neighbors	would	
thus	 ensure	 that	 this	 classifier	 could	 also	 predict	 very	 small	 populations.	 For	 SVMrejection a 
threshold	of	0.7	was	used	on	the	posterior	probabilities	to	assign	cells	as	‘unlabeled’.	During	
the	rejection	experiments,	also	an	LDA	with	rejection	was	implemented.	In	contrast	to	the	
LinearSVC(), the LinearDiscriminantAnalysis()	 function	 can	 output	 the	
posterior	probabilities	itself,	which	was	also	thresholded	at	0.7.

scRNA-seq	specific	methods	were	excluded	from	the	evaluation	 if	 they	did	not	 return	the	
predicted labels for each cell. For example, we excluded MetaNeighbor [47] because the 
tool	only	returns	the	area	under	the	receiver	operator	characteristic	curve	(AUROC).	For	all	
methods	the	latest	(May	2019)	package	was	installed	or	scripts	were	downloaded	from	their	
GitHub.	 For	 scPred it	 should	be	noted	 that	 it	 is	 only	 compatible	with	 an	older	 version	of	
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Seurat	 (v2.0).	 For	CHETAH it is important that the R version 3.6 or newer is installed. For 
LAmbDA, instead	of	the	predicted	label,	the	posterior	probabilities	were	returned	for	each	
cell	population.	Here,	we	assigned	the	cells	to	the	cell	population	with	the	highest	posterior	
probability.

During	the	benchmark,	all	methods	were	run	using	their	default	settings	and	if	not	available,	
we	 used	 the	 settings	 provided	 in	 the	 accompanying	 examples	 or	 vignettes.	 As	 input,	 we	
provided	each	method	with	 the	 raw	count	data	 (after	cell	and	gene	filtering	as	described	
in	Section	2.5.3	Data	Preprocessing)	according	to	the	method	documentation.	The	majority	
of	 the	methods	have	a	built-in	normalization	step.	For	 the	general-purpose	classifiers,	we	
provided log-transformed counts, log ( )2 1count + .

Some	methods	required	a	marker	gene	file	or	pre-trained	classifier	as	an	input	(e.g.	Garnett, 
Moana, SCINA, DigitalCellSorter).	 In	this	case,	we	use	the	marker	gene	files	of	pre-trained	
classifiers	provided	by	the	authors.	We	did	not	attempt	to	 include	additional	marker	gene	
files	 for	 all	 datasets,	 and	hence	 the	evaluation	of	 those	methods	 is	 restricted	 to	datasets	
where	a	marker	gene	file	for	cell	populations	is	available.	

2.5.2 Datasets 

A	 total	 of	 27	 scRNA-seq	 datasets	were	 used	 to	 evaluate	 and	 benchmark	 all	 classification	
methods,	 from	 which	 11	 datasets	 were	 used	 for	 intra-dataset	 evaluation	 using	 a	 cross-
validation	scheme,	and	22	datasets	were	used	for	inter-dataset	evaluation,	with	six	datasets	
overlapping	for	both	tasks	as	described	in	Table	2.	Datasets	vary	across	species	(human	and	
mouse),	tissue	(brain,	pancreas,	PBMC	and	whole	mouse),	as	well	as	the	sequencing	protocol	
used.	The	brain	datasets,	 including	Allen	Mouse	Brain	(AMB),	VISp,	ALM	(GSE115746)	and	
MTG,	 were	 downloaded	 from	 the	 Allen	 Institute	 Brain	 Atlas	 http://celltypes.brain-map.
org/rnaseq.	 All	 five	 pancreatic	 datasets	 were	 obtained	 from:	 https://hemberg-lab.github.
io/scRNA.seq.datasets/	 (Baron	 Mouse:	 GSE84133,	 Baron	 Human:	 GSE84133,	 Muraro:	
GSE85241,	 Segerstolpe:	 E-MTAB-5061,	 Xin:	 GSE81608).	 The	 CellBench	 10X	 dataset	 was	
obtained	 from	 (GSM3618014),	 and	 the	 CellBench	CEL-Seq2	 dataset	was	 obtained	 from	3	
datasets	 (GSM3618022,	GSM3618023,	GSM3618024)	and	concatenated	 into	one	dataset.	
The	Tabula	Muris	(TM)	dataset	was	downloaded	from	https://tabula-muris.ds.czbiohub.org/ 
(GSE109774).	For	the	Zheng	sorted	datasets,	we	downloaded	the	10	PBMC	sorted	populations	
(CD14+	Monocytes,	CD19+	B	Cells,	CD34+	Cells,	CD4+	Helper	T	Cells,	CD4+/CD25+	Regulatory	
T	Cells,	CD4+/CD45RA+/CD25-	Naive	T	Cells,	CD4+/CD45RO+	Memory	T	Cells,	CD56+	Natural	
Killer	 Cells,	 CD8+	 Cytotoxic	 T	 cells,	 CD8+/CD45RA+	Naive	 Cytotoxic	 T	 Cells)	 from:	 https://
support.10xgenomics.com/single-cell-gene-expression/datasets, next we downsampled 
each	population	to	2,000	cells	obtaining	a	dataset	of	20,000	cells	in	total.	For	the	Zheng	68K	
dataset, we downloaded the gene-cell count matrix for the ‘Fresh 68k PBMCs’ [36] from: 
https://support.10xgenomics.com/single-cell-gene-expression/datasets	(SRP073767).	All	13	
PbmcBench	datasets,	seven	different	sequencing	protocols	applied	on	two	PBMC	samples,	
were	downloaded	from	the	Broad	Institute	Single	Cell	portal	https://portals.broadinstitute.
org/single_cell/study/SCP424/single-cell-comparison-pbmc-data.	 The	 cell	 population	
annotation	for	all	datasets	was	provided	with	the	data,	except	the	Zheng	68K	dataset,	 for	
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which	we	obtained	the	cell	population	annotation	from	https://github.com/10XGenomics/
single-cell-3prime-paper/tree/master/pbmc68k_analysis.	 These	 annotations	 were	 used	 as	
‘ground	 truth’	during	 the	evaluation	of	 the	 cell	 population	predictions	obtained	 from	 the	
classification	methods.

2.5.3 Data preprocessing 

Based	on	the	manual	annotation	provided	in	the	datasets,	we	started	by	filtering	out	cells	
that	were	labeled	as	doublets,	debris	or	unlabeled	cells.	Next,	we	filtered	genes	with	zero	
counts across all cells. For cells, we calculated the median number of detected genes per cell, 
and	from	that	we	obtained	the	median	absolute	deviation	(MAD)	across	all	cells	in	the	log	
scale.	We	filtered	out	cells	when	the	total	number	of	detected	genes	was	below	three	MAD	
from the median number of detected genes per cell. The number of cells and genes in Table 
2	represent	the	size	of	each	dataset	after	this	stage	of	preprocessing.	

Moreover,	 before	 applying	 cross	 validation	 to	 evaluate	 each	 classifier,	 we	 excluded	 cell	
populations	with	less	than	10	cells	across	the	entire	dataset;	Table	2	summarizes	the	number	
of	cell	populations	before	and	after	this	filtration	step	for	each	dataset.

2.5.4 Intra-dataset classification

For	 the	 supervised	 classifiers,	 we	 evaluated	 the	 performance	 by	 applying	 a	 5-fold	 cross	
validation	across	each	dataset	after	filtering	genes,	cells	and	small	cell	populations.	The	folds	
were	divided	in	a	stratified	manner	in	order	to	keep	equal	proportions	of	each	cell	population	
in	each	fold.	The	training	and	testing	folds	were	exactly	the	same	for	all	classifiers.

The	 prior-knowledge	 classifiers,	 Garnett, Moana, DigitalCellSorter and SCINA, were only 
evaluated	on	 the	Zheng	68K	and	Zheng	 sorted	datasets,	 for	which	 the	marker-genes	files	
or	 the	 pre-trained	 classifiers	were	 available,	 after	 filtering	 genes	 and	 cells.	 Each	 classifier	
uses	the	dataset	and	the	marker-genes	file	as	inputs,	and	outputs	the	cell	population	label	
corresponding	 to	 each	 cell.	No	 cross	 validation	 is	 applied	 in	 this	 case,	 except	 for	Garnett 
where	we	could	either	use	the	pretrained	version	(Garnettpretrained)	provided	from	the	original	
study,	or	 train	our	own	classifier	using	 the	marker-genes	file	 along	with	 the	 training	data	
(GarnettCV).	In	this	case,	we	applied	5-fold	cross	validation	using	the	same	train	and	test	sets	
described	earlier.	Table	S1	shows	the	mapping	of	cell	populations	between	the	Zheng	dataset	
and	each	of	the	prior-knowledge	classifiers.	For	Moana a	pre-trained	classifier	was	used,	this	
classifier	also	predicted	cells	to	be	Memory	CD8+	T	cells	and	CD16+	Monocytes,	while	these	
cell	populations	were	not	in	the	Zheng	dataset.

2.5.5 Evaluation of marker-genes

The	 performance	 and	 choice	 of	 the	marker-genes	 per	 cell	 population	 per	 classifier	were	
evaluated	by	comparing	the	F1-score	of	each	cell	population	with	four	different	characteristics	
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of	 the	marker-genes	across	 the	 cells	 for	 that	particular	 cell	 population:	1)	 the	number	of	
marker-genes,	2)	the	mean	expression,	3)	the	average	dropout	rate,	and	4)	the	average	beta	
of the marker-genes [37].	Beta	is	a	score	developed	to	measure	how	specific	a	marker	gene	
for	a	certain	cell	population	is	based	on	binary	expression.

2.5.6 Selecting marker-genes using differential expression

Using	the	cross-validation	scheme,	training	data	of	each	fold	was	used	to	select	sets	of	5,	
10,	15,	and	20	differentially	expressed	(DE)	marker-genes.	First,	if	the	data	was	not	already	
normalized,	a	CPM	read	count	normalization	was	applied	 to	 the	data.	Next,	 the	data	was	
log-transformed using log ( )2 1count + ,	 and	 afterwards	 the	 DE	 test	 could	 be	 applied.	 As	
recommended in [48],	MAST	was	used	 to	find	 the	DE	genes	 [49].	 The	 implementation	of	
MAST	in	the	FindAllMarkers()	function	of	Seurat	v2.3.0	was	used	to	do	a	one-vs-all	differential	
expression analysis [50].	Genes	returned	by	Seurat	were	sorted	and	the	top	5,	10,	15,	or	20	
significant	genes	with	a	positive	fold	change	were	selected	as	marker-genes.	These	marker-
genes	were	then	used	for	population	prediction	of	the	test	data	of	the	corresponding	fold.	
These	marker-genes	lists	can	be	used	by	prior-knowledge	classifiers	such	as	SCINA, GarnettCV 
and DigitalCellSorter,	 by	 modifying	 the	 cell	 type	 marker-genes	 file	 required	 as	 an	 input	
to	 these	 classifiers.	 Such	modification	 cannot	 be	 applied	 to	 the	 pre-trained	 classifiers	 of	
Garnettpretrained and Moana.

2.5.7 Dataset complexity 

To describe the complexity of a dataset, the average expression of all genes for each cell 
population	 (avgci )	 in	 the	 dataset	 was	 calculated,	 representing	 the	 prototype	 of	 each	 cell	
population	 in	 the	 full	 genes	 space.	Next,	 the	pairwise	Pearson	correlation	between	 these	
centroids was calculated corr avg avg∀i j c ci j, ( , ).	For	each	cell	population,	the	highest	correlation	
to	 another	 cell	 population	 was	 recorded.	 Finally,	 the	 mean	 of	 these	 per	 cell	 population	
maximum	correlations	was	taken	to	describe	the	complexity	of	a	dataset.

Complexity mean corr avg avg� � � �(max ( ( , ))), ,i i j i j c ci j

2.5.8 Inter-dataset classification

CellBench. Both CellBench datasets, 10X and CEL-Seq2, were used once as training data and 
once	as	test	data,	to	obtain	predictions	for	the	five	lung	cancer	cell	lines.	The	common	set	of	
detected genes by both datasets was used as features in this experiment.

PbmcBench.	Using	pbmc1	sample	only,	we	tested	all	train-test	pairwise	combinations	between	
all	seven	protocols,	resulting	in	42	experiments.	Using	both	pbmc1	and	pbmc2	samples,	for	
the	same	protocol	we	used	pbmc1	as	training	data	and	pbmc2	as	test	data,	resulting	in	six	
additional	 experiments	 (10Xv3	was	 not	 applied	 for	 pbmc2).	 As	 we	 are	 now	 dealing	with	
PBMC	data,	we	evaluated	all	classifiers,	including	the	prior-knowledge	classifiers,	as	well	as	
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the	modified	versions	of	SCINA, GarnettCV and DigitalCellSorter, in which the marker-genes 
are	obtained	through	differential	expression	from	the	training	data	as	previously	described.	
Through all these 48 experiments, genes that are not expressed in the training data were 
excluded	from	the	feature	space.	Also,	as	these	PbmcBench	datasets	differ	in	the	number	of	
cell	populations	(Table	2),	only	cell	populations	provided	by	the	training	data	were	used	for	
the	test	data	prediction	evaluation.

Brain.	We	used	the	three	brain	datasets,	VISp,	ALM	and	MTG	with	two	levels	of	annotations,	
3	and	34	cell	populations.	We	tested	all	possible	train-test	combinations,	by	either	using	one	
dataset	to	train	and	test	on	another	(6	experiments)	or	using	two	concatenated	datasets	to	
train	and	test	on	the	third	(3	experiments).	A	total	of	nine	experiments	was	applied	for	each	
annotation	level.	We	used	the	common	set	of	detected	genes	between	the	datasets	involved	
in each experiment as features.

Pancreas. We	selected	the	four	major	endocrine	pancreatic	cell	types	(alpha,	beta,	delta	and	
gamma)	across	all	four	human	pancreatic	datasets:	Baron	Human,	Muraro,	Segerstolpe	and	
Xin. Table S2 summarizes the number of cells in each cell type across all datasets. To account 
for	batch	effects	and	technical	variations	between	different	protocols,	datasets	were	aligned	
using MNN [41]	 from	the	scran	R	package	 (version	1.1.2.0).	Using	both	 the	raw	data	 (un-
aligned)	and	the	aligned	data,	we	applied	leave-one-dataset-out	cross	validation	where	we	
train	on	three	datasets	and	test	on	the	left	out	dataset.

2.5.9 Performance evaluation metrics

The	performance	of	the	methods	on	the	datasets	is	evaluated	using	three	different	metrics:	1)	
For	each	cell	population	in	the	dataset	the	F1-score	is	reported.	The	median	of	these	F1-scores	
is	used	as	a	measure	for	the	performance	on	the	dataset.	2)	Some	of	the	methods	do	not	
label	all	the	cells.	These	unassigned	cells	are	not	considered	in	the	F1-score	calculation.	The	
percentage	of	unlabeled	cells	is	also	used	to	evaluate	the	performance.	3)	The	computation	
time	of	the	methods	is	also	measured.	

2.5.10 Feature selection

Genes	are	selected	as	features	based	on	their	dropout	rate.	The	method	used	here,	is	based	
on the method described in [22].	During	feature	selection,	a	sorted	list	of	the	genes	is	made.	
Based on this list, the top n number of genes can be easily selected during the experiments. 
First, the data is normalized using log ( )2 1count + . Next, for each gene the percentage of 
dropouts, d, and the mean, m,	 of	 the	normalized	data	 are	 calculated.	Genes	 that	 have	 a	
mean or dropout rate of zero are not considered during the next steps. These genes will be 
at	the	bottom	of	the	sorted	list.	For	all	other	genes,	a	linear	model	is	fitted	to	the	mean	and
log ( )2 d . Based on their residuals, the genes are sorted in descending order and added to the 
top of the list.
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2.5.11 Scalability

For the scalability experiment we used the TM dataset. To ensure that the dataset could be 
downsampled	without	losing	cell	populations,	only	the	16	most	abundant	cell	populations	
were	 considered	 during	 this	 experiment.	 We	 downsampled	 these	 cell	 populations	 in	 a	
stratified	way	to	1,	5,	10,	20,	50,	and	100%	of	its	original	size	(45,469	cells).	

2.5.12 Rejection

Negative control.	 Two	 human	 datasets,	 Zheng	 68K	 and	 Baron	 Human,	 and	 two	 mouse	
datasets,	AMB16	and	Baron	Mouse,	were	used.	The	Zheng	68K	dataset	was	first	stratified	
downsampled	to	11%	of	its	original	size	to	reduce	computation	time.	For	each	species,	two	
different	experiments	were	applied	by	using	one	dataset	as	training	set	and	the	other	as	test	
set and vice versa.

Unseen cell populations.	Zheng	68K	dataset	was	stratified	downsampled	to	11%	of	its	original	
size	to	reduce	computation	time.	Three	different	experiments	were	conducted.	First,	all	cell	
populations	that	are	subpopulation	of	T	cells	were	considered	the	test	set.	Next,	the	test	set	
consisted	of	all	subpopulations	of	CD4+	T	cells.	Last,	only	the	CD4+/CD45RO+	Memory	T	cells	
were	in	the	test	set.	Each	time,	all	cell	populations	that	were	not	in	the	test	set,	were	part	of	
the	training	set.	Table	S3	gives	an	exact	overview	of	the	populations	per	training	and	test	set.

2.5.13 Benchmarking pipeline

In order to ensure reproducibility and support future extension of this benchmarking work 
with	 new	 classification	methods	 and	benchmarking	 datasets,	 a	 Snakemake	 [51]	workflow	
for	automating	the	performed	benchmarking	analyses	was	developed	with	an	MIT	 license	
(https://github.com/tabdelaal/scRNAseq_Benchmark/).	 Each	 tool	 (license	 permitting)	 is	
packaged	 in	 a	Docker	 container	 (https://hub.docker.com/u/scrnaseqbenchmark)	 alongside	
the wrapper scripts and their dependencies. These images will be used through snakemake’s 
singularity	 integration	 to	allow	 the	workflow	to	be	 run	without	 the	 requirement	 to	 install	
specific	methods	and	to	ensure	reproducibility.	Documentation	is	also	provided	to	execute	
and	extend	this	benchmarking	workflow	to	help	researchers	to	further	evaluate	interested	
methods. 

2.6 Availability of data and material
The	filtered	datasets	 analyzed	during	 the	 current	 study	 can	be	downloaded	 from	Zenodo	
(https://doi.org/10.5281/zenodo.3357167).	 The	 source	 code	 is	 available	 in	 th	 e	 GitHub	
repository, at https://github.com/tabdelaal/scRNAseq_Benchmark	 [52],	 and	 in	 the	Zenodo	
repository, at https://doi.org/10.5281/zenodo.3369158 [53]. The source code is released 
under	MIT	license.	Datasets	accession	numbers:	AMB,	VISp,	and	ALM	[35]	(GSE115746),	MTG	
[31]	 (phs001790),	Baron	Mouse	 [30]	 (GSE84133),	Baron	Human	 [30]	 (GSE84133),	Muraro	
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[31]	(GSE85241),	Segerstolpe	[32]	(E-MTAB-5061),	Xin	[33]	(GSE81608),	CellBench	10X	[34]	
(GSM3618014),	 CellBench	 CEL-Seq2	 [34]	 (GSM3618022,	 GSM3618023,	 GSM3618024),	
TM	[6]	(GSE109774),	and	Zheng	sorted	and	Zheng	68K	[36]	(SRP073767).	The	PbmcBench	
datasets [38] are not yet uploaded to any data repository.
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Supervised	methods	are	increasingly	used	to	identify	cell	populations	in	single-cell	data.	Yet,	
current	methods	are	limited	in	their	ability	to	learn	from	multiple	datasets	simultaneously,	
are	hampered	by	the	annotation	of	datasets	at	different	resolutions,	and	do	not	preserve	
annotations	 when	 retrained	 on	 new	 datasets.	 The	 latter	 point	 is	 especially	 important	
as researchers cannot rely on downstream analysis performed using earlier versions of 
the	 dataset.	 Here,	 we	 present	 scHPL,	 a	 hierarchical	 progressive	 learning	 method	 which	
allows	 continuous	 learning	 from	 single-cell	 data	by	 leveraging	 the	different	 resolutions	of	
annotations	across	multiple	datasets	to	learn	and	continuously	update	a	classification	tree.	
We	evaluate	the	classification	and	tree	learning	performance	using	simulated	as	well	as	real	
datasets and show	that	scHPL	can	successfully	learn	known	cellular	hierarchies	from	multiple	
datasets	while	preserving	the	original	annotations.	scHPL	is	available	at	https://github.com/
lcmmichielsen/scHPL. 

3.1 Introduction
Cell	 identification	 is	 an	 essential	 step	 in	 single-cell	 studies	 with	 profound	 effects	 on	
downstream	 analysis.	 For	 example,	 in	 order	 to	 compare	 cell-population-specific	 eQTL	
findings	across	studies,	cell	identities	should	be	consistent	[1]. Currently, cells in single-cell 
RNA-sequencing	 (scRNA-seq)	 datasets	 are	 primarily	 annotated	 using	 clustering	 and	 visual	
exploration	techniques,	i.e.	cells	are	first	clustered	into	populations	which	are	subsequently	
named	based	on	the	expression	of	marker	genes.	This	is	not	only	time-consuming,	but	also	
subjective	[2].	The	number	of	cell	populations	identified	in	a	dataset,	for	example,	is	strongly	
correlated with the number of cells analyzed, which results in inconsistency across datasets 
[3–5]. 

Recently, many supervised methods have been developed to replace unsupervised 
techniques. The underlying principles of these methods vary greatly. Some methods, for 
instance,	rely	on	prior	knowledge	and	assume	that	for	each	cell	population	marker	genes	can	
be	defined	(e.g.	SCINA	[6]	and	Garnett	[7]),	while	others	search	for	similar	cells	in	a	reference	
database	(e.g.	scmap	[8] and Cell-BLAST [9]),	or	train	a	classifier	using	a	reference	atlas	or	a	
labeled	dataset	(e.g.	scPred	[10]	and	CHETAH	[11]).

Supervised methods rely either on a reference atlas or labeled dataset. Ideally, we would 
use	 a	 reference	 atlas	 containing	 all	 possible	 cell	 populations	 to	 train	 a	 classifier.	 Such	 an	
atlas,	however,	does	not	exist	yet	and	might	never	be	fully	complete.	In	particular,	aberrant	
cell	populations	might	be	missing	as	a	huge	number	of	diseases	exist	and	mutations	could	
result	in	new	cell	populations.	To	overcome	these	limitations,	some	methods	(e.g.	OnClass)	
rely	on	the	Cell	Ontology	to	identify	cell	populations	that	are	missing	from	the	training	data	
but	do	exist	 in	the	Cell	Ontology	database	 [12].	These	Cell	Ontologies,	however,	were	not	
developed	 for	scRNA-seq	data	specifically.	As	a	consequence,	many	newly	 identified	(sub)
populations	are	missing	and	relationships	between	cell	populations	might	be	inaccurate.	A	
striking	example	of	this	inadequacy	are	neuronal	cell	populations.	Recent	single-cell	studies	
have	 identified	 hundreds	 of	 populations	 [4,13,14], including seven subtypes and 92 cell 
populations	in	one	study	only	[5].	In	contrast,	the	Cell	Ontology	currently	includes	only	one	
glutamatergic	neuronal	cell	population	without	any	subtypes.
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Since	no	complete	reference	atlas	is	available,	a	classifier	should	ideally	be	able	to	combine	
the	information	of	multiple	annotated	datasets	and	continue	learning.	Each	time	a	new	cell	
population	is	found	in	a	dataset,	it	should	be	added	to	the	knowledge	of	the	classifier.	We	
advocate that this can be realized with progressive learning, a learning strategy inspired by 
humans.	Human	 learning	 is	 a	 continuous	process	 that	never	ends	 [15]. Using progressive 
learning, the task complexity is gradually increased, for instance, by adding more classes, but 
it	is	essential	that	the	knowledge	of	the	previous	classes	is	preserved	[16,17]. This strategy 
allows	 combining	 information	 of	 multiple	 existing	 datasets	 and	 retaining	 the	 possibility	
to	 add	 more	 datasets	 afterwards.	 However,	 it	 cannot	 be	 simply	 applied	 to	 scRNA-seq	
datasets	as	a	constant	terminology	to	describe	cell	populations	is	missing,	which	eliminates	
straightforward	identification	of	new	cell	populations	based	on	their	names.	For	example,	the	
recently	discovered	neuronal	populations	are	typically	identified	using	clustering	and	named	
based on the expression of marker genes. A standardized nomenclature for these clusters 
is missing [18],	so	the	relationship	between	cell	populations	defined	in	different	datasets	is	
often	unknown.	

Moreover,	the	level	of	detail	(resolution)	at	which	datasets	are	annotated	highly	depends	on	
the number of cells analyzed [19].	For	instance,	if	a	dataset	is	annotated	at	a	low	resolution,	
it	might	contain	T-cells,	while	a	dataset	at	a	higher	resolution	can	include	subpopulations	of	
T-cells,	such	as	CD4+	and	CD8+	T-cells.	We	need	to	consider	this	hierarchy	of	cell	populations	
in	our	representation,	which	can	be	done	with	a	hierarchical	classifier.	This	has	the	advantage	
that	cell	population	definitions	of	multiple	datasets	can	be	combined,	ensuring	consistency.	
A	 hierarchical	 classifier	 has	 additional	 advantages	 in	 comparison	 to	 a	 classifier	 that	 does	
not	exploit	 this	hierarchy	between	classes	 (here	denoted	as	 ‘flat	classifier’).	One	of	 these	
advantages	is	that	the	classification	problem	is	divided	into	smaller	sub-problems,	while	a	flat	
classifier	needs	to	distinguish	between	many	classes	simultaneously.	Another	advantage	is	
that	if	we	are	not	sure	about	the	annotation	of	an	unlabeled	cell	at	the	highest	resolution,	we	
can	always	label	it	as	an	intermediate	cell	population	(i.e.	at	a	lower	resolution).	

Currently,	 some	 classifiers,	 such	 as	 Garnett,	 CHETAH,	 and	 Moana,	 already	 exploit	 this	
hierarchy between classes [7,11,20].	Garnett	and	Moana	both	depend	on	prior	knowledge	in	
the	form	of	marker	genes	for	the	different	classes.	Especially	for	deeper	annotated	datasets	it	
can	be	difficult	to	define	marker	genes	for	each	cell	population	that	are	robust	across	scRNA-
seq datasets [21,22]. Moreover, we have previously shown that adding prior knowledge is 
not	beneficial	[23].	CHETAH,	on	the	contrary,	constructs	a	classification	tree	based	on	one	
dataset	by	hierarchically	clustering	the	reference	profiles	of	the	cell	populations	and	classifies	
new	cells	based	on	the	similarity	to	the	reference	profile	of	that	cell	population.	However,	
simple	flat	classifiers	outperform	CHETAH	[23],	indicating	that	a	successful	strategy	to	exploit	
this	hierarchy	 is	still	missing.	Furthermore,	 these	hierarchical	classifiers	cannot	exploit	 the	
different	 resolutions	 of	 multiple	 datasets	 as	 this	 requires	 adaptation	 of	 the	 hierarchical	
representation.	

Even	if	multiple	datasets	are	combined	into	a	hierarchy,	there	might	be	unseen	populations	
in	an	unlabeled	dataset.	Identifying	these	cells	as	a	new	population	is	a	challenging	problem.	
Although	some	classifiers	have	implemented	an	option	to	reject	cells,	they	usually	fail	when	
being	tested	in	a	realistic	scenario	[23].	In	most	cases,	the	rejection	option	is	implemented	
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by	 setting	 a	 threshold	 on	 the	 posterior	 probability	 [7,10,23,24]. If the highest posterior 
probability does not exceed a threshold, the cell is rejected. By looking at the posterior, the 
actual	similarity	between	a	cell	and	the	cell	population	is	ignored.	

In this work, we propose a hierarchical progressive learning approach to overcome these 
challenges.	 To	 summarize	 our	 contributions:	 (i)	 we	 exploit	 the	 hierarchical	 relationships	
between	cell	populations	to	be	able	to	classify	data	sets	at	different	resolutions,	(ii)	we	propose	
a	 progressive	 learning	 approach	 that	 updates	 the	 hierarchical	 relationships	 dynamically	
and	consistently,	and	(iii)	we	adopt	an	advanced	rejection	procedure	 including	a	one-class	
classifier	to	be	able	to	discover	new	cell	(sub)populations.	

3.2 Results

3.2.1 Hierarchical progressive learning of cell identities

We	developed	scHPL,	a	hierarchical	progressive	 learning	approach	to	 learn	a	classification	
tree	using	multiple	labeled	datasets	(Figure	1A)	and	use	this	tree	to	predict	the	labels	of	a	new,	
unlabeled	dataset	(Figure	1B).	The	tree	is	learned	using	multiple	iterations	(Methods).	First,	
we	match	the	labels	of	two	datasets	by	training	a	flat	classifier	for	each	dataset	and	predicting	
the	labels	of	the	other	dataset.	Based	on	these	predictions	we	create	a	matching	matrix	(X)	

Figure 1. Schematic overview of scHPL. A)	Overview	of	the	training	phase.	In	the	first	iteration,	we	start	with	two	
labeled	datasets.	The	colored	areas	represent	the	different	cell	populations.	For	both	datasets	a	flat	classifier	(FC1	
&	FC2)	 is	constructed.	Using	this	 tree	and	the	corresponding	dataset,	a	classifier	 is	 trained	for	each	node	 in	 the	
tree	except	 for	 the	root.	We	use	the	trained	classification	tree	of	one	dataset	 to	predict	 the	 labels	of	 the	other.	
The	decision	boundaries	of	the	classifiers	are	indicated	with	the	contour	lines.	We	compare	the	predicted	labels	to	
the	cluster	labels	to	find	matches	between	the	labels	of	the	two	datasets.	The	tree	belonging	to	the	first	dataset	
is	updated	according	to	these	matches,	which	results	 in	a	hierarchical	classifier	 (HC1).	 In	dataset	2,	 for	example,	
subpopulations	of	population	‘1’	of	dataset	1	are	found.	Therefore,	these	cell	populations,	‘A’	and	‘B’,	are	added	as	
children	to	the	‘1’	population.	In	iteration	2,	a	new	labeled	dataset	is	added.	Again	a	flat	classifier	(FC3)	is	trained	
for	this	dataset	and	HC1	is	trained	on	dataset	1	and	2,	combined.	After	cross-prediction	and	matching	the	labels,	we	
update	the	tree	which	is	then	trained	on	all	datasets	1-3	(HC2).	B)	The	final	classifier	can	be	used	to	annotate	a	new	
unlabeled	dataset.	If	this	dataset	contains	unknown	cell	populations,	these	will	be	rejected.
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and	match	the	cell	populations	of	the	two	datasets.	 In	the	matching	process,	we	separate	
different	biological	scenarios,	such	as	a	perfect	match,	merging	or	splitting	cell	populations,	
as	well	as	creating	a	new	population	(Figure	2,	Table	S1).	In	the	following	iterations,	we	add	
one	labeled	dataset	at	a	time	by	training	a	flat	classifier	on	this	new	dataset	and	training	the	
previously	learned	tree	on	all	pre-existing	datasets.	Similar	to	the	previous	iteration,	the	tree	
is	updated	after	cross-prediction	and	matching	of	the	labels.	It	could	happen	that	datasets	
are	inconsistently	labeled	and	the	labels	cannot	be	matched	(Supplementary	Note	1).	In	this	
case,	one	of	the	populations	might	be	missing	from	the	tree.

Either	 during	 tree	 learning	 or	 prediction,	 there	 can	 be	 unseen	 populations.	 Therefore,	
an	efficient	rejection	option	 is	needed,	which	we	do	 in	 two	steps.	First,	we	reject	cells	by	
thresholding	 the	 reconstruction	 error	 of	 a	 cell	 when	 applying	 a	 PCA-based	 dimension	
reduction:	 a	 new,	unknown,	population	 is	 not	 used	 to	 learn	 the	PCA	 transformation,	 and	
consequently will not be properly represented by the selected PCs, leading to a high 
reconstruction	 error	 (Methods).	 Second,	 to	 accommodate	 rejections	 when	 the	 new	
population	is	within	the	selected	PCA	domain,	scHPL	adopts	two	alternatives	to	classify	cells:	
a	 linear	and	a	one-class	support	vector	machine	(SVM).	The	 linear	SVM	has	shown	a	high	
performance	in	a	benchmark	of	scRNA-seq	classifiers	[23],	but	has	a	limited	rejection	option.	
Whereas,	the	one-class	SVM	solves	this	as	only	positive	training	samples	are	used	to	fit	a	tight	
decision boundary around [25]. 

3.2.2 Linear SVM has a higher classification accuracy than one-
class SVM

We	tested	our	hierarchical	classification	scheme	by	measuring	the	classification	performance	
of	 the	 one-class	 SVM	and	 linear	 SVM	on	 simulated,	 PBMC	 (PBMC-FACS)	 and	 brain	 (Allen	
Mouse	Brain)	 data	using	10-,	 10-,	 and	5-fold	 cross-validation	 respectively	 (Methods).	 The	

Figure 2. Schematic examples of different matching 
scenarios. A) Perfect match, B)	splitting,	C) merging, 
D)	new	population.	The	first	two	columns	represent	a	
schematic	representation	of	two	datasets.	After	cross-
predictions,	 the	 matching	 matrix	 (X) is constructed 
using	the	confusion	matrices	(Methods).	We	update	
the tree based on X. 
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simulated	dataset	was	constructed	using	Splatter	[26]	and	consists	of	8,839	cells,	9,000	genes	
and	6	different	 cell	 populations	 (Figure	 S1).	 PBMC-FACS	 is	 the	downsampled	 FACS-sorted	
PBMC	dataset	from	Zheng	et	al.	[27]	and	consists	of	20,000	cells	and	10	cell	populations.	The	
Allen	Mouse	Brain	(AMB)	dataset	is	challenging	as	it	has	deep	annotation	levels	[5],	containing	
92	different	cell	populations	ranging	in	size	from	11	to	1,348	cells.	In	these	experiments,	the	
classifiers	were	trained	on	predefined	trees	(Figure	S1-3).

On	all	datasets,	the	linear	SVM	performs	better	than	the	one-class	SVM	(Figure	3A-D).	The	
simulated	dataset	 is	relatively	easy	since	the	cell	populations	are	widely	separated	(Figure	
S1C).	The	linear	SVM	shows	an	almost	perfect	performance:	only	0.9%	of	the	cells	are	rejected	
(based	on	the	reconstruction	error	only),	which	is	in	line	with	the	adopted	threshold	resulting	
in	1%	false	negatives.	The	one-class	SVM	labels	92.9%	of	the	cells	correctly,	the	rest	is	labeled	
as	an	internal	node	(2.3%)	or	rejected	(4.8%),	which	results	in	a	median	Hierarchical	F1-score	
(HF1-score)	of	0.973,	where	HF1	is	an	F1-score	that	considers	class	importance	across	the	
hierarchy	(Methods).	

As	expected,	the	performance	of	the	classifiers	on	real	data	drops,	but	the	HF1-scores	remain	
higher	than	0.9.	On	both	the	PBMC-FACS	and	AMB	dataset,	the	performance	of	the	linear	

Figure 3. Classification performance. A-C) Boxplots	showing	the	HF1-score	of	the	one-class	and	linear	SVM	during	
n-fold	cross-validation	on	 the	A) simulated (n	=	10),	B)	PBMC-FACS	 (n	=	10),	and	C)	AMB	(n	=	5)	dataset.	 In	 the	
boxplots,	the	middle	(orange)	line	represents	the	median,	the	lower	and	upper	hinge	represent	the	first	and	third	
quartiles,	and	the	lower	and	upper	whisker	represent	the	values	no	further	than	1.5	inter-quartile	range	away	from	
the	lower	and	upper	hinge	respectively.	D)	Barplot	showing	the	percentage	of	true	positives	(TP),	false	negatives	
(FN),	and	false	positives	(FP)	per	classifier	on	the	AMB	dataset.	For	the	TPs	a	distinction	is	made	between	correctly	
predicted leaf nodes and internal nodes. E)	Heatmap	showing	the	percentage	of	unlabeled	cells	per	classifier	during	
the	different	rejection	experiments.	F)	Heatmap	showing	the	F1-score	per	classifier	per	cell	population	on	the	AMB	
dataset.	Grey	indicates	that	a	classifier	never	predicted	a	cell	to	be	of	that	population.	
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SVM	is	higher	than	the	one-class	SVM	(Figure	3B-D).	For	the	AMB	dataset,	we	used	the	same	
cross-validation	 folds	 as	 in	Abdelaal	 et	 al.	 [23], which enables us to compare our results. 
When	 comparing	 to	 CHETAH,	 which	 allows	 hierarchical	 classification,	 we	 notice	 that	 the	
linear	SVM	performs	better	based	on	the	median	F1-score	(0.94	vs	0.83).	The	one-class	SVM	
has	a	slightly	lower	median	F1-score	(0.80	vs	0.83),	but	it	has	more	correctly	predicted	cells	
and	less	wrongly	predicted	cells	(Figure	3D).	

The	linear	(hierarchical)	SVM	also	shows	a	better	performance	compared	to	SVMrejection, which 
is	a	flat	linear	SVM	with	rejection	option	based	on	the	posterior	probability	and	was	the	best	
classifier	for	this	data	[23]. SVMrejection,	however,	has	a	slightly	higher	median	F1-score	(0.98	vs	
0.94).	This	is	mainly	because	it	makes	almost	no	mistakes,	only	1.7%	of	the	cells	are	wrongly	
labeled	(Figure	3D).	The	number	of	rejected	cells,	on	the	other	hand,	is	not	considered	when	
calculating	the	median	F1-score.	This	number	 is	 relatively	high	 for	SVMrejection	 (19.8%).	The	
linear	SVM,	on	the	contrary,	has	almost	no	rejected	cells,	which	is	also	reflected	in	a	higher	
HF1-score	(Figure	3C).	Because	of	this	large	amount	of	rejections	of	SVMrejection, the one-class 
SVM	also	has	a	higher	HF1-score.

On	the	AMB	dataset,	we	observe	that	the	performance	of	all	classifiers	decreases	when	the	
number	of	cells	per	cell	population	becomes	smaller.	The	performance	of	the	one-class	SVM	
is	affected	more	than	the	others	(Figure	3F).	The	one-class	SVM,	for	instance,	never	predicts	
the	‘Astro	Aqp4’	cells	correctly,	while	this	population	is	relatively	different	from	the	rest	as	it	is	
the	only	non-neuronal	population.	This	cell	population,	however,	only	consists	of	eleven	cells.	

In	the	previous	experiments,	we	used	all	genes	to	train	the	classifiers.	Since	the	selection	of	
highly	variable	genes	(HVGs)	is	common	in	scRNA-seq	analysis	pipelines,	we	tested	the	effect	
of	selecting	HVGs	on	the	classification	performance	of	 the	PBMC-FACS	dataset.	We	noted	
that	using	all	genes	results	in	the	highest	HF1-score	for	both	the	linear	and	one-class	SVM	
(Figure	S4).

3.2.3 One-class SVM detects new cells better than linear SVM

Besides	a	high	accuracy,	the	classifiers	should	be	able	to	reject	unseen	cell	populations.	First,	
we	evaluated	the	rejection	option	on	the	simulated	data.	In	this	dataset,	the	cell	populations	
are	distinct,	so	we	expect	that	this	is	a	relatively	easy	task.	We	removed	one	cell	population,	
‘Group	3’,	 from	the	training	set	and	used	this	population	as	a	test	set.	The	one-class	SVM	
outperforms the linear SVM as it correctly rejects all these cells, while the linear SVM rejects 
only 38.9% of them. 

Next,	we	 tested	 the	 rejection	option	on	 the	AMB	dataset.	Here,	we	did	 four	experiments	
and	each	time	removed	a	node,	 including	all	 its	subpopulations,	from	the	predefined	tree	
(Figure	S3).	We	removed	the	‘L6	IT’	and	‘Lamp5’	cell	populations	from	the	second	layer	of	
the	tree,	and	the	‘L6	IT	VISp	Penk	Col27a1’	and	‘Lamp5	Lsp1’	from	the	third	layer.	When	a	
node is removed from the second layer of the tree, the linear SVM clearly rejects these cells 
better	than	the	one-class	SVM	(Figure	3E).	On	the	contrary,	the	one-class	SVM	rejects	leaf	
node	cells	better.	
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3.2.4 scHPL accurately learns cellular hierarchies

Next,	we	tested	if	we	could	learn	the	classification	trees	for	the	simulated	and	PBMC-FACS	
data	using	scHPL.	In	both	experiments,	we	performed	a	10-fold	cross-validation	and	splitted	
the	 training	 set	 in	 three	different	batches,	Batch	1,	Batch	2,	and	Batch	3,	 to	 simulate	 the	
idea	of	different	datasets.	 To	obtain	different	annotation	 levels	 in	 these	batches,	multiple	
cell	populations	were	merged	into	one	population	in	some	batches,	or	cell	populations	were	
removed	from	certain	batches	(Tables	S2-3).	Batch	1	contains	the	lowest	resolution	and	Batch	
3	the	highest.	When	learning	the	trees,	we	try	all	(six)	different	orders	of	the	batches	to	see	
whether	this	affects	the	tree	learning.	Combining	this	with	the	10-fold	cross-validation,	60	
trees	were	 learned	 in	 total	by	each	classifier.	To	 summarize	 the	 results,	we	constructed	a	
final	tree	in	which	the	thickness	of	an	edge	indicates	how	often	it	appeared	in	the	60	learned	
trees.

The linear and one-class SVM showed stable results during both experiments; all 60 trees - 
except	for	two	trees	learned	by	the	one-class	SVM	on	the	PBMC	data	-	look	identical	(Figure	
4A-D).	The	final	 tree	 for	 the	simulated	data	 looks	as	expected,	but	the	tree	 for	 the	PBMC	
data	 looks	 slightly	 different	 from	 the	 predefined	 hematopoietic	 tree	 (Figure	 S2A).	 In	 the	
learned	trees,	CD4+	memory	T-cells	are	a	subpopulation	of	CD8+	instead	of	CD4+	T-cells.	The	
correlation	between	the	centroids	of	CD4+	memory	T-cell	and	CD8+	T-cells	(r	=	0.985±0.003)	
is	also	slightly	higher	than	the	correlation	to	CD4+	T-cells	(r	=	0.975±0.002)	(Figure	S5).	Using	
the	 learned	 tree	 instead	of	 the	predefined	hematopoietic	 tree	 improves	 the	classification	
performance	of	the	linear	SVM	slightly	(HF1-score	=	0.990	vs	0.985).	Moreover,	when	relying	

Figure 4. Tree learning evaluation. Classification	 trees	
learned when using a A, C, E) linear SVM or B, D, F) 
one-class SVM during the A, B) simulated, C, D) PBMC-
FACS, and E, F)	simulated	rejection	experiment.	The	 line	
pattern	 of	 the	 links	 indicates	 how	 often	 that	 link	 was	
learned during the 60 training runs. D)	In	2/60	trees,	the	
link	 between	 the	 CD8+	 T-cells	 and	 the	 CD8+	 naive	 and	
CD4+	memory	T-cells	is	missing.	In	those	trees,	the	CD8+	
T-cells	 and	CD8+	naive	T-cells	have	a	perfect	match	and	
the	CD4+	memory	T-cells	are	missing	from	the	tree.	F) In 
20/60	 trees,	 the	 link	 between	 ‘Group456’	 and	 ‘Group5’	
is	 missing.	 In	 those	 trees,	 these	 two	 populations	 are	 a	
perfect match. 
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on	the	predefined	hematopoietic	tree,	CD4+	memory	T-cells,	CD8+	T-cells,	and	CD8+	naive	
T-cells	were	 also	 often	 confused,	 further	 highlighting	 the	 difficulty	 in	 distinguishing	 these	
populations	based	on	their	transcriptomic	profiles	alone	(Tables	S4-5).	

Next,	we	tested	the	effect	of	the	matching	threshold	(default	=	0.25)	on	the	tree	construction	
by	varying	this	to	0.1	and	0.5.	For	the	linear	SVM,	changing	the	threshold	had	no	effect.	For	
the	one-class	SVM,	we	noticed	a	small	difference	when	changing	the	threshold	to	0.1.	The	
two	trees	that	were	different	using	the	default	threshold	(Figure	4D),	were	now	constructed	
as	the	other	58	trees.	In	general,	scHPL	is	robust	to	settings	of	the	matching	threshold	due	to	
its	reliance	on	reciprocal	classification.	

3.2.5 Missing populations affect tree construction with linear SVM

We	tested	whether	new	or	missing	cell	populations	in	the	training	set	could	influence	tree	
learning.	We	mimicked	this	scenario	using	the	simulated	dataset	and	the	same	batches	as	in	
the	previous	tree	 learning	experiment.	 In	the	previous	experiment,	 ‘Group5’	and	‘Group6’	
were	merged	into	‘Group56’	in	Batch	2,	but	now	we	removed	‘Group5’	completely	from	this	
batch	(Table	S6).	In	this	setup,	the	linear	SVM	misconstructs	all	trees	(Figure	4E).	If	‘Group5’	is	
present	in	one	batch	and	absent	in	another,	the	‘Group5’	cells	are	not	rejected,	but	labeled	as	
‘Group6’.	Consequently,	‘Group6’	is	added	as	a	parent	node	to	‘Group5’	and	‘Group6’.	On	the	
other	hand,	the	one-class	SVM	suffers	less	than	the	linear	SVM	from	these	missing	populations	
and	correctly	learns	the	expected	tree	in	2/3	of	the	cases	(Figure	4F).	In	the	remaining	third	
(20	trees),	‘Group5’	matched	perfectly	with	‘Group456’	and	was	thus	not	added	to	the	tree.	
This occurs only if we have the following order: Batch 1 - Batch 3 - Batch 2 or Batch 3 - Batch 
1	-	Batch	2.	Adding	batches	in	increasing	or	decreasing	resolution	consequently	resulted	in	
the correct tree.

3.2.6 Linear SVM can learn the classification tree during an inter-
dataset experiment

Finally,	we	tested	scHPL	 in	a	realistic	scenario	by	using	three	PBMC	datasets	(PBMC-eQTL,	
PBMC-Bench10Xv2,	and	PBMC-FACS)	to	learn	a	classification	tree	and	using	this	tree	to	predict	
the	labels	of	a	fourth	PBMC	dataset	(PBMC-Bench10Xv3)	(Table	1).	Before	applying	scHPL, we 
aligned the datasets using Seurat [28].	We	constructed	an	expected	classification	tree	based	
on	the	names	of	the	cell	populations	in	the	datasets	(Figure	5A).	Note	that	matching	based	
on	names	might	result	in	an	erroneous	tree	since	every	dataset	was	labeled	using	different	
clustering	techniques,	marker	genes,	and	their	own	naming	conventions.

When	 comparing	 the	 tree	 learned	 using	 the	 linear	 SVM	 to	 the	 expected	 tree,	we	 notice	
five	differences	 (Figure	5A-B).	 Some	of	 these	differences	are	minor,	 such	as	 the	matching	
of	 monocytes	 from	 the	 Bench10Xv2	 dataset	 to	 myeloid	 dendritic	 cells	 (mDC),	 CD14+	
monocytes,	 and	 the	CD16+	monocytes.	Monocytes	 can	differentiate	 into	mDC	which	 can	
explain their transcriptomic similarity [29].	 Other	 differences	 between	 the	 reconstructed	
and	 the	 expected	 trees	 are	 likely	 the	 result	 of	 (partly)	mislabeled	 cell	 populations	 in	 the	
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original	 datasets	 (Figure	 S6-15).	 (i)	 According	 to	 the	 expression	 of	 FCER1A (a	marker	 for	
mDC)	and	FCGR3A (CD16+	monocytes),	 the	 labels	of	 the	mDC	and	 the	CD16+	monocytes	
in	the	eQTL	dataset	are	reversed	(Figure	S6-8).	(ii)	Part	of	the	CD14+	monocytes	in	the	FACS	
dataset express FCER1A,	which	is	a	marker	for	mDC	(Figure	S6,	S8-9).	The	CD14+	monocytes	
in the FACS dataset are thus partly mDCs, which explains the match with the mDC from the 
eQTL	dataset.	(iii)	Part	of	the	CD4+	T-cells	from	the	eQTL	and	Bench10Xv2	dataset	should	be	
relabeled	as	CD8+	T-cells	(Figure	S6,	S10-13).	In	these	datasets,	the	cells	labeled	as	the	CD8+	
T-cells	only	contain	cytotoxic	CD8+	T-cells,	while	naive	CD8+	T-cells	are	all	 labeled	as	CD4+	
T-cells.	This	mislabeling	explains	why	the	CD8+	naive	T-cells	are	a	subpopulation	of	the	CD4+	
T-cells.	(iv)	Part	of	the	CD34+	cells	 in	the	FACS	dataset	should	be	relabeled	as	pDC	(Figure	
S6,	S14-15),	which	explains	why	the	pDC	are	a	subpopulation	of	the	CD34+	cells.	In	the	FACS	
dataset,	the	labels	were	obtained	using	sorting,	which	would	indicate	that	these	labels	are	
correct.	 The	purity	of	 the	CD34+	 cells,	 however,	was	 significantly	 low	 (45%)	 compared	 to	
other	cell	populations	(92-100%)	[27].	There	is	only	one	difference	,	however,	that	cannot	be	
explained by mislabeling. The NK cells from the FACS dataset do not only match the NK cells 
from	the	eQTL	dataset,	but	also	the	CD8+	T-cells.

Cell population Batch 1 
eQTL

Batch 2 
Bench 10Xv2

Batch 3 
FACS

Test dataset 
Bench 10Xv3

CD19+	B 812 676 2,000 346

CD34+ 2,000

Monocytes	(MC) 1,194

					CD14+ 2,081 2,000 354

					CD16+ 274 98

CD4+	T 13,523 1,458 960

     Reg. 2,000

     Naive 2,000

     Memory 2,000

CD8+	T 4,195 2,128 962

     Naive 2,000

Megakaryocyte	(MK) 142 433 270

NK cell 429 2,000 194

					CD56+	bright 355

					CD56+	dim 2,415

Dendritic 35

					Plasmacytoid	(pDC) 101

					Myeloid	(mDC) 455

Table 1.	Number	of	cells	per	cell	population	in	the	different	training	datasets	(batches)	and	test	dataset.	Subpopula-
tions	are	indicated	using	an	indent.
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Most cells of the Bench10Xv3 dataset can be correctly annotated using the learned 
classification	 tree	 (Figure	 5E).	 Interestingly,	 we	 notice	 that	 the	 CD16+	 monocytes	 are	
predicted to be mDCs and vice versa, which could be explained by the fact that the labels of 
the	mDCs	and	the	CD16+	monocytes	were	flipped	in	the	eQTL	dataset.	Furthermore,	part	of	
the	CD4+	T-cells	are	predicted	to	be	CD8+	naïve	T-cells.	In	the	Bench10Xv3,	we	noticed	the	
same	mislabeling	of	part	of	the	CD4+	T-cells	as	in	the	eQTL	and	Bench10Xv2	datasets,	which	
supports	our	predictions	(Figure	S6,	S10-13).	

The	tree	constructed	using	the	one-class	SVM	differs	slightly	compared	to	 the	 linear	SVM	
(Figure	S16A).	Here,	the	monocytes	from	the	Bench10Xv2	match	the	CD14+	monocytes	and	
mDC	(which	are	actually	CD16+	monocytes)	as	we	would	expect.	Next,	the	CD14+	monocytes	
from	 the	 FACS	 dataset	 merge	 the	 CD16+	 monocytes	 (which	 are	 actually	 mDC)	 and	 the	
monocytes.	Using	 the	one-class	 SVM	 the	CD8+	T-cells	 and	NK	 cells	 from	 the	Bench10Xv2	
dataset	are	missing	since	there	was	a	complex	scenario.	The	NK	cells	are	a	relatively	small	
population	in	this	dataset	which	made	it	difficult	to	train	a	classifier	for	this	population.

In	the	previous	experiments,	we	used	the	default	setting	of	Seurat	to	align	the	datasets	(using	
2000	genes).	We	tested	whether	changing	the	number	of	genes	to	1000	and	5000	affects	
the	performance.	When	using	the	one-class	SVM,	the	number	of	genes	does	not	affect	tree	
construction.	For	the	linear	SVM,	we	notice	one	small	difference	when	using	1000	genes:	the	
CD8+	T-cells	from	the	Bench10Xv2	dataset	are	a	subpopulation	of	the	CD8+	T-cells	from	the	
eQTL dataset instead of a perfect match. 

Figure 5. PBMC inter-dataset evaluation. A) Expected and B) learned	classification	tree	when	using	a	linear	SVM	on	
the	PBMC	datasets.	The	color	of	a	node	represents	the	agreement	between	dataset(s)	regarding	that	cell	population. 
C) Confusion	matrix	when	using	the	learned	classification	tree	to	predict	the	labels	of	PBMC-Bench10Xv3.	The	dark	
boundaries	indicate	the	hierarchy	of	the	constructed	classification	tree.
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The	 predicted	 labels	 of	 the	 Bench10Xv3	 dataset	 change	 slightly	 when	 using	 a	 different	
number	of	genes	(Figure	S17).	Whether	more	genes	improves	the	prediction,	differs	per	cell	
population.	The	labels	of	the	megakaryocytes,	for	instance,	are	better	predicted	when	more	
genes	are	used,	but	for	the	dendritic	cells	we	observe	the	reverse	pattern.

3.2.7 Mapping brain cell populations using scHPL

Next,	we	applied	scHPL	to	construct	a	tree	which	maps	the	relationships	between	brain	cell	
populations.	 This	 is	 a	 considerably	more	 challenging	 task	 compared	 to	 PBMCs	 given	 the	
large	number	of	cell	populations	as	well	as	the	fact	that	brain	cell	types	are	not	consistently	
annotated. First, we combined two datasets from the primary visual cortex of the mouse 
brain, AMB2016 and AMB2018 [4,5].	AMB2018	contains	more	cells	(12,771	vs.	1,298)	and	is	
clustered	at	a	higher	resolution	(92	cell	populations	vs.	41)	compared	to	AMB2016.	Before	
applying	scHPL, we aligned the datasets using Seurat [28].	Using	scHPL	with	a	 linear	SVM	
results	 in	 an	 almost	 perfect	 tree	 (Figure	 6).	We	 verified	 these	 results	 by	 comparing	 our	
constructed tree to cluster correspondences in Extended Data Fig. 6 from Tasic et al. [5]. 
Since	AMB2018	is	clustered	at	a	higher	resolution,	most	populations	are	subpopulations	of	
AMB2016,	which	are	all	correctly	identified	by	scHPL.	Conversely,	three	L4	populations	from	
AMB2016	were	merged	into	one	population	(L4	IT	VISp	Rspo1)	from	AMB2018	[5], forming a 
continuous	spectrum.	This	relation	was	also	automatically	identified	using	scHPL	(Figure	6).	
Compared to the results from Tasic et al. [5],	one	cell	population	from	AMB2018	is	attached	
to	a	different	parent	node.	 scHPL	assigned	 ‘L6b	VISp	Col8a1	Rprm’	as	a	 subpopulation	of	
‘L6a	Sla’	instead	of	‘L6b	Rgs12’.	This	population,	however,	does	not	express	Rgs12, but does 
express Sla (Figure	S18),	supporting	the	matching	identified	by	scHPL.	Three	cell	populations	
could not be added to the tree due to complex scenarios. According to Extended Data Fig. 6 
from Tasic et al. [5],	these	AMB2018	populations	are	a	subpopulation	of	multiple	AMB2016	
subpopulations.	

The AMB2016 and AMB2018 datasets were generated and analyzed by the same group and 
hence the cluster matching is certainly easier than a real-life scenario. Therefore, we tested 
scHPL	also	on	a	complicated	scenario	with	brain	datasets	that	are	sequenced	using	different	
protocols	and	by	different	labs	(Table	S7,	Figure	S19).	We	used	three	datasets	(Zeisel,	Tabula	
Muris,	 and	 Saunders)	 to	 construct	 the	 tree	 (Figure	 7A-D)	 [2,30,31].	 The	 Zeisel	 dataset	 is	
annotated	at	two	resolutions.	Before	applying	scHPL, we aligned the datasets using Seurat 
[28].	First,	we	constructed	a	tree	using	a	linear	SVM	based	on	the	low	resolution	of	Zeisel.	We	
started	with	the	Saunders	dataset	and	added	Zeisel	(Figure	7E).	This	is	a	clear	illustration	of	
the	possible	scenarios	scHPL	can	manage.	Some	populations	are	a	perfect	match	between	the	
two	datasets	(e.g.	neurons),	some	populations	from	Saunders	are	splitted	(e.g.	astrocytes),	
some	are	merged	(e.g.	macrophages	and	microglia),	and	some	populations	from	Zeisel	have	
no	match	(e.g.	Ttr).	Next,	we	updated	the	tree	by	adding	the	Tabula	Muris	dataset	(Figure	
7F).	Here,	we	 found	matches	 that	would	not	have	been	possible	 to	 identify	by	 relying	on	
the assigned cell type labels to map cell types. For example, mural cells from Saunders are a 
perfect	match	with	the	brain	pericytes	from	the	Tabula	Muris.	The	results	of	scHPL	with	the	
one-class	SVM	were	almost	identical	to	the	linear	SVM	(Figure	S20A).	
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Figure 6. Constructed hierarchy for the 
AMB datasets. Learned	classification	tree	
after	applying	scHPL	with	a	linear	SVM	on	
the AMB2016 and AMB2018 datasets. A 
green	 node	 indicates	 that	 a	 population	
from the AMB2016 and AMB2018 dataset 
had	 a	 perfect	 match.	 Three	 populations	
from the AMB2018 dataset are missing 
from the tree: ‘Pvalb Sema3e Kank4’, ‘Sst 
Hpse	Sema3c’,	and	‘Sst	Tac1	Tacr3’.	
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Next,	 we	 used	 the	 resulting	 tree	 to	 predict	 the	 labels	 of	 a	 fourth	 independent	 dataset	
(Rosenberg)	 [32].	 The	predictions	 from	 the	 linear	 and	 the	one-class	 SVM	are	 very	 similar	
(Figure	 7G,	 S20B).	 The	 only	 difference	 is	 that	 the	 linear	 SVM	 correctly	 predicts	 some	
progenitor	or	precursor	neuronal	populations	from	Rosenberg	to	be	‘neurogenesis’	while	the	
one-class	SVM	rejects	these	populations.

To	assess	the	effect	of	the	annotation	resolution,	we	repeated	the	analysis	using	the	higher	
resolution	 annotation	 from	 the	 Zeisel	 dataset	 (Figure	 S21-23).	 Here,	we	 noticed	 that	 the	
‘brain	pericytes	(TM)’	and	‘pericytes	(Zeisel)’	-	two	populations	one	would	easily	match	based	
on	the	names	only	-	are	not	in	the	same	subtree.	‘Brain	pericyte	(TM)’	forms	a	perfect	match	

Figure 7. Brain inter-dataset evaluation. A-D) UMAP	embeddings	of	the	datasets	after	alignment	using	Seurat	v3.	
E) Learned	hierarchy	when	starting	with	the	Saunders	dataset	and	adding	Zeisel	with	linear	SVM. F) Updated tree 
when the Tabula Muris dataset is added. G) Confusion	matrix	when	using	the	learned	classification	tree	to	predict	
the	labels	of	Rosenberg.	The	dark	boundaries	indicate	the	hierarchy	of	the	classification	tree.
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with	‘mural	(Saunders)’	and	‘vascular	smooth	muscle	cells	(Zeisel)’,	while	‘pericytes	(Zeisel)’	
is	a	subpopulation	of	‘endothelial	stalk	(Saunders)’	and	‘endothelial	cell	(TM)’	(Figure	S22-23).	
In the UMAP embedding of the integrated datasets, the ‘pericytes’ and ‘brain pericyte’ are 
at	a	different	location,	but	they	do	overlap	with	the	cell	populations	they	were	matched	with	
(Figure	S21).	This	highlights	the	power	of	scHPL	matching	rather	than	name-based	matching.

3.3 Discussion
In	 this	 study,	 we	 showed	 that	 scHPL	 can	 learn	 cell	 identities	 progressively	 from	multiple	
reference	datasets.	We	showed	that	using	our	approach	the	labels	of	two	AMB	datasets	can	
successfully	be	matched	to	create	a	hierarchy	containing	mainly	neuronal	cell	populations	and	
that we can combine three other brain datasets to create a hierarchy containing mainly non-
neuronal	cell	populations.	 In	both	experiments,	we	discovered	new	relationships	between	
cell	populations,	such	as	the	mapping	of	‘L6b	VISp	Col8a1	Rprm’	as	a	subpopulation	of	‘L6b	
Sla’	 instead	 of	 ‘L6b	 Rgs12’.	 This	 observation	would	 not	 be	 possible	 to	make	 by	manually	
matching	populations	based	on	the	assigned	labels,	highlighting	the	power	of	automatically	
constructing	 cellular	 hierarchies.	 In	 this	 case,	 the	 Cell	 Ontology	 database	 could	 also	 not	
be	used	 to	 verify	 this	 relationship	 since	many	brain	 cell	 populations	are	missing.	Most	of	
these	populations	have	recently	been	annotated	using	scRNA-seq	and	there	is	a	wide	lack	
of	 consistency	 in	 population	 annotation	 and	 matching	 between	 studies	 [18].	 scHPL	 can	
potentially	be	used	to	map	these	relations,	irrespective	of	the	assigned	labels,	and	improve	
the	Cell	Ontology	database.

When	combining	multiple	datasets	to	construct	a	tree,	we	expect	that	cell	populations	are	
annotated	correctly.	However,	in	the	PBMC	inter-dataset	experiment,	this	was	not	the	case.	
At	first	 sight,	 the	constructed	 tree	 looked	erroneous,	but	 the	expression	of	marker	genes	
revealed	 that	 (parts	of)	 several	 cell	 populations	were	mislabeled.	Here,	we	 could	use	 the	
constructed	tree	as	a	warning	that	there	was	something	wrong	with	the	original	annotations.	

In	general,	scHPL	is	robust	to	sampling	differences	between	datasets	or	varying	parameters	
such as the matching threshold or the number of genes used. The brain datasets used to 
construct	the	tree,	for	instance,	varied	greatly	in	population	sizes,	which	did	not	cause	any	
difficulties.	This	is	mainly	because	we	rely	on	reciprocal	classification.	A	match	between	cell	
populations	that	is	missed	when	training	a	classifier	on	one	dataset	to	predict	labels	of	the	
other,	can	still	be	captured	by	the	classifier	trained	on	the	other	dataset.

Since	batch	effects	are	inevitable	when	combining	datasets,	we	require	datasets	to	be	aligned	
before	 running	 scHPL.	 In	all	 inter-dataset	experiments	 in	 this	manuscript,	we	used	Seurat	
V3 [28]	for	the	alignment,	but	we	would	like	to	emphasize	that	scHPL	is	not	dependent	on	
Seurat	and	can	be	combined	with	any	batch	correction	tool,	such	as	more	computationally	
efficient	methods	like	Harmony	[33].	A	current	limitation	of	these	tools	is	that	when	a	new	
dataset	is	added,	the	alignment	-	and	consequently	also	scHPL	-	has	to	be	rerun.	An	interesting	
alternative	would	be	to	project	the	new	dataset	to	a	 latent	space	 learned	using	reference	
dataset(s),	using	scArches	[34]	for	example.	In	that	case,	scHPL	does	not	have	to	be	rerun	but	
can be progressively updated. 
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The	 batch	 effects	 between	 the	 datasets	 make	 it	 more	 difficult	 to	 troubleshoot	 errors.	
Generally,	it	will	be	hard	to	resolve	whether	mistakes	in	the	constructed	tree	are	caused	by	
the	erroneous	alignment	of	datasets	or	by	mismatches	created	by	scHPL.	

We	would	like	to	note	though	that	there	are	inherent	limitations	to	the	assumption	that	cell	
populations	have	hierarchical	relationships.	While	this	assumption	is	widely	adopted	in	single	
cell	studies	as	well	as	the	Cell	Ontology,	there	are	 indeed	situations	 in	which	a	tree	 is	not	
adequate.	For	instance,	situations	in	which	cells	dedifferentiate	into	other	cell	types,	such	as	
beta to alpha cell conversions in type2 diabetes [35,36].

Considering	 the	classification	performance,	we	showed	that	using	a	hierarchical	approach	
outperforms	flat	classification.	On	the	AMB	dataset,	the	linear	SVM	outperformed	SVMrejection, 
which	was	the	best	performing	classifier	on	this	dataset	[23]. In contrast to SVMrejection, the 
linear	SVM	did	not	reject	any	of	the	cells	but	labeled	them	as	an	intermediate	cell	population.	
During	this	experiment,	there	were	no	cells	of	unknown	populations.	Correct	intermediate	
predictions	instead	of	rejection	are	therefore	beneficial	since	it	provides	the	user	with	at	least	
some	information.	When	comparing	the	linear	SVM	and	one-class	SVM,	we	noticed	that	the	
accuracy of the linear SVM is equal to or higher than the one-class SVM on all datasets. For 
both	classifiers,	we	saw	a	decrease	in	performance	on	populations	with	a	small	number	of	
cells,	but	for	the	one-class	SVM	this	effect	was	more	apparent.	

Since	the	one-class	SVM	has	a	low	performance	on	small	cell	populations,	it	also	cannot	be	
used	to	combine	datasets	which	consist	of	small	populations.	If	the	classification	performance	
is	 low,	 it	 will	 also	 not	 be	 possible	 to	 construct	 the	 correct	 tree.	 On	 the	 other	 hand,	 the	
performance	 of	 the	 linear	 SVM	 seems	 to	 be	 robust	 to	 small	 populations	 throughout	 our	
experiments.	This	classifier	can	thus	better	be	used	when	combining	multiple	datasets	with	
small	populations.

When	testing	the	rejection	option,	the	one-class	SVM	clearly	outperforms	the	linear	SVM	by	
showing	a	perfect	performance	on	the	simulated	dataset.	Moreover,	when	cell	populations	
are missing from the simulated data, the linear SVM cannot learn the correct tree anymore, 
in contrast to the one-class SVM. This suggests that the one-class SVM is preferred when cell 
populations	are	missing,	although	on	the	AMB	dataset,	the	rejection	option	of	both	classifiers	
was not perfect.

In	 summary,	 we	 present	 a	 hierarchical	 progressive	 learning	 approach	 to	 automatically	
identify	cell	identities	based	on	multiple	datasets	with	various	levels	of	subpopulations.	We	
show	 that	we	can	accurately	 learn	cell	 identities	and	 learn	hierarchical	 relations	between	
cell	populations.	Our	results	 indicate	that	choosing	between	a	one-class	and	a	 linear	SVM	
is	 a	 trade-off	 between	 achieving	 a	 higher	 accuracy	 and	 the	 ability	 to	 discover	 new	 cell	
populations.	Our	approach	can	be	beneficial	 in	single-cell	 studies	where	a	comprehensive	
reference atlas is not present, for instance, to annotate datasets consistently during a cohort 
study.	The	first	available	annotated	datasets	can	be	used	to	build	the	hierarchical	tree,	which	
could subsequently can be used to annotate cells in the other datasets.
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3.4 Methods

3.4.1 Hierarchical progressive learning

Within	scHPL, we	use	a	hierarchical	classifier	instead	of	a	flat	classifier.	A	flat	classifier	is	a	
classifier	 that	 doesn’t	 consider	 a	 hierarchy	 and	distinguishes	between	 all	 cell	 populations	
simultaneously.	For	the	AMB	dataset,	a	flat	classifier	will	have	to	learn	the	decision	boundaries	
between	all	92	cell	populations	in	one	go.	Alternatively,	a	hierarchical	classifier	divides	the	
problem	into	smaller	subproblems.	First	it	learns	the	difference	between	the	3	broad	classes:	
GABAergic	 neurons,	 glutamatergic	 neurons,	 and	 non-neuronal	 cells.	 Next,	 it	 learns	 the	
decision	boundaries	between	the	six	subtypes	of	GABAergic	neurons	and	the	eight	subtypes	
of glutamatergic neurons, separately. Finally, it will learn the decision boundaries between 
the	different	cell	populations	within	each	subtype	separately.	

3.4.2 Training the hierarchical classifier

The	 training	procedure	of	 the	hierarchical	 classifier	 is	 the	same	 for	every	 tree:	we	 train	a	
local	classifier	for	each	node	except	the	root.	This	local	classifier	is	either	a	one-class	SVM	or	
a	linear	SVM.	We	used	the	one-class	SVM	(svm.OneClassSVM(nu = 0.05))	from	the	
scikit-learn library in Python [37].	A	one-class	classifier	only	uses	positive	training	samples.	
Positive	training	samples	include	cells	from	the	node	itself	and	all	 its	child	nodes.	To	avoid	
overfitting,	we	select	the	first	100	principal	components	(PCs)	of	the	training	data.	Next,	we	
select	informative	PCs	for	each	node	separately	using	a	two-sided	two-sample	t-test	between	
the	 positive	 and	 negative	 samples	 of	 a	 node	 (α	 <	 0.05,	 Bonferroni	 corrected).	 Negative	
samples are selected using the siblings policy [38], i.e. sibling nodes include all nodes that 
have the same ancestor, excluding the ancestor itself. If a node has no siblings, cells labeled 
as	the	parent	node,	but	not	the	node	itself	are	considered	negative	samples.	In	some	rare	
cases,	the	Bonferroni	correction	was	too	strict	and	no	PCs	were	selected.	In	those	cases,	the	
five	PCs	with	the	smallest	p-values	were	selected.	For	the	 linear	SVM,	we	used	the	svm.
LinearSVC()	function	from	the	scikit-learn	library.	This	classifier	is	trained	using	positive	
and	 negative	 samples.	 The	 linear	 SVM	 applies	 L2-regularization	 by	 default,	 so	 no	 extra	
measures to prevent overtraining were necessary. 

3.4.3 The reconstruction error

The	 reconstruction	error	 is	 used	 to	 reject	 unknown	 cell	 populations.	We	use	 the	 training	
data to learn a suitable threshold which can be used to reject cells by doing a nested 5 fold 
cross-validation.	A	PCA	(ncomponents	=	100)	is	learned	on	the	training	data.	The	test	data	is	then	
reconstructed	by	first	mapping	the	data	to	the	selected	PCA	domain,	and	then	mapping	the	
data	back	to	the	original	space	using	the	inverse	transformation	(hence	the	data	lies	within	
the	plane	spanned	by	the	selected	PCs).	The	reconstruction	error	is	the	difference	between	
the	original	data	and	the	reconstructed	data	(in	other	words,	the	distance	of	the	original	data	
to	the	PC	plane).	The	median	of	the	qth (default	q =	0.99)	percentile	of	the	errors	across	the	
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test data is used as threshold. By increasing or decreasing this parameter, the number of false 
negatives	can	be	controlled.	Finally,	we	apply	a	PCA	(ncomponents	=	100)	to	the	whole	dataset	to	
learn	the	transformation	that	can	be	applied	to	new	unlabeled	data	later.

3.4.4 Predicting the labels

First,	we	look	at	the	reconstruction	error	of	a	new	cell	to	determine	whether	 it	should	be	
rejected.	If	the	reconstruction	error	is	higher	than	the	threshold	determined	on	the	training	
data,	the	cell	 is	rejected.	If	not,	we	continue	with	predicting	its	 label.	We	start	at	the	root	
node,	which	we	denote	as	parent	node	and	use	the	local	classifiers	of	its	children	to	predict	
the label of the cell using the predict()	 function,	and	score	 it	using	the	decision_
function(), both from the scikit-learn package. These scores represent the signed 
distance	of	a	cell	to	the	decision	boundary.	When	comparing	the	results	of	the	local	classifiers,	
we	distinguish	three	scenarios:

1. All	child	nodes	label	the	cell	negative.	If	the	parent	node	is	the	root,	the	new	cell	is	
rejected.	Otherwise	we	have	an	internal	node	prediction	and	the	new	cell	is	labeled	
with the name of the parent node.

2. One	child	node	labels	the	cell	positive.	If	this	child	node	is	a	leaf	node,	the	sample	is	
labeled	with	the	name	of	this	node.	Otherwise,	this	node	becomes	the	new	parent	
and	we	continue	with	its	children.	

3. Multiple	child	nodes	label	the	cell	positive.	We	only	consider	the	child	node	with	the	
highest	score	and	continue	as	in	scenario	two.	

3.4.5 Reciprocal matching labels and updating the tree

Starting	with	two	datasets,	D1 and D2,	and	the	two	corresponding	classification	trees	(which	
can	be	either	hierarchical	or	flat),	we	would	like	to	match	the	labels	of	the	datasets	and	merge	
the	classification	trees	accordingly	into	a	new	classification	tree	while	being	consistent	with	
both	input	classification	trees	(Figure	1).	We	do	this	in	two	steps:	first	matching	the	labels	
between	the	two	dataset	and	then	updating	the	tree.

Reciprocal matching labels. We	first	cross-predict	the	labels	of	the	datasets:	we	use	the	classi-
fier	trained	on	D1 to predict the labels of D2	and	vice	versa.	We	construct	confusion	matrices,	
C1 and C2, for D1 and D2,	respectively.	Here,	C1ij	indicates	how	many	cells	of	population	i of 
D1 are	predicted	to	be	population	j of D2.	This	prediction	can	be	either	a	leaf	node,	internal	
node	or	a	rejection.	As	the	values	 in	C1 and C2 are highly dependent on the size of a cell 
population,	we	normalize	the	rows	such	that	the	sum	of	every	row	is	one,	now	indicating	the	
fraction	of	cells	of	population	i in D1	that	have	been	assigned	to	population	j in D2: 

NC
C
Cij
ij

ijj

1
1

1
�

��
 

Clearly,	a	high	fraction	is	indicative	of	matching	population	 i in D1	with	population	 j in D2. 
Due	to	splitting,	merging,	or	new	populations	between	both	datasets,	multiple	relatively	high	
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fractions	can	occur	(e.g.	if	a	population	i	is	split	in	two	populations	j1 and j2 due to D2 being of 
a	higher	resolution,	both	fractions	NCij1 and NCij2	will	be	approximately	0.5).	To	accommodate	
for	these	operations,	we	allow	multiple	matches	per	population.	

To	convert	these	fractions	into	matches,	NC1 and NC2 are converted into binary confusion 
matrices, BC1 and BC2,	where	 a	 1	 indicates	 a	match	 between	 a	 population	 in	D1 with a 
population	in	D2,	and	vice	versa.	To	determine	a	match,	we	take	the	value	of	the	fraction	
as	well	 as	 the	difference	with	 the	other	 fractions	 into	account.	This	 is	done	 for	each	 row	
(population)	of	NC1 and NC2	 separately.	When	considering	 row	 i from NC1, we	first rank 
all	 fractions,	 then	 the	highest	 fraction	will	be	set	 to	1	 in	BC1,	 after	which	all	 fractions	 for	
which	the	difference	with	the	preceding	(higher)	fraction	is	less	than	a	predefined	threshold	
(default	=	0.25)	will	also	be	set	to	1	in	BC1. 

To arrive at reciprocal matching between D1 and D2, we combine BC1 and BC2 into matching 
matrix X	(Figure	2):	

X BC BCT� �1 2

The columns in X	 represent	 the	 cell	 populations	 of	 D1 and the rows represent the cell 
populations	of	D2. If Xij = 2,	this	indicates	a	reciprocal	match	between	cell	population	i from 
D2	and	cell	populations	j from D1. Xij = 1 indicates a one-sided match, and Xij = 0 represents 
no match. 

Tree updating. Using the reciprocal matches between D1 and D2 represented in X, we update 
the hierarchical tree belonging to D1 to incorporate the labels and tree structure of D2.	We	
do that by handling the correspondences in X elementwise. For a non-zero value in X, we 
check whether there are other non-zero values in the corresponding row and column to 
identify	which	tree	operation	we	need	to	take	(such	as	split/merge/create).	As	an	example,	if	
we	encounter	a	split	for	population	i in D1 into j1 and j2, we will create new nodes for j1 and 
j2 as child nodes of node i in the hierarchical tree of D1. Figure 2 and Table S1 explain the 
four	most	common	scenarios:	a	perfect	match,	splitting	nodes,	merging	nodes,	and	a	new	
population.	All	other	scenarios	are	explained	in	Supplementary	Note	1.	After	an	update,	the	
corresponding values in X	are	set	to	zero	and	we	continue	with	the	next	non-zero	element	of	
X. If the matching is impossible, the corresponding values in X are thus not set to zero. If we 
have evaluated all elements of X,	and	there	are	still	non-zero	values,	we	will	change	X into a 
strict matrix, i.e. we further only consider reciprocal matches, so all ‘1’s are turned into a ‘0’ 
with	some	exceptions	(Supplementary	Note	2).	We	then	again	evaluate	X element wise once 
more. 

3.4.6 Evaluation

Hierarchical F1-score. We	 use	 the	 hierarchical	 F1-score	 (HF1-score)	 to	 evaluate	 the	
performance	of	the	classifiers	[39].	We	first	calculate	the	hierarchical	precision	(hP)	and	recall	
(hR):	

hP
P T

P
i ii

ii

� ��
�

        hR
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T
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Here,	Pi	is	a	set	that	contains	the	predicted	cell	population	for	a	cell	i and all the ancestors of 
that node, Ti	contains	the	true	cell	population	and	all	its	ancestors,	and P Ti i∩ is the overlap 
between	these	two	sets.	The	HF1-score	is	the	harmonic	mean	of	hP and hR: 

HF1 2 2� �
hP hR
hP hR

*

Median F1-score. We	use	 the	median	F1-score	 to	compare	 the	classification	performance	
to	 other	methods.	 The	 F1-score	 is	 calculated	 for	 each	 cell	 population	 in	 the	 dataset	 and	
afterwards	the	median	of	these	scores	is	taken.	Rejected	cells	and	internal	predictions	are	
not	considered	when	calculating	this	score.

3.4.7 Datasets

Simulated data. We	used	the	R-package	Splatter	(V1.6.1)	to	simulate	a	hierarchical	scRNA-
seq dataset that consists of 8,839 cells and 9,000 genes and represents the tree shown in 
Figure	S1A	(Supplementary	Note	3)	[26].	We	chose	this	 low	number	of	genes	to	speed	up	
the	computation	time.	In	total	there	are	six	different	cell	populations	of	approximately	1,500	
cells	each.	As	a	preprocessing	step,	we	log-transformed	the	count	matrix	(log ( )2 1count + ).	A	
UMAP embedding of the simulated dataset shows it indeed represents the desired hierarchy 
(Figure	S1C).

Peripheral Blood Mononuclear Cells (PBMC) scRNA-seq datasets. We	 used	 four	 different	
PBMC datasets: PBMC-FACS, PBMC-Bench10Xv2, PBMC-Bench10Xv3, and PBMC-eQTL. The 
PBMC-FACS	dataset	is	the	downsampled	FACS-sorted	PBMC	dataset	from	Zheng	et	al.	[27]. 
Cells	were	first	 FACS-sorted	 into	 ten	different	 cell	 populations	 (CD14+	monocytes,	 CD19+	
B	 cells,	 CD34+	 cells,	 CD4+	 helper	 T-cells,	 CD4+/CD25+	 regulatory	 T-cells,	 CD4+/CD45RA+/
CD25−	 naive	 T-cells,	 CD4+/CD45RO+	 memory	 T-cells,	 CD56+	 natural	 killer	 cells,	 CD8+	
cytotoxic	T-cells,	CD8+/CD45RA+	naive	cytotoxic	T-cells)	and	sequenced	using	10X	Chromium	
[27].	Each	cell	population	consists	of	2,000	cells.	The	total	dataset	consists	of	20,000	cells	
and	 21,952	 genes.	 During	 the	 cross-validation	 on	 the	 PBMC-FACS	 dataset,	we	 tested	 the	
effect	of	selecting	HVG.	We	used	the	‘seurat_v3’	flavor	of	scanpy	to	select	500,	1000,	2000,	
and	5000	HVG	on	the	training	set	[28,40]. The PBMC-Bench10Xv2 and PBMC-Bench10Xv3 
datasets are the PbmcBench pbmc1.10Xv2 and pbmc1.10Xv3 datasets from Ding et al. 
[41].	These	datasets	consist	of	6,444	and	3,222	cells	 respectively,	22,280	genes,	and	nine	
different	 cell	 populations.	Originally	 the	PBMC-Bench10Xv2	dataset	 contained	CD14+	 and	
CD16+	monocytes.	We	merged	these	into	one	population	called	monocytes	to	introduce	a	
different	 annotation	 level	 compared	 to	 the	other	 PBMC	datasets.The	PBMC-eQTL	dataset	
was sequenced using 10X Chromium and consists of 24,439 cells, 22,229 genes, and eleven 
different	cell	populations	[42].

Brain scRNA-seq datasets. We	 used	 two	 datasets	 from	 the	 mouse	 brain,	 AMB2016	 and	
AMB2018,	 to	 look	at	different	 resolutions	of	cell	populations	 in	 the	primary	mouse	visual	
cortex. The AMB2016 dataset was sequenced using SMARTer [4], downloaded from https://
portal.brain-map.org/atlases-and-data/rnaseq/data-files-2018. AMB2016 consists of 1,298 
cells and 21,413 genes. The AMB2018 dataset, which was sequenced using SMART-Seq V4 
[5], downloaded from https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-v1-
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and-alm-smart-seq,	 consists	 of	 12,771	 cells	 and	 42,625	 genes.	 Additionally,	we	used	 four	
other	brain	datasets:	Zeisel	[2],	Tabula	Muris	[30],	Rosenberg	[32],	and	Saunders	[31].	These	
were	downloaded	from	the	scArches	‘data’	Google	Drive	(‘mouse_brain_regions.h5ad’	from	
https://drive.google.com/drive/folders/1QQXDuUjKG8CTnwWW_u83MDtdrBXr8Kpq)	 [34]. 
We	 downsampled	 each	 dataset	 such	 that	 at	 the	 highest	 resolution	 each	 cell	 population	
consisted	of	up	to	5,000	cells	to	reduce	the	computational	time	for	the	alignment	(Table	S7).	

Preprocessing scRNA-seq datasets. All datasets were preprocessed as described in Abdelaal 
et al. [23].	 Briefly,	we	 removed	 cells	 labeled	 in	 the	original	 studies	 as	doublets,	 debris	or	
unlabeled	cells,	cells	from	cell	populations	with	less	than	10	cells,	and	genes	that	were	not	
expressed. Next, we calculated the median number of detected genes per cell, and from 
that,	we	obtained	the	median	absolute	deviation	(MAD)	across	all	cells	in	the	log	scale.	We	
removed cells when the total number of detected genes was below three MAD from the 
median number of detected genes per cell. During the intra-dataset experiments, we log-
transformed	the	count	matrices	( log ( )2 1count + ).

Aligning scRNA-seq datasets. During the inter-dataset experiments, we aligned the datasets 
using Seurat V3 [28] based on the joint set of genes expressed in all datasets. In the PBMC, 
AMB,	 and	 brain	 inter-dataset	 experiment	 respectively	 17,573,	 19,197,	 and	 14,858	 genes	
remained.	For	 the	PBMC	 inter-dataset	experiment,	we	also	 removed	cell	populations	 that	
consisted	 of	 less	 than	 100	 cells	 from	 the	 datasets	 used	 for	 constructing	 and	 training	 the	
classification	tree	(PBMC-eQTL,	FACS,	Bench10Xv2).	To	test	the	effect	of	the	number	of	genes	
on	scHPL, we	integrated	this	data	using	1000,	2000	(default),	and	5000	HVGs.

3.5 Code and data availability
The	filtered	PBMC-FACS	and	AMB2018	dataset	can	be	downloaded	 from	Zenodo	 (https://
doi.org/10.5281/zenodo.3357167).	 The	 simulated	 dataset	 and	 the	 aligned	 datasets	
used	 during	 the	 inter-dataset	 experiment	 can	 be	 downloaded	 from	 Zenodo	 (http://doi.
org/10.5281/zenodo.3736493).	Accession	numbers	or	 links	 to	 the	raw	data:	AMB2016	 [4]	
(GSE71585,	 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71585),	 AMB2018	
[5]	 (GSE115746,	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746),	PBMC-
FACS	 [27]	 (SRP073767,	 https://support.10xgenomics.com/single-cell-gene-expression/
datasets),	 PBMC-eQTL	 [42]	 (EGAS00001002560,	 https://ega-archive.org/studies/
EGAS00001002560),	PBMC-Bench10Xv2	and	PBMC-Bench10Xv3	 [41]	 (GSE132044,	https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132044),	 Rosenberg	 [32]	 (GSE110823,	
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110823),	 Zeisel	 [2]	 (http://
mousebrain.org,	 file	 name	 L5_all.loom,	 downloaded	 on	 9/9/2019),	 Saunders	 [31]	 (http://
dropviz.org,	DGE	by	Region	section,	downloaded	on	30/8/2019),	Tabula	Muris	[30]	(https://
figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_
tissues_from_Mus_musculus_at_single_cell_resolution/27733,	downloaded	on	14/2/2019). 
The	source	code	for	scHPL	is	available	as	a	python	package	that	is	installable	through	the	PyPI	
repository	(https://github.com/lcmmichielsen/scHPL)	[43]. 
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Supplementary Materials
Supplementary Note 1
When	matching	the	cell	populations	from	two	datasets,	we	distinguish	five	options:	simple,	
multiple	 columns,	multiple	 rows,	 complex,	 and	 impossible.	When	describing	 the	different	
scenarios	within	these	options,	we	sometimes	make	a	distinction	between	leaf	nodes	and	
internal	nodes.	Here,	it	is	important	to	remember	that	only	T1 can have internal nodes since 
this is the tree that is updated. T2 is	always	a	flat	classification	tree,	so	only	consists	of	the	
root node and leaf nodes.

Simple. In	this	scenario,	we	find	a	unique	match	between	a	cell	population,	Pi, from dataset 
1	and	a	cell	population,	Pj, from dataset 2. As as consequence, Xj,I will be 1 or 2 and the rest 
of row j and column i in X	are	zero.	Within	this	scenario,	there	are	three	different	options:

1. Both	cell	populations	are	leaf	or	internal	nodes.	This	indicates	a	perfect	match.	The	tree	
is not updated, but the labels of Pj are renamed to Pi (Figure	S24A).	This	 is	 the	same	
scenario as the ‘perfect match’ scenario described in the main text.

2. Pi is a leaf or internal node, but Pj is the root node of T2. This indicates that Pi is missing 
in	dataset	2.	The	node,	however,	is	already	in	the	tree,	so	it	is	not	updated	(Figure	S24B).

3. Pi is the root of T1, but the Pj is a leaf node. This indicates that Pj is missing in dataset 1. 
The	cell	population	is	thus	also	not	in	the	tree	yet,	so	we	will	add	it	as	a	child	to	the	root	
(Figure	S24C).	This	is	the	same	scenario	as	the	‘new	population’	scenario	described	in	
the main text.

Multiple rows. In	 this	 scenario,	 a	 cell	 population,	 Pi,	 from	 dataset	 1	 matches	 multiple	
populations	from	dataset	2.	In	X there	will	be	multiple	non-zero	values	in	column	i. Here,	we	
distinguish	two	different	scenarios:

1. Pi	matches	only	cell	populations	from	dataset	2	that	are	leaf	node.	We	consider	the	cell	
populations	from	dataset	2	subpopulations	of	Pi, so we add them as descendants to Pi 
(Figure	S25A).	This	is	the	same	scenario	as	the	‘splitting	nodes’	scenario	described	in	the	
main text.

2. The root node of T2	is	also	involved.	We	simple	ignore	this	node	and	for	the	rest	do	the	
same	as	above	(Figure	S25B-C).

Multiple columns. This	scenario	is	quite	similar	to	the	multiple	rows	scenario.	Here,	however,	
multiples	populations	from	dataset	1	match	one	cell	population,	Pj, of dataset 2. In X there 
will	 be	multiple	non-zero	 values	 in	 row	 j.	 This	 scenario	 is	 a	 little	more	 complex	 since	 the	
populations	from	dataset	1	does	not	have	to	be	leaf	nodes	or	the	root	node,	but	there	can	
also	be	internal	nodes	in	this	tree.	Here,	we	distinguish	three	different	scenarios:

1. The root node of T1 and T2	are	not	 involved,	so	multiple	cell	populations,	which	can	
be leaf or internal nodes, from dataset 1 match Pj.	We	consider	 the	cell	populations	
from	dataset	1	subpopulations	of	Pj, so we need to add Pj as a parent node to these 
cell	populations	(Figure	S26A).	This	 is	same	scenario	as	the	 ‘merging	nodes’	scenario	
described in the main text. It could be, however, that this node already exists in this tree 
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(Figure	S26B).	If	this	is	the	case,	we	have	a	perfect	match	between	a	node	from	tree	1	
and tree 2, so we do not have to update the tree, but we only have to update the labels 
of Pj.

2. Besides leaf or internal nodes, the root of T1 is involved. This indicates that Pj is ‘bigger’ 
than	the	cell	populations	from	dataset	1	as	part	of	it	is	unlabeled.	Therefore,	we	add	Pj 
as a descendant to the root of T1.	Next,	we	rewire	the	involved	cell	populations	from	
dataset 1 such that they become descendants of Pj	(Figure	S26C).

3. The root node of T2	is	involved.	This	indicates	that	multiple	cell	populations	from	dataset	
1 are missing in dataset 2. These nodes, however, are already in the tree, so the tree can 
remain	the	same	(Figure	S26D).

Complex. The	scenarios	described	above	were	all	relatively	easy.	A	cell	population	from	one	
dataset	matches	either	one	or	multiple	cell	populations	from	another.	It	could	also	happen,	
however,	that	multiple	cell	populations	from	dataset	1	match	multiple	cell	populations	from	
dataset	2	(Figure	S27).	As	a	consequence,	there	will	a	certain	place	Xj,I which is either 1 or 2 
and there are two or more non-zero values in the corresponding row j and column i. Here,	we	
distinguish	three	different	scenarios:

1. The root node of T1 is	involved.	We	just	assume	that	the	boundary	should	be	adjusted	
and	this	is	automatically	done,	so	we	remove	this	`1’	from	the	table	(Figure	S27A).	If	the	
situation	is	still	complex	after	the	one	is	removed,	we	continue	to	scenario	2	or	3.	If	not,	
we	treat	it	as	a	multiple	rows	problem	as	explained	above.

2. The root node of T2 is involved. Again, we just assume that the boundary should be 
adjusted,	 so	we	 remove	 this	 `1’	 from	 the	 table	 (Figure	 S27B).	 If	 the	 situation	 is	 still	
complex	after	the	one	 is	removed,	we	continue	to	scenario	3.	 If	not,	we	treat	 it	as	a	
multiple	columns	problem	as	explained	above.

3. Multiple	leaf/internal	nodes	of	dataset	1	are	involved	and	multiple	leaf	nodes	of	dataset	
2.	We	can	only	solve	this	if	the	‘complex’	cell	population,	Pi, of dataset 1 is not a leaf 
node.	Otherwise	we	are	dealing	with	an	impossible	scenario	which	is	described	below.	If	
the	complex	node	is	an	internal	node,	we	attach	the	involved	cell	populations	of	dataset	
2	as	descendants	to	the	complex	node	(splitting	scenario)	and	attach	the	involved	cell	
populations	of	dataset	1,	except	for	Pi, to Pj	(Figure	S27C).

Impossible. Sometimes,	 it	 could	 be	 impossible	 to	 match	 the	 labels	 from	 two	 datasets.	
Something	 could	 have	 gone	wrong	 during	 the	 clustering,	 e.g.	 a	 population	 1	 and	 2	 from	
dataset	1	match	population	A	from	dataset	2,	but	population	2	also	matches	population	C	
from	dataset	2	(Figure	S28A).	Here,	population	A	and	C	should	be	merged	into	population	2,	
but	population	A	should	also	be	split	into	population	1	and	2.	Population	2,	however,	cannot	
be	 added	 to	 the	 tree	 twice.	 It	 could	 also	 be	 that	 dataset	 2	 contains	 labels	 at	 a	 different	
resolution,	e.g.	that	population	B	is	a	subpopulation	of	population	A	(Figure	S28B).	This	is	not	
what we assumed and thus impossible to match. Both scenarios occur when a leaf node from 
dataset	1	is	at	a	crossing	of	multiple	rows	and	multiple	columns	(i.e.	a	complex	situation).	An	
extra	difficulty	is	that	there	are	thus	multiple	situations	that	could	explain	this.	All	of	these	
situation	are	not	what	we	desired	and	thus	we	call	it	impossible	and	do	nothing.
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Supplementary Note 2
If there is a complex scenario that cannot be solved immediately, matrix X will be changed 
into a strict matrix. In the strict matrix, only reciprocal matches are considered, so all ‘1’s’ are 
turned	into	‘0’.	There	are	some	exceptions	to	this	rule.	

- A	population	can	never	have	a	 reciprocal	match	with	 the	 root,	 so	 these	 ‘1’s’	 are	
never removed.

- If	 a	 population	 from	 a	 dataset	 has	 only	 one	 match,	 it	 is	 also	 never	 removed.	
Consider	the	following	example:	If	population	P1	of	Dataset	1	is	only	predicted	to	be	
Population	Q	of	Dataset	2,	we	know	that	P1	should	be	a	match	with	Q	as	it	cannot	
be	matched	with	any	other	population	or	with	the	root.	It	could	be	that	this	match	
is	not	reciprocal	if	population	Q	has	many	different	subpopulations	(e.g.	P1,	P2,	P3,	
P4).	Imagine	that	population	P2	is	really	big.	Almost	all	cells	of	population	Q	will	be	
predicted	to	be	P2	and	so	the	matches	with	P1	(and	P3	and	P4)	are	missed	because	
of the matching threshold. In case there is a complex scenario caused by any other 
population	(maybe	P2	or	P3	or	P4),	we	still	know	that	P1	is	a	subpopulation	of	Q,	
since that was super clear and didn’t cause any complexity.  

Supplementary Note 3
Current scRNA-seq data simulators cannot simulate hierarchical data, so we simulated this 
dataset	step	by	step	(Figure	S1B).	
First,	we	 simulated	 the	expression	of	3,000	genes	 for	9,000	cells.	 For	 this	 simulation,	 the	
cells were divided into three groups. The 3,000 simulated genes represent genes that are 
differentially	expressed	between	the	cell	populations	at	a	low	resolution,	so	for	example	B	
cells vs. T cells. Next, we simulated another 3,000 genes for the same 9,000 cells. Now, the 
cells	were	divided	into	five	groups.	Here,	the	differentially	expressed	genes	represent	genes	
that	distinguish	cell	populations	at	a	slightly	higher	resolution,	so	for	example	CD4+	T	cells	
vs.	CD8+	T	cells.	We	repeated	this	step	for	another	set	of	3,000	genes,	but	now	there	were	
six	populations.	The	 third	dataset	 represents	 the	highest	 resolution,	 so	 for	 instance	CD4+	
memory	T	cells	vs.	CD4+	naïve	T	cells.
Together this resulted in a dataset of 9,000 cells and 9,000 genes. The cells were labeled 
at	 three	 resolutions.	 There	 was	 some	 inconsistency	 between	 the	 labels	 at	 the	 different	
resolutions	 (e.g.	 some	 cells	 were	 labeled	 as	 ‘Group12’,	 ‘Group3’,	 ‘Group3’).	We	 removed	
these	cells	from	the	dataset,	which	resulted	in	a	final	dataset	of	8,839	cells	and	9,000	genes.
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Single-cell genomics is now producing an ever-increasing amount of datasets that, when 
integrated,	 could	 provide	 large-scale	 reference	 atlases	 of	 tissue	 in	 health	 and	 disease.	
Such large-scale atlases increase the scale and generalizability of analyses and enable 
combining	knowledge	generated	by	 individual	studies.	Specifically,	 individual	studies	often	
differ	regarding	cell	annotation	terminology	and	depth,	with	different	groups	specializing	in	
different	cell	type	compartments,	often	using	distinct	terminology.	Understanding	how	these	
distinct	sets	of	annotations	are	related	and	complement	each	other	would	mark	a	major	step	
towards	a	consensus-based	cell-type	annotation	reflecting	the	latest	knowledge	in	the	field.	
Whereas	 recent	 computational	 techniques,	 referred	 to	 as	 “reference	mapping”	methods,	
facilitate	the	usage	and	expansion	of	existing	reference	atlases	by	mapping	new	datasets	(i.e.,	
queries)	onto	an	atlas;	a	systematic	approach	towards	harmonizing	dataset-specific	cell-type	
terminology	and	annotation	depth	is	still	lacking.	Here,	we	present	“treeArches”, a framework 
to	automatically	build	and	extend	reference	atlases	while	enriching	them	with	an	updatable	
hierarchy	 of	 cell-type	 annotations	 across	 different	 datasets.	We	 demonstrate	 various	 use	
cases	 for	 treeArches,	 from	automatically	 resolving	 relations	between	reference	and	query	
cell	types	to	identifying	unseen	cell	types	absent	in	the	reference,	such	as	disease-associated	
cell	states.	We	envision	treeArches enabling	data-driven	construction	of	consensus	atlas-level	
cell-type	hierarchies	and	facilitating	efficient	usage	of	reference	atlases.	

4.1 Introduction 
Single-cell	sequencing	technologies	have	revolutionized	our	understanding	of	human	health.	
Hereto,	 large	 single-cell	 datasets	-	 referred	 to	 as	 “reference	 atlases”	-	 have	 been	 built	 to	
characterize the cellular heterogeneity of whole organs. An example is all the organ- and 
body-scale	cell	atlases	constructed	within	big	consortia	such	as	the	human	cell	atlas	(HCA)	
[1–5].	Users	can	contextualize	 their	datasets	within	 these	references	 to	 identify	novel	cell	
types.	This	enables	 the	discovery	of	disease-affected	cell	 types	 that	 can	be	prioritized	 for	
treatment design [6–8]. 

To	create	a	reference	atlas,	one	would	ideally	leverage	information	from	multiple	scRNA-seq	
datasets	and	harmonize	their	cell	annotations.	This,	however,	is	not	as	easy	as	it	seems	since	
all	datasets	are	annotated	at	a	different	resolution.	Furthermore,	matching	cell	types	based	
on	their	names	is	difficult.	Databases	such	as	‘Cell	Ontology’	try	to	overcome	this	problem,	
but	a	complete	naming	convention	is	still	missing	[9].	When	constructing	the	Human	Lung	Cell	
Atlas	(HLCA),	for	instance,	the	cell	type	labels	of	14	datasets	had	to	be	manually	harmonized,	
which	is	a	time-consuming	process	[2].	To	accelerate	the	construction	of	reference	atlases,	
we	 developed	 scHPL:	 a	 method	 to	 automatically	 match	 the	 cell-type	 labels	 of	 multiple	
datasets and construct a cell-type hierarchy [10]. In follow-up, Novella-Rausell et al. showed 
how	scHPL	simplified	the	process	when	building	a	mouse	kidney	atlas	[11]. 

The concept of a “reference atlas”, however, suggests it should help analyze and interpret new 
datasets	(here	denoted	as	“query”).	This	is,	however,	complicated	by	batch	effects	between	
the	 reference	 and	 query,	 limited	 computational	 resources,	 and	 data	 privacy	 and	 sharing.	
Recently,	we,	along	with	others,	developed	computational	approaches	(known	as	“reference	
mapping”	methods)	to	address	these	challenges	[4,12,13]. Such methods could for instance 
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be used to map a query dataset to the reference and annotate the cells. Currently, there is no 
method available that tackles both challenges simultaneously.

To address these challenges, we present treeArches, a framework that builds upon single-cell 
architectural	surgery	(scArches)	[12]	and	single-cell	Hierarchical	Progressive	Learning	(scHPL)	
[10] to progressively build and update a reference atlas and corresponding hierarchical 
classifier.	 Our	 approach	 allows	 users	 to	 build	 a	 reference	 atlas	 using	 existing	 integration	
methods	 supported	 by	 scArches	 (e.g.,	 scVI,	 scANVI,	 totalVI,	 and	 all	 others	 described	 in	
[14]).	Next,	we	use	scHPL	to	augment	this	reference	atlas	by	learning	the	relations	between	
cell	 types	 to	 construct	 a	 cell-type	 hierarchy.	 Afterward,	 query	 data,	 which	 can	 be	 either	
annotated or unannotated, can be mapped to the reference. If the query is annotated, the 
query	cells	can	expand	the	newly	updated	tree	by	highlighting	potential	novel	cell	types	and	
their	 relationship	with	other	cell	 types	 in	 the	reference.	Otherwise,	 the	created	reference	
can	be	used	 to	annotate	 the	query	cells	and	 identify	new	unseen	cell	 types	 in	 the	query.	
Unlike	existing	methods,	we	show	that	treeArches	can	be	used	to	create	a	reference	atlas	
and	corresponding	cell-type	hierarchy	from	scratch,	update	an	existing	reference	atlas	and	
the	hierarchy	by	finding	novel	relations	between	cell	types,	and	leverage	a	reference	atlas	to	
transfer labels to a new dataset. 

4.2 Methods

4.2.1 Overview

treeArches	consists	of	two	main	steps:	(i)	removing	the	batch	effects	between	datasets	and	(ii)	
matching	the	annotated	cell	types	to	construct	a	cell-type	hierarchy	(Figure	1).	Starting	with	
multiple	labeled	datasets,	hereafter	called	reference	datasets,	we	first	use	neural	network-
based	reference-building	models	(e.g.,	sc(AN)VI	[14]	or	scGen	[15]),	which	are	top	performers	
in	recent	data	benchmarking	efforts	[16]	and	compatible	with	scArches,	to	construct	a	latent	
space.	Next,	we	use	scHPL	to	construct	the	cell-type	hierarchy	(Figure	1A).	For	each	dataset,	
we	 train	 a	 classifier	 in	 the	 learned	 latent	 space	 and	 cross-predict	 the	 labels	 of	 the	 other	
dataset(s).	Using	the	confusion	matrices,	we	automatically	match	the	cell	types	to	create	a	
hierarchy.	This	hierarchy	also	represents	a	hierarchical	classifier	where	every	node	represents	
a	cell	type	in	one	or	more	of	the	datasets.	Afterwards,	we	can	map	new	query	datasets	to	the	
learned latent space using architectural surgery, a transfer learning approach to map query 
datasets	 to	 references,	 implemented	by	scArches	 (Figure	1B).	Architectural	 surgery	brings	
the advantage that the count matrices of the reference datasets are not needed anymore for 
querying the model. Instead, we only use the pre-trained neural network architecture. The 
query datasets can either be labeled or unlabeled. In the case of a labeled dataset, we match 
the cell types from the query to the reference and again update the hierarchy we had learned 
on the reference datasets. In the case of an unlabeled query, we annotate the cells using the 
learned hierarchy. 

When	matching	the	cell	types	or	predicting	labels	of	a	query	dataset,	it	is	important	to	identify	
new cell types that are not present in the reference. This is only possible when biological 
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Figure 1. A schematic version of treeArches and an example using PBMC and bone marrow datasets. A) Pre-
training	of	a	latent	representation	using	labeled	public	reference	datasets.	After	integration,	a	cell-type	hierarchy	is	
created	by	matching	the	cell	types	of	the	different	datasets.	Here,	for	instance,	cell	types	(CT)	1	and	2	from	study	(S)	
2 are subtypes of CT1 from S1. B)	(Un)labeled	query	datasets	can	be	added	to	the	latent	representation	by	applying	
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variation	is	preserved	when	mapping	the	datasets	to	the	latent	space	and	when	the	classifier	
in	scHPL	recognizes	unseen	cells,	i.e.	cells	that	are	not	present	in	the	tree.	Therefore	scHPL	
adopts	a	rejection	strategy,	which	rejects	these	unseen	cells	and	identifies	them	as	a	new	
cell	 type.	Within	scHPL,	a	cell	 is	rejected	 if	 it	meets	one	of	the	following	criteria:	1)	 if	 the	
posterior	probability	of	the	classifier	 is	 lower	than	a	threshold	which	means	the	predicted	
label	is	ambiguous,	2)	if	the	distance	between	a	cell	and	its	closest	neighbors	is	too	big,	and	
3)	if	the	reconstruction	error	(when	mapping	to	a	reduced	PCA	space	and	back)	is	above	a	
threshold,	which	means	the	query	cell	is	too	different	from	the	reference	cell	types.	These	
three	thresholds	are	automatically	set	based	on	the	distribution	of	the	data.

treeArches	 is	 a	 framework	 built	 around	 scArches	 (version	 0.5.3)	 [12]	 and	 scHPL	 (version	
1.0.1)	 [10].	 A	 detailed	 description	 of	 scArches	 and	 scHPL	 can	 be	 found	 in	 their	 original	
papers [10,12].	Here,	we	only	describe	changes	to	the	original	methods	when	combined	in	
the	treeArches	framework.	We	enhanced	the	original	version	of	scHPL	by	adding	the	option	
to use a k-nearest	neighbor	(kNN)	classifier.	The	dimensionality	of	the	latent	space	learned	
by	scArches	is	relatively	low	(varying	between	10	and	30	dimensions).	We	noticed	that	the	
linear SVM originally implemented doesn’t perform well, since the cell types are not linearly 
separable	anymore.	Therefore,	it	is	better	to	use	scHPL	with	the	kNN	classifier	in	this	case.	
In	contrast	to	the	linear	SVM,	we	train	a	multiclass	classifier	for	every	parent	node	instead	
of	a	binary	classifier	for	every	child	node	[10]. During training, we set the default number 
of	neighbors	 to	50.	However,	when	there	are	cell	 types	 in	 the	dataset	 that	consist	of	 less	
than	50	cells,	this	is	not	ideal.	Therefore,	we	added	an	extra	option	(dynamic_neighbors)	to	
automatically	decrease	k to the size of the smallest cell type across the direct child nodes. 
Since	the	tree	consists	of	multiple	classifiers,	it	can	thus	be	that	they	all	use	a	different	number	
of	neighbors	because	of	this	option.	For	the	kNN	classifier	itself,	we	implemented	alternatives	
using either the FAISS library [17] or the scikit-learn library [18].	The	FAISS	implementation	is	
faster than the scikit-learn library but is only available on Linux. 

4.2.2 Detecting new or diseased cell types

We	have	implemented	three	methods	to	detect	new	or	diseased	cell	types:	1)	a	threshold	on	
the	posterior	probability,	2)	a	threshold	on	the	reconstruction	error,	and	3)	a	threshold	on	the	
distance	between	query	and	reference.	The	first	two	options	were	already	implemented	in	
the	previous	version	of	scHPL.	The	default	threshold	for	the	first	option	is	0.5.	The	threshold	
for	the	second	rejection	option	is	determined	using	a	nested	cross-validation	loop.	It	is	the	
median	reconstruction	error	that	gives	a	certain	amount	of	false	negatives	on	the	test	folds	
(default	=	0.5%).	The	third	option	rejects	cells	whose	distance	to	the	predicted	class	is	too	
big.	The	threshold	for	rejection	is	determined	by	calculating	the	neighbors	for	all	cells	in	the	
training	set,	averaging	the	distance	across	the	neighbors,	and	taking	the	99th	percentile.

architectural	surgery.	After	integration,	the	cell-type	hierarchy	is	updated	with	labeled	query	datasets.	Unlabeled	
query datasets can be annotated using the learned hierarchy. C) UMAP embedding showing the integrated latent 
space of the three reference datasets. D) Cell-type hierarchy learned from the three reference datasets. MC derived 
DC:	 monocyte-derived	 dendritic	 cells,	 MC:	 monocytes,	 pDC:	 plasmacytoid	 dendritic	 cells,	 HSPC:	 hematopoietic	
stem and progenitor cell. E)	Updated	hierarchy	after	the	10X	dataset	was	added.	F) UMAP embedding showing the 
integrated latent space of the reference and query datasets.
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4.2.3 Datasets

PBMC datasets. The	dataset	was	obtained	from	the	recent	data	integration	benchmark	[16]. 
The	data	 contains	bone	marrow	 samples	 from	Oetjen	 et	 al.	 [19] and also PBMC samples 
that	were	obtained	from	10x	Genomics	https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.0/pbmc_10k_v3,	Freytag	et	al.	and	Sun	et	al.	 [20,21], the original 
url	and	the	preprocessing	and	annotation	details	can	be	found	in	Luecken	et	al.	[16]. Marker 
genes	specific	to	early	erythrocytes	and	platelets	were	downloaded	from	Azimuth	[4].

Brain datasets. We	used	datasets	from	the	primary	motor	cortex	of	three	species:	human,	
mouse, and marmoset [22].	We	downloaded	the	datasets	from	the	Cytosplore	comparison	
viewer. In these datasets, genes were already matched based on one-to-one homologs. For 
the	analysis,	we	only	kept	these	one-to-one	matches	(15,860	genes	 in	total).	We	selected	
2,000	highly	 variable	 genes	based	on	 the	 reference	datasets	 (mouse	 and	marmoset)	 and	
used	 those	 counts	 as	 input	 for	 treeArches.	 The	datasets	 are	 annotated	 at	 three	different	
resolutions:	Class,	Subclass,	and	RNA_cluster.	The	class	level	contains	three	broad	brain	cell	
types:	GABAergic	neurons,	glutamatergic	neurons,	and	non-neuronal	cells.	At	the	subclass	
level,	 the	cells	are	annotated	at	a	higher	resolution	(5-10	subclasses	per	class).	The	RNA_
cluster	level	contains	the	highest	resolution.	Here,	we	will	use	the	subclass	level	to	match	the	
cell	types.	Marker	genes	used	for	visualization	were	chosen	based	on	Supplementary	Tables	
5 and 6 from the original paper [22].

Human Lung Cell Atlas. The	human	lung	cell	atlas	(HLCA)	is	a	carefully	constructed	reference	
atlas for the human respiratory system [2]. Sikkema et al. aligned 14 datasets, harmonized 
the	annotations,	and	built	a	cell-type	hierarchy	consisting	of	5	 levels.	When	matching	 the	
cell	 types,	we	 used	 the	 latent	 space	 generated	 in	 their	 original	 paper	 (downloaded	 from	
https://zenodo.org/record/6337966#.YqmGIidBx3g).	When	updating	the	hierarchy	with	the	
IPF data, we removed the cell types smaller than 10 cells. Marker genes were downloaded 
from the lung reference v2 from Azimuth [2,4].	Marker	genes	for	the	Meyer	cell	populations	
were	obtained	from	[26].	We	annotated	the	fibrosis-specific	cell	 types	 in	greater	detail	by	
sub	clustering	 the	cell	 types	of	 interest	 (macrophages,	epithelial	 cells,	myofibroblasts	and	
identifying	 the	 subtypes	 by	marker	 gene	 expression.	We	 identified	 transitioning/basaloid	
epithelial	cells	by	KRT5/KRT17	expression,	inflammatory	monocyte-derived	macrophages	by	
SPP1	expression,	and	myofibroblasts	by	the	expression	of	CTHRC1.

The	runtime	and	memory	usage	of	treeArches	on	the	different	datasets	can	be	found	in	Table	
S1.

4.2.4 Comparisons

FR-Match. We	ran	FR-Match	(v2.0.0)	with	default	settings	on	all	pairwise	combinations	of	the	
PBMC reference datasets [23,24]. Before running FR-Match marker genes have to be selected 
for	each	cell	type.	We	do	this	using	the	method	recommended	by	the	authors	of	FR-Match:	
NS-Forest [25].	We	ran	NS-Forest	(v3.0)	on	each	dataset	separately	using	the	default	settings.
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MetaNeighbor. We	 ran	MetaNeighbor	 (v1.13.0)	 using	 the	 default	 settings	 on	 all	 pairwise	
combinations	of	the	PBMC	datasets	[26].	MetaNeighbor	returns	an	AUROC	score	for	all	cell-
type	combinations.	As	 recommended	 in	 the	MetaNeighbor	vignette,	we	consider	 two	cell	
types	a	match	when	the	AUROC	is	higher	than	0.9.

Azimuth. We	 run	 Azimuth	 using	 Seurat	 v4.3.0	 [4] and	 follow	 the	 ‘integration_mapping’	
vignette.

4.3 Results 

4.3.1 treeArches accurately learns PBMC hierarchy

We	showcase	treeArches	with	a	simulation	where	we	build	a	cell-type	hierarchy	using	one	
bone marrow and three PBMC datasets [19–21,27]	(Table	S2).	We	consider	three	datasets	
as	the	reference	(Freytag,	Oetjen,	and	Sun),	and	one	as	the	query	(10X).	The	annotations	of	
these datasets have been manually harmonized by Luecken et al. [16], so we relabel some 
cells	to	enforce	the	datasets	to	be	annotated	at	different	resolutions	(Table	S3,	S4).	 In	the	
Oetjen	dataset,	for	instance,	we	relabel	all	the	CD4+	and	CD8+	T	cells	as	T	cells.	The	challenge	
here	 is	 to	correctly	match	cell	 types	present	 in	multiple	datasets	and	 to	 reconstruct	 their	
hierarchy.	Some	cell	types,	however,	are	dataset-specific	and	these	should	thus	be	added	as	
a	new	node	in	the	tree.	Here,	it	is	important	to	note	that	these	new	cell	types	are	not	forced	
to	be	aligned	with	other	existing	cell	types	during	the	integration	step	and	that	the	classifier	
used	by	scHPL	contains	a	good	rejection	option	during	the	matching	step.	This	harmonizing	
and	afterward	relabeling	of	the	cells	allows	us	to	manually	construct	a	ground	truth	hierarchy	
that	we	can	use	to	evaluate	treeArches	(Figure	S1).	

We	 remove	 the	 batch	 effects	 from	 the	 reference	 datasets	 using	 scVI	 [14] and match the 
cell	types	in	the	learned	latent	space	(see	Methods)	(Figure	1C-D,	S2).	Since	both	scArches	
and	scHPL	are	invariant	to	a	different	order	of	the	datasets,	treeArches	will	also	be	invariant	
[10,12].	For	scHPL,	however,	the	datasets	still	have	to	be	added	progressively,	which	we	will	
do	from	low	to	high	resolution	(Sun	-	Oetjen	-	Freytag).	The	constructed	tree	by	treeArches	
largely	matches	the	ground	truth:	seven	out	of	eight	Oetjen	cell	types	and	all	nine	Freytag	cell	
types	are	correctly	matched	to	the	Sun	cell	types	(e.g.	the	CD4+	T	cells	are	a	subpopulation	
of	the	T	cells	which	are	a	subpopulation	of	the	Group	1	-	Sun	cells).	The	six	cell	types	only	
found	in	one	dataset	are	all	added	as	new	cell	types	to	the	tree	(e.g.	the	CD10+	B	cells	and	
erythrocytes).	

However,	the	megakaryocyte	(MK)	progenitor	cells	from	the	Freytag	and	Sun	dataset	do	not	
match	the	cells	from	Oetjen.	The	Freytag	and	Sun	datasets	are	PBMC	datasets	and	the	Oetjen	
dataset	is	a	bone	marrow	dataset.	Looking	at	the	expression	of	marker	genes	and	the	location	
of the megakaryocyte progenitor cells in the UMAP embedding supports our claim that the 
cell	types	from	Sun	and	Freytag	should	not	match	Oetjen	in	the	hierarchy	(Figure	S3).	Based	
on	marker	gene	expression,	the	MK	progenitor	cells	in	the	Oetjen	dataset	should	be	relabeled	
as early erythrocytes and the MK progenitor cells in the Freytag and Sun dataset as platelets. 
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After	constructing	the	reference	tree	from	the	three	datasets,	we	align	the	query	dataset	to	
the latent space of the reference datasets using scArches and update the learned hierarchy 
with	the	new	cell	 types	 (Figure	1E-F).	For	 this	step,	only	 the	trained	model	and	reference	
latent	space	are	needed.	Again,	almost	all	cell	types	(10	out	of	12)	are	added	to	the	correct	
node in the tree, while the plasma cells and the MK progenitors are added to the tree as new 
cell	types.	These	cell	types	contain	21	and	18	cells,	respectively,	which	makes	them	difficult	
to match compared to the other cell types in the query dataset, which contain more than 
1000 cells on average. 

For some of the cell types, we would expect a perfect match, but the 10X cell type is 
a	 subpopulation	 instead	 (NKT	 cells,	 CD8+	 T	 cells,	MC-derived	DC,	 and	HSPCs).	We	 tested	
whether	 this	 is	 indeed	 a	 subpopulation	 and	 if	 there	 are	 interesting	 biological	 differences	
between	the	groups.	To	do	so,	we	used	the	classifier	trained	on	the	10X	dataset	and	split	the	
cells	 from	these	cell	 types	from	the	reference	 into	two	groups:	1)	correctly	classified,	and	
2)	rejected.	Next,	we	tested	whether	there	are	genes	differentially	expressed	between	the	
two	groups.	Here,	we	did	not	look	at	the	HSPCs,	since	only	6	cells	were	correctly	predicted.	
For	 the	NKT	cells	-Freytag,	NKT	cells	-Oetjen,	and	CD8+	T	cells	-Freytag,	 there	are	 (almost)	
no	genes	differentially	expressed	(adjusted	p-value	<	0.01,	log	foldchange	>	0.5)	(Table	S5).	
However,	in	the	monocyte-derived	dendritic	cells	-Oetjen,	there	are	85	genes	upregulated	in	
the rejected cells. According to Enrichr [28–30] 41 of these genes are related to the Cell Cycle 
R-HSA-1640170	Reactome	pathway	 (adjusted	p-value	=	3e-40)	 [31].	The	rejected	cells	are	
thus	probably	dividing	cells.	These	results	indicate	that	there	could	be	biological	differences	
between the two groups, but that this is not always the case. 

Since	there	are	many	dataset-specific	cell	 types	 in	the	PBMC	datasets,	 it	 is	 important	that	
the	 rejection	 option	works	 correctly	 to	 ensure	 that	 cell	 types	 such	 as	 erythrocytes	 from	
the	Oetjen	dataset	are	added	to	the	root	node.	In	treeArches,	there	are	different	rejection	
options:	1)	the	maximum	distance	to	the	training	data,	2)	the	reconstruction	error,	and	3)	the	
posterior	probability.	If	a	cell	 is	rejected	based	on	the	first	or	second	option,	this	indicates	
that	the	cell	potentially	belongs	to	a	new	cell	type.	In	the	third	case,	this	indicates	that	the	
cell’s gene expression is similar to two or more cell types and that we thus cannot label it 
with	enough	confidence.	Using	the	default	settings	for	these	parameters,	all	dataset-specific	
cell	 types	are	 indeed	correctly	rejected.	We	tested	three	options	 for	all	 thresholds	to	test	
the	effect	related	to	the	different	rejection	options.	This	results	in	minimal	differences	in	the	
constructed	hierarchies	(Figure	S4).	The	hierarchies	mainly	differ	 in	the	number	of	perfect	
matches.	Changing	the	rejection	option	causes	cell	 types	that	were	a	perfect	match	to	be	
subpopulations	 of	 one	 another.	 For	 example,	 when	 using	 the	 default	 settings	 the	 CD4+	
T	 cells	 from	 the	Oetjen	and	Freytag	dataset	 are	 a	perfect	match,	but	when	 changing	 the	
percentage	of	false	negatives	allowed	for	the	reconstruction	error	to	1%,	CD4+	T	cells	-10X	
is	a	 subpopulation	of	 the	CD4+	T	cells	-Freytag.	 In	 two	cases,	however,	 treeArches	cannot	
resolve where the NKT cells from the 10X dataset should be added to the hierarchy and 
this cell type is thus missing. In three cases, the megakaryocyte progenitor cells from the 
Oetjen	dataset	form	a	match	with	the	HSPCs	from	the	10X	dataset.	When	removing	all	three	
rejection	options,	however,	the	tree	looks	completely	different	(Figure	S4).	Cell	types	that	are	
dataset-specific	are	not	added	to	the	root	node	but	match	another	population.	For	instance,	
the	erythrocytes	now	are	a	subpopulation	of	the	Group	1	cells	(a	combination	of	T	cells,	NK	
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cells,	NKT	cells,	and	B	cells)	from	the	Sun	dataset.	This	shows	the	importance	of	the	rejection	
options	within	treeArches.	

Since	there	is	no	method	with	exactly	the	same	functionality	as	treeArches,	we	benchmark	
parts of the algorithm separately. First, we compare our constructed hierarchy for 
the reference data to the output of two cell-type matching algorithms: FR-Match and 
MetaNeighbor [23,24,26]. It is important to note that these methods were developed 
for	 pairwise	 comparisons	 and	 do	 not	 construct	 a	 hierarchy.	We	 ran	 both	methods	 on	 all	
combinations	of	the	reference	datasets	and	visualized	their	matches	in	a	graph	(Figure	S5).	
To allow comparisons, we transform the learned hierarchy by treeArches to a graph by adding 
edges	 between	 a	 parent	 and	 all	 descendants	 (Figure	 S5).	When	 comparing	 the	 resulting	
graphs to the ground-truth graph constructed based on the relabeled cell types, treeArches 
outperforms	FR-Match	and	MetaNeighbor	(Table	S6).	Using	treeArches,	only	two	edges	are	
missing and no wrong edges were introduced while using FR-Match and MetaNeighbor there 
are	respectively	11	and	8	wrong	edges,	and	7	and	11	missing	edges.

Next,	 we	 compare	 the	 cell	 type	 classification	 performance	 of	 treeArches	 to	 Azimuth	 [4].	
Azimuth	 allows	 label	 transfer	 by	 projecting	 a	 query	 dataset	 onto	 a	 reference	 atlas	 but	
assumes that the labels of the reference are already harmonized. Therefore, we compare the 
performance	in	two	ways:	1)	using	the	datasets	annotated	at	a	different	resolution,	and	2)	
using	the	datasets	with	the	manually	harmonized	labels.	We	use	the	Sun,	Oetjen,	and	Freytag	
datasets	as	a	reference	and	the	10X	dataset	as	the	query.	In	the	first	comparison,	treeArches	
outperforms	 Azimuth	 (Figure	 S6),	 but	 during	 the	 second	 comparison,	 Azimuth	 performs	
better	(Figure	S7).	During	the	second	comparison,	treeArches	uses	a	flat	classifier	instead	of	
the	hierarchical	classifier,	which	might	explain	why	treeArches’	performance	decreases.	Both	
Azimuth	and	treeArches	rely	on	a	nearest	neighbor	classifier.	Therefore,	it’s	most	likely	that	
Azimuth	outperforms	treeArches	because	of	better	data	integration.	For	the	data	integration,	
however, Azimuth needs both the reference and query data, while treeArches only uses the 
trained	model	 and	 the	query	data.	Purely	 looking	at	 cell	 type	 classification,	Azimuth	 thus	
outperforms	treeArches	on	this	dataset	but	treeArches	offers	a	broader	functionality.	Here,	
we	also	compare	the	performance	of	treeArches	using	the	kNN	(default)	and	a	linear	SVM	
which	is	the	best-performing	method	according	to	our	classification	benchmark	[32].	Since	
the latent space is not linearly separable anymore, the kNN outperforms the linear SVM 
(Figure	S7).	This	motivates	the	use	of	a	kNN	classifier	within	treeArches.

4.3.2 Increasing the resolution of the human lung cell atlas using 
treeArches

The	human	 lung	cell	atlas	 (HLCA)	 is	a	carefully	constructed	reference	atlas	 for	 the	human	
respiratory system [2]. Sikkema et al. integrated 14 datasets, re-annotated the cells and 
constructed	a	 cell-type	hierarchy	 consisting	of	5	 levels	 (Figure	2A,	 S8).	 Furthermore,	 they	
used	scArches	to	project	multiple	datasets	to	this	reference	atlas.	Since	the	cell-type	hierarchy	
for	 the	 reference	 is	 well-defined,	 we	 can	 omit	 the	 reference-building	 step	 and	 leverage	
treeArches	to	update	the	reference	hierarchy	using	one	of	the	labeled	query	datasets	(Meyer)	
[33].	Using	scHPL,	we	matched	the	cell	types	of	the	Meyer	dataset	to	the	cell	types	from	the	
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Figure 2. Updated hierarchy when adding Meyer to the reference atlas. A) The cell-type hierarchy corresponding 
to	the	reference	atlas	(only	the	first	two	levels	are	shown).	Each	node	represents	a	cell	type	in	the	reference	atlas	
instead of a cell type in a separate dataset of the reference atlas. The UMAP embedding shows the aligned reference 
and	query	dataset.	The	cells	in	the	reference	dataset	are	colored	according	to	their	level	2	annotation.	B, C) Updated 
hierarchy	zoomed	in	on	the	blood	vessels	and	airway	epithelium	secretory	cells	respectively.	The	UMAP	embeddings	
are	 colored	 according	 to	 their	 finest	 resolution. D) Expression of marker genes for club and goblet cells in the 
reference and query cell types. E) Comparison	of	the	predictions	using	the	original	and	updated	reference	on	the	
T-cells of the Tata dataset. F) Expression	of	marker	genes	for	CD8	+	GZMK	+	cells.
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reference	(Figure	S9).	In	the	updated	hierarchy,	many	cell	types	from	the	query	dataset	match	
a cell type from the reference as expected based on the cell-type names. Neuroendocrine-
Meyer, for instance, is a perfect match to the neuroendocrine cells from the reference. Since 
no ground truth cell-type matches between the reference datasets and Meyer is known, we 
cannot	assess	this	quantitatively.	For	some	parts	of	the	hierarchy,	we	can	even	increase	the	
resolution.	If	we	zoom	in	on	the	blood	vessel	branch	in	the	tree,	for	instance,	the	pulmonary	
and systemic endothelial vascular arterial cell types from the query both match endothelial 
cells	arterial	(EC	arterial)	from	the	reference	(Figure	2B).

For some parts of the tree, e.g. the airway epithelium secretory cells, the matches are not 
what	we	would	 expect	 based	 on	 the	 names	 (Figure	 2C).	 The	 secretory	 goblet	 cells	 from	
the query dataset match not only the goblet but also the club cells from the reference and 
the	secretory	club	cells	match	the	transitional	club-alveolar	type	2	(AT2)	cells.	Transitional	
club-AT2 cells were only recently discovered, which could explain why they are missing 
from	the	original	Meyer	annotations	[34–36]. Based on the expression of marker genes, we 
can	conclude	that	the	match	between	the	transitional	club-AT2	and	secretory	club	cells	 is	
a	 correct	match	 (Figure	 2D).	 The	 expression	of	 the	marker	 genes	 in	 the	 other	 cell	 types,	
however, is ambiguous and it is hard to determine what is the correct match. Furthermore, in 
the	HLCA	paper,	label	transfer	for	these	cell	types	from	the	reference	atlas	to	the	Meyer	data	
did not match well with the original labels either [2].

Furthermore, we see sixteen cell types from the query added to the root node of the tree as a 
new	cell	type	(Figure	S9).	Of	these	cell	types,	most	of	them,	e.g.	chondrocytes,	erythrocytes,	
Schwann cells, and B plasmablasts, are indeed not in the reference atlas. For some, such as 
some	macrophage	subtypes	that	are	seen	as	new,	it	is	more	difficult	to	determine	whether	
they are new or whether they should match one of the macrophage subtypes in the tree. 
The	‘Macro	CHIT1’	cells	from	the	Meyer	dataset,	for	instance,	form	a	relatively	big	cell	type	
of	1570	cells	and	are	still	seen	as	new.	We	visualized	the	expression	of	CHIT1, the gene this 
cell	type	was	named	after,	and	the	marker	genes	that	were	used	to	annotate	the	cells	in	the	
reference	data	(Figure	S10).	This	shows	that	the	Macro	CHIT1	cell	type	is	the	only	cell	type	
that expresses CHIT1. Furthermore,	the	marker	gene	profile	of	the	other	cell	types	does	not	
correspond	to	the	profile	of	the	Macro	CHIT1	cells,	which	indicates	that	this	cell	type	was	
indeed rejected correctly.

However,	 twelve	out	of	77	 cell	 types	are	missing	 from	 the	 tree,	which	means	 that	 it	was	
impossible to match these Meyer cell types with a cell type from the reference. Due to many-
to-many	matches	between	the	reference	and	query	cell	types,	it	is	sometimes	unclear	where	
a cell type should be added to the tree. Especially, when the boundary between cell types is 
diffuse,	it	can	be	quite	arbitrary	where	to	put	the	threshold.	If	this	threshold	is	different	in	
each dataset or if cells are wrongly annotated in general, this can cause impossible matching 
scenarios.	Here,	we	notice	that	this	mainly	happens	with	some	immune	and	stromal	subtypes.	
The B cells and plasma cells from the reference and Meyer dataset, for instance, could not 
be	matched	automatically,	which	 is	 caused	by	 the	plasma	cells	 in	 the	Meyer	dataset	 that	
are	partially	misannotated	(Figure	S11).	Cell	types	that	are	missing	from	the	hierarchy	thus	
usually indicate that these cells are wrongly annotated in at least one of the datasets. This 
information	could	thus	still	be	used	to	improve	the	annotations.	Either	by	using	label	transfer	
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for	these	cells	using	trained	hierarchy	or	manually	by	visualizing	specific	marker	genes	in	both	
datasets.

Next,	we	annotate	a	second	healthy	query	dataset	(Tata)	[35] using the original and updated 
reference to show that cells in this new query dataset will indeed be mapped to the new 
Meyer	 cell	 types	 we	 added	 to	 the	 hierarchy.	 The	 majority	 of	 the	 predictions	 remained	
unchanged	(72.1%,	Figure	S12).	When	the	predictions	differ,	cells	are	often	annotated	as	a	
Meyer	cell	type	which	is	a	subpopulation	of	the	original	annotation	(18.4%).	A	clear	example	
is	 the	T	cells:	 cells	previously	annotated	as	CD4+	or	CD8+	T	cells	are	now	annotated	as	a	
subpopulation	(Figure	2E).	These	new	annotations	are	supported	by	the	expression	of	marker	
genes	(Figure	2F,	S13).	

4.3.3 treeArches identifies unseen disease-associated cell types 
in the query data

Next, we show how we can use treeArches to detect previously unseen cell types in idiopathic 
pulmonary	fibrosis	(IPF)	samples	[37].	This	dataset	was	mapped	on	the	HLCA	with	scArches	
(Figure	3A-C).	Ideally,	we	would	use	scHPL	to	update	the	hierarchy	with	the	cell	types	from	
this	query	dataset.	A	downside	of	the	original	annotations,	however,	 is	that	the	resolution	
is very low. Cells are, for instance, only annotated as endothelial cells. Therefore, we used 
scHPL	 to	predict	 the	 labels	of	 the	 IPF	data	and	compare	 those	predictions	 to	 the	original	
annotations	(Figure	3D).	In	the	predictions,	we	see	some	interesting	differences	between	the	
IPF and healthy cells. 

For the IPF cells, many macrophages and epithelial cells are rejected, while almost none 
for	 the	 healthy	 cells.	 Furthermore,	most	 healthy	 Col1+	 cells	 are	 predicted	 to	 be	 alveolar	
fibroblasts,	while	 the	 diseased	Col1+	 are	mainly	 SM-activated	 stress	 response	 cells.	 In	 all	
datasets,	however,	we	notice	confusion	between	 the	B	cells	and	dendritic	cells.	Based	on	
marker	gene	expression,	the	cells	originally	annotated	as	B	cells	and	dendritic	cells	are	more	
likely	to	be	plasma	cells	and	B	cells	respectively	(Figure	S14).	The	cells	originally	annotated	
as	dendritic	cells	also	overlap	in	the	UMAP	with	the	lymphoid	lineage	mainly	instead	of	the	
myeloid	lineage	(Figure	3A-B).	

Next,	we	annotated	the	cells	at	a	higher	resolution	(see	Methods)	and	used	these	annotations	
to	update	the	hierarchy	(Figure	S15).	In	the	updated	hierarchy,	the	healthy	and	IPF	transitioning	
epithelial cells are not present in the reference atlas and are now correctly added as a new 
cell	type.	As	expected,	we	also	see	some	differences	in	how	the	healthy	and	IPF	cell	types	
were	added	to	the	tree.	 IPF	alveolar	macrophage	proliferating	cells,	 for	 instance,	are	seen	
as new, while the healthy cells match with the same cell type in the hierarchy. For other IPF 
macrophage cell types, however, this is not the case even though many cells were rejected 
previously.	Comparing	the	new	annotations	with	the	previously	obtained	predictions	and	the	
matches	in	the	hierarchy,	we	notice	that	there	are	still	many	macrophages	rejected	(Figure	
3E).	 For	most	 IPF	 cell	 types,	 however,	 only	 a	 subset	of	 the	 cells	 is	 rejected.	 For	 instance,	
for	 the	 IPF	 monocyte-derived	 macrophages	 (Md-M),	 486	 cells	 are	 rejected	 and	 750	 are	
predicted	to	be	Md-M.	Therefore,	the	two	cell	types	are	still	matched.	Comparing	the	two	

Thesis_LM_final.indd   106Thesis_LM_final.indd   106 24-04-2024   18:54:2724-04-2024   18:54:27



107

treeArches

44

Figure 3. Identifying diseased cells in IPF data. A–C) UMAPs	show	the	HLCA	and	IPF	datasets	after	alignment.	The	
cells	are	colored	according	to	their	cell	type	or	condition. D) Heatmap	showing	the	predicted	labels	by	scHPL	and	
original labels. The dark boundaries indicate the hierarchy of the reference tree. E) Sankey diagram showing the new 
annotations	and	predictions	for	the	macrophages	for	the	IPF	condition.	F) Expression of SPP1	in	the	different	cell	
types of the reference and query datasets.
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IPF	 ‘subtypes’	 of	Md-M,	 the	 top	differentially	 expressed	gene	 is	SPP1 (adjusted	p-value	=	
9.9e-20).	Monocytes	and	macrophages	expressing	SPP1 are known to be a hallmark of IPF 
pathogenesis [38,39]. The rejected Md-M cells are the only group of cells expressing SPP1 
(Figure	 3F).	 For	 the	 alveolar	 and	 interstitial	macrophages,	 there	 are	 214/493	 and	19/276	
cells	rejected	respectively.	In	these	rejected	populations,	SPP1 is also upregulated, but only 
in	 the	alveolar	macrophages,	 it	 is	also	differentially	expressed	 (adjusted	p-value	=	0.0011)	
(Figure	S16).	This	could	indicate	that	these	rejected	cells	are	also	a	diseased	subpopulation.	
By combining the confusion matrices with the created hierarchy, these diseased subtypes are 
easily	found,	either	directly	as	the	proliferating	cells,	or	by	looking	at	the	rejected	cells	of	a	
matched cluster.

4.3.4 treeArches can correctly map cell types across species 

Next,	we	show	how	treeArches	can	be	applied	to	map	the	relationship	between	cell	types	of	
different	species.	We	construct	a	cell-type	hierarchy	for	the	motor	cortex	of	the	brain	using	
human,	mouse,	 and	marmoset	data	 (Table	 S7)	 [22].	We	 integrate	 the	 reference	datasets,	
mouse	and	marmoset,	using	scVI	and	construct	the	cell-type	hierarchy	using	scHPL	(Figure	
4A-B,	 S17).	Here,	we	 focus	 on	 the	GABAergic	 neurons	 to	make	 the	 results	 less	 cluttered.	
Almost	all	cell	types	(5	out	of	7)	are	a	perfect	match,	except	for	‘Meis2’	and	‘Sncg’.	 In	the	
latent space, the Meis2 cell types from mouse and marmoset also show no overlap, and both 
cell	types	were	defined	using	different	marker	genes	(Figure	S18A-B).	Furthermore,	Bakken	
et	al.	didn’t	find	a	match	between	these	two	either	[22].	This	could	indicate	that	the	Meis2	
cells	are	 species-specific	and	should	 indeed	not	match	one	another.	 It	 is	unclear	why	 the	
Sncg	cell	types	(559	and	960	cells	in	mouse	and	marmoset	respectively)	do	not	match.	Even	
though the cell types are aligned in the UMAP embedding as expected and the marker genes 
correspond	quite	well,	the	cells	are	rejected	based	on	distance	(Figure	S18C-D).	This	means	
that	the	cells	are	still	too	separated	in	the	latent	space.	Next,	we	align	the	human	dataset	
to the reference using architectural surgery and add the human cell type to the reference 
hierarchy	 (Figure	4B-C).	Here,	 the	 constructed	hierarchy	 looks	 like	what	we	would	expect	
based on the names of the cell types. 

All	previous	results	were	obtained	using	the	default	parameters	(number	of	neighbors	=	50,	
dynamic	number	of	neighbors	=	True,	see	Methods),	which	turned	out	to	be	relatively	robust	
(Figure	S19).	The	main	difference	is	whether	a	match	is	found	between	the	Sncg	cell	types.	
When	increasing	the	number	of	neighbors,	this	match	is	correctly	found.

4.4 Discussion
In this study, we present treeArches, a method to create and extend a reference atlas and 
the corresponding cell type hierarchy. treeArches builds on scArches, which allows users to 
easily map new query datasets to the latent space learned from the reference datasets using 
architectural surgery. Architectural surgery has the advantage that the reference datasets 
are not needed anymore for the mapping and that the latent space corresponding to the 
reference	datasets	does	not	change.	This	last	point	is	especially	important	for	scHPL,	which	
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then	allows	users	 to	match	 the	cell	 types	of	multiple	 labeled	datasets	 to	build	a	cell-type	
hierarchy. If the latent space of all datasets would be altered when a new dataset is added, 
we	would	have	to	restart	the	construction	of	the	tree	completely.	

We	 have	 shown	 three	 different	 situations	 where	 treeArches	 can	 be	 applied:	 building	 a	
reference	atlas	from	scratch,	extending	an	existing	reference	atlas	to	add	new	cell	types	or	
increase	the	resolution,	or	using	an	existing	reference	atlas	to	label	cells	 in	a	new	dataset.	
By	using	the	HLCA	data,	we	show	an	example	of	how	treeArches	can	be	used	to	extend	a	
hierarchy	or	to	label	cells	in	a	new	dataset.	The	HLCA	reference	atlas	consists	of	16	datasets	
with	a	well-defined	cell-type	hierarchy.	We	show	that	treeArches	can	be	used	to	extend	this	
hierarchy.	For	instance,	by	increasing	the	resolution	of	some	branches	of	the	tree,	but	also	by	
adding	new	cell	types.	We	could	also	detect	diseased	cell	types	in	the	IPF	datasets.

Whether	building	or	extending	a	reference	atlas	or	labeling	new	cells,	it	is	essential	that	we	
can	detect	new	cell	types,	such	as	disease-specific	cell	types.	To	do	so,	it	is	important	that	
during	 the	mapping,	 the	cell	 types	are	not	 forced	 to	align;	 the	biological	 variation	should	
be	preserved.	 Furthermore,	 during	 the	 classification,	 there	 should	be	 a	 correctly	working	
rejection	option	(i.e.	cells	are	recognized	to	belong	to	a	new	unseen	class).	Here,	we	showed	
that this indeed works in all tested scenarios. A disadvantage of our current approach is that 
new cell types are usually added to the root node directly instead of to an intermediate node 
in	the	hierarchy.	However,	this	is	still	informative	for	potential	users.	It	indicates	that	a	certain	
cell	type	is	different	from	the	known	cell	types	in	the	tree,	and	by	using	prior	knowledge	or	
visualizing	potential	marker	genes	such	cell	 types	could	manually	be	placed	at	a	different,	
more	specific	place	in	the	hierarchy.

Due	to	the	extended	rejection	options,	however,	it	is	difficult	to	match	small	cell	types	(less	
than	50	cells).	We	modified	the	kNN	classifier	from	scHPL	such	that	the	number	of	neighbors	

Figure 4. Results motor cortex across species. A) UMAP embedding of the integrated reference datasets. B) Learned 
hierarchy	when	combining	mouse	and	marmoset	(step	1)	and	after	adding	human	(step	2).	The	color	of	each	node	
represents	the	dataset(s)	from	which	the	cell	type	originates. C) UMAP	embedding	after	architectural	surgery	with	
the human dataset.
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automatically	decreases	when	there	is	a	small	cell	type	in	the	training	data,	but	apparently,	
this	is	not	sufficient	in	all	cases.	The	number	of	neighbors	is	a	trade-off	between	the	ability	to	
learn	a	representation	for	small	cell	types	and	the	generalizability	of	the	big	cell	types.	

treeArches	relies	on	the	original	annotations	to	extend	the	cell-type	hierarchy.	This	can	be	a	
problem	in	two	different	situations.	If	the	annotations	are	missing	or	at	a	too	low	resolution,	
it	 is	 impossible	to	extend	the	atlas.	This	was	the	case	with	the	original	annotations	of	the	
IPF	dataset.	Alternatively,	annotations	can	have	a	high	resolution,	but	 (partially)	 incorrect.	
Especially when there is no clear boundary between cell types, experts might disagree on 
where	to	put	the	boundary	(the	threshold	for	the	classifier).	Inconsistencies	like	this	might	
result	in	a	hierarchy	that	looks	erroneous	at	first	sight.	In	those	cases,	however,	treeArches	can	
still	be	more	useful	than	expected.	A	cell-type	hierarchy	that	looks	different	than	expected,	
is	usually	a	sign	that	the	original	annotations	are	inconsistent	(e.g.	different	thresholds	are	
used	in	different	datasets).	Certain	parts	of	the	dataset,	e.g.	the	cell	types	that	could	not	be	
added to the tree or caused confusion, can then be reannotated. Furthermore, the tree can 
still	be	adapted	afterwards.	Examples	of	this	are	the	goblet	and	club	cells	in	the	HLCA	and	
the megakaryocyte progenitor cells in the PBMC datasets. The learned hierarchy is a good 
starting	point.	Based	on	marker	gene	expression	or	expert	knowledge,	cell	types	can	also	be	
added	to	the	tree,	removed	from	the	tree,	or	rewired.	After	manually	adapting	the	tree,	the	
classifiers	have	to	be	retrained	though.

Our	 proposed	 method	 builds	 upon	 existing	 data	 integration	 methods.	 Thus,	 it	 naturally	
inherits	both	advantages	and	disadvantages	 linked	to	these	existing	models.	As	previously	
reported [12], the choice of the reference building algorithm and reference atlas itself can 
influence	the	quality	of	reference	mapping.	Therefore,	in	scenarios	where	the	query	dataset	
is	strikingly	different	from	the	reference,	the	integrated	query	will	still	contain	batch	effects	
leading	 to	 inaccurate	 estimation	 of	 hierarchies	 in	 treeArches.	 This	 erroneous	 modeling	
results	in	weak	label	transfer	results	and	thus	identifies	many	overlapping	cell	types	between	
query	and	reference	as	a	new	cell	type	only	present	in	the	query.	We	advise	users	to	choose	
a comprehensive reference atlas and extensively benchmark and screen various data 
integration	methods	for	an	optimal	reference	representation	[16]. 

In	summary,	we	present	treeArches,	a	method	that	can	be	used	to	combine	multiple	labeled	
datasets to create or extend a reference atlas and the corresponding cell-type hierarchy. 
This way we provide users with an easy-to-use pipeline to map new datasets to a current 
reference	atlas,	match	cell	types	across	multiple	labeled	datasets,	and	consistently	label	cells	
in	new	datasets.	With	the	increasing	availability	of	reference	atlases,	we	envision	treeArches	
facilitating	 the	 usage	 of	 reference	 atlases	 allowing	 users	 to	 automatically	 analyze	 their	
datasets	from	label	transfer	to	the	automatic	identification	of	novel	cell	states	in	the	query	
data. In conclusion, treeArches will enable a data-driven path towards consensus-based cell 
type	annotation	of	(human)	tissues	and	will	significantly	speed	up	the	building	and	annotation	
of atlases.
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4.5 Code and data availability
treeArches	is	part	of	the	scArches	repository	(https://github.com/theislab/scarches).	The	code	
for	 scHPL	as	 a	 standalone	package	 can	be	 found	here:	https://github.com/lcmmichielsen/
scHPL.	 All	 code	 to	 reproduce	 the	 results	 and	 figures	 can	 be	 found	 at	 the	 reproducibility	
GitHub:	 https://github.com/lcmmichielsen/treeArches-reproducibility. PBMC count data: 
https://drive.google.com/uc?id=1Vh6RpYkusbGIZQC8GMFe3OKVDk5PWEpC. Brain count 
data: https://doi.org/10.5281/zenodo.6786357.	 PBMC	 +	 brain	 latent	 space:	 https://doi.
org/10.5281/zenodo.6786357.	 HLCA	 latent	 space:	 https://zenodo.org/record/6337966#.
YqmGIidBx3g
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Knowing	the	relation	between	cell	types	is	crucial	for	translating	experimental	results	from	
mice to humans. Establishing cell type matches, however, is hindered by the biological 
differences	 between	 the	 species.	 A	 substantial	 amount	 of	 evolutionary	 information	
between genes that could be used to align the species is discarded by most of the current 
methods since they only use one-to-one orthologous genes. Some methods try to retain the 
information	by	explicitly	including	the	relation	between	genes,	however,	not	without	caveats. 
In this work, we present a model to Transfer and Align Cell Types in Cross-Species analysis 
(TACTiCS).	 First,	 TACTiCS	 uses	 a	 natural	 language	 processing	model	 to	match	 genes	 using	
their protein sequences. Next, TACTiCS employs a neural network to classify cell types 
within	 a	 species.	 Afterwards,	 TACTiCS	 uses	 transfer	 learning	 to	 propagate	 cell	 type	 labels	
between	 species.	We	applied	TACTiCS	on	 scRNA-seq	data	of	 the	primary	motor	 cortex	of	
human,	mouse	and	marmoset.	Our	model	can	accurately	match	and	align	cell	types	on	these	
datasets. Moreover, our model outperforms Seurat and the state-of-the-art method SAMap. 
Finally,	we	show	that	our	gene	matching	method	 results	 in	better	cell	 type	matches	 than	
BLAST in our model. TACTiCS is available at https://github.com/kbiharie/TACTiCS.

5.1 Introduction
Model	 organisms,	 such	 as	 mouse	 and	 marmoset,	 are	 often	 used	 in	 brain	 research	 as	 a	
substitute	 for	 humans.	 However,	 because	 of	 differences	 between	 species,	 experiments	
performed on model organisms do not directly translate to humans. For example, widely-
used	 antidepressants	 that	 target	 serotonin	 receptors	 are	 often	 tested	on	mice,	while	 the	
expression	pattern	of	serotonin	receptors	 is	highly	divergent	between	human	and	mouse,	
likely	leading	to	differences	in	cell	function	between	species	[1]. Consequently, to facilitate 
translational	 research,	 it	 is	 important	 to	 better	 characterize	 cell	 type	 matches	 between	
species.	This	facilitates	studying	how	drugs	then	alter	biological	processes	within	specific	cell	
types between these species.

Traditionally,	cell	types	were	characterized	solely	based	on	morphology,	but	using	single-cell	
RNA	sequencing	(scRNA-seq),	the	expression	pattern	across	thousands	of	genes	can	now	be	
used	to	describe	a	cell	type.	This	has	resulted	in	the	identification	of	an	increasing	number	
of	cell	 types	within	specific	brain	 regions	 [2,3]. Although this improves our understanding 
of biological processes in the brain, when comparing species, it introduces the need for a 
method that can match these new cell types accurately between species.

Unfortunately,	 this	 is	 not	 a	 trivial	 task	 as	 genes	 are	 modified,	 duplicated	 and	 deleted	
throughout	 evolution,	 resulting	 in	 complicated	 many-to-many	 gene-gene	 relationships	
between	 species.	 These	 relationships	 become	even	more	 complicated	when	evolutionary	
distances increase.

Current methods that match cell types across species based on scRNA-seq data can be divided 
into	two	groups,	mainly	based	on	how	they	solve	the	gene-matching	problem.	The	first	group	
only uses the one-to-one orthologous genes, which are genes with exactly one match in the 
other	species	based	on	sequence	similarity	(e.g.	using	BLAST	[4]).	Methods	such	as	scANVI	
[5], MetaNeighbour [6], and LAMbDA [7]	belong	to	this	group.	While	this	is	a	straightforward	
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approach,	 it	 ignores	 genes	 with	 a	 more	 complex	 evolutionary	 history	 which	 might	 have	
caused	divergent	functional	specification	of	cell	types	between	species.	The	second	group	
of methods, including SAMap [8], CAME [9], Kmermaid [10], and C3 [11], overcomes this 
limitation	by	considering	many-to-many	relationships	between	the	genes	based	on	sequence	
similarity.	All	 these	methods	 rely	on	 the	classical	assumption	that	sequence	similarity	 is	a	
good	measure	of	how	genes	functionally	relate	to	each	other.	However,	sequence	similarity	
often	considers	one	nucleotide/amino	acid	at	a	time,	which	to	a	large	extent	ignores	sequence	
contexts	important	for	functional	characterization	(e.g.	secondary	structures	and	sequence	
motifs).	A	growing	body	of	evidence	suggests	that	language	models	are	a	powerful	approach	
to	capture	functional	similarities	between	genes	[12–15]. Similarly, we hypothesize that using 
language	models	to	match	genes	between	species	can	be	beneficial	for	cell	type	matching.

Once	we	identified	matching	relationships	between	genes	across	species,	the	next	step	is	to	
characterize	cell	type	matches.	We	and	others	have	posed	cell	type	matching	as	a	classification	
task	where	the	agreement	of	predictions	from	two	classifiers,	trained	on	two	labeled	scRNA-
seq datasets, is used to match cell types between the datasets [7,16,17].	Biological	differences	
between	species,	however,	hinder	applying	such	a	method	directly.	A	solution	could	be	to	
learn	a	common	embedding	space	for	the	cells	before	training	the	classifiers.

Here	 we	 introduce	 a	 method	 to	 Transfer	 and	 Align	 Cell	 Types	 in	 Cross-Species	 analysis	
(TACTiCS)	that	incorporates	the	two	claims	that	we	make:	1)	using	language	models	to	match	
genes	functionally	between	species,	and	2)	training	classifiers	in	a	shared	embedding	space	
to	transfer	cell	types	from	one	species	to	the	other.	We	show	that	TACTiCS	correctly	matches	
human,	mouse	and	marmoset	brain	cell	populations	from	the	primary	motor	(M1)	cortex	at	a	
detailed	cell	type	level,	and	does	so	better	than	SAMap,	the	current	state-of-the-art	method.

5.2 Methods
TACTiCS	 takes	 as	 input	 two	 single-cell	 (sc)	 or	 single-nucleus	 (sn)	 RNA-seq	 datasets,	 with	
raw	expression	counts,	from	two	species	A	and	B.	TACTiCS	consists	of	four	steps	(Figure	1):	
1)	matching	genes	based	on	the	protein	sequences,	2)	creating	a	shared	feature	space	by	
mapping	 expression	 values	with	 the	 gene	matches	obtained	 in	 step	1,	 3)	 training	within-
species	cell	type	classifiers,	and	4)	matching	cell	types	by	swapping	the	classifiers.

5.2.1 Matching genes

First, we created an embedding for every gene using ProtBERT, a transformer-based language 
model [15]. The protein sequences were retrieved from UniProt [18]. For human and mouse, 
we selected only the Swiss-prot sequences, but for marmoset we selected all protein 
sequences.	We	input	the	protein	sequences	to	ProtBERT	to	create	an	embedding	for	each	
protein	(Figure	1A).	ProtBERT	generates	a	1024-dimensional	embedding	for	every	amino	acid	
in the protein sequence. To allow TACTiCS to work with variable-length proteins, we followed 
common	practice	 [14]	 and	 took	 the	mean	embedding	over	 all	 positions	 to	 represent	 the	
whole	protein	sequence	(as	well	as	the	corresponding	gene).	Protein	sequences	longer	than	
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2500	 amino-acids	 (<2%	of	 all	 sequences)	were	 truncated	 to	 the	 first	 2500	 to	 fit	 into	 the	
memory	of	the	GPU.

Next, for every pair of genes from species A and species B, we calculated the cosine distance 
between	the	ProtBERT	embeddings.	The	initial	set	of	gene	matches	were	pairs	with	a	cosine	
distance	≤	0.005.	To	ensure	that	a	gene	is	not	connected	to	too	many	genes,	we	kept	only	the	
five	closest	genes,	that	met	the	distance	threshold,	for	every	gene.

Finally,	we	filtered	the	informative	gene	matches.	Hereto,	we	calculated	the	top	2000	highly	
variable genes per species using Scanpy highly_variable_genes, and kept only those 
gene matches where at least one of the two genes is within the set of highly variable genes 
in	their	respective	species	[19]. From these matches, we constructed two sets of genes GA 
and GB, corresponding to species A and B	respectively,	consisting	of	genes	with	a	match	in	
the other species.

Figure 1. Schematic overview of TACTiCS. We	use	human	and	mouse	as	example,	but	 cell	 types	 from	any	 two	
species can be matched. A) Matching genes on protein sequences using ProtBERT. B) Bipartite	 graph	 of	 gene	
matches.	Gene	expression	is	imputed	by	taking	the	weighted	average	from	connected	genes	in	the	bipartite	graph. 
C) Creating	cell	embeddings	using	 linear	 layers	on	the	shared	feature	space.	The	weights	of	the	 linear	 layers	are	
shared. D) Classifying	within-species	cells	during	training.	The	classifier	consists	of	a	linear	layer	outputting	the	cell	
type	probabilities	followed	by	a	softmax. E) Classifying	cross-species	cells	using	transfer	learning.	The	predictions	are	
used to match cell types.
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To obtain sequence similarity-based gene matches, we used BLAST instead of ProtBERT. To 
obtain the many-to-many BLAST matches we selected matches with an E-value < 1e-6 as 
the	initial	set	of	matches.	We	used	the	bitscore	as	the	distance	metric.	Since	BLAST	is	not	
symmetrical,	one	gene	match	is	assigned	a	separate	E-value	and	bitscore	for	each	direction.	
If	only	one	direction	meets	the	E-value	threshold,	we	use	the	corresponding	bitscore	as	the	
gene	distance.	If	both	directions	meet	the	threshold,	we	use	the	average	of	the	two	bitscores.	
The	list	of	matches	is	then	filtered	similarly	as	before	with	the	closest-five	and	highly	varying	
gene	filtering.	Additionally,	we	obtained	one-to-one	BLAST	matches	by	starting	with	the	same	
set of matches using the E-value threshold. For every gene we kept only the best match, i.e. 
the	gene	with	the	highest	bitscore.	We	discarded	gene	matches	that	were	not	reciprocal	and	
finally	also	applied	the	highly	varying	gene	filtering	to	obtain	the	one-to-one	matches.

5.2.2 Creating a shared feature space by mapping expression 
values with the gene matches

We	normalized	the	expression	levels	of	genes	as	follows:	1)	the	raw	expression	counts	of	each	
dataset are normalized by the number of reads per cell such that the total number of counts 
in	every	cell	is	10,000,	and	2)	the	natural	logarithm	of	the	normalized	counts	are	taken:
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where xij is the expression of gene j in cell i. Finally,	a	Z-score	per	gene	is	calculated	to	form	
the normalized expression matrices XA and XB for genes GA and GB,	respectively.	We	created	
a shared feature space for the two datasets spanningG GA B∪ (Figure	1B).	The	shared	feature	
space is partly equal to the expression matrices XA and XB and partly imputed:
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where Xiu
A is the normalized expression of cell i from species A for gene u in the shared 

feature space. The expression of within species genes does not change. For a cross-species 
gene, we imputed the expression by taking the weighted average of the expression of the 
within-species genes it is matched to. The weight between gene u and gene v is calculated as:
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where similarity calculates the cosine distance between the ProtBERT embeddings. The 
weights	are	scaled	to	the	interval	[0,	1]	by	dividing	with	the	distance	threshold.	When	BLAST	
is	used	 instead,	we	used	the	(average)	bitscore	between	the	two	genes	directly,	since	the	
bitscore does not have to be inversed. The edge weight is set to 0 for gene pairs that do not 
match	according	to	the	threshold	and	filtering	criteria.	The	resulting	matrices X A and X B

both span the same set of genes, and can thus be compared directly.

Thesis_LM_final.indd   119Thesis_LM_final.indd   119 24-04-2024   18:54:3724-04-2024   18:54:37



CHAPTER 5

120

5.2.3 Cell embeddings

The shared feature space is put through two linear layers to create the cell embeddings 
(Figure	1C).	Each	linear	layer	is	followed	by	a	Rectified	Linear	Unit	(ReLU)	activation	function.	
The	first	 layer	 creates	embeddings	of	 length	64.	The	 second	 layer	 creates	embeddings	of	
length 32. These embeddings are used to visualize the embedding space with a UMAP. The 
weights to embed the cells are shared across the species.

5.2.4 Training species-specific cell type classifier

We	 used	 these	 embeddings	 to	 train	 a	 separate	 classifier	 per	 species.	We	 used	 a	 neural	
network	consisting	of	one	linear	layer	followed	by	a	softmax	activation	function	(Figure	1D).	
Both	classifiers	take	the	cell	embedding	as	input	and	output	cell	type	probabilities,	hA,out or 
hB,out,	only	for	cell	types	belonging	to	its	respective	species.	During	training,	cells	are	 input	
only	to	the	classifier	of	its	corresponding	species.

The	 loss	 to	update	 the	embedding	and	classification	weights	consists	of	 two	parts:	1)	 the	
classification	loss,	and	2)	the	alignment	loss.	Both	losses	are	calculated	separately	per	species.	
For	the	classification	loss,	we	used	the	weighted	cross-entropy	loss	between	the	predictions	
and targets:
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where L
Acls is	the	classification	loss	for	species	A.	NA and TA are the number of cells and cell 

types in species A	respectively.	wt is the weight for cell type t, explained further below. hit
A,out is 

the	output	of	classifier	A,	specifically	the	probability	that	cell	i belongs to cell type t. The one-
hot encoded targets Y	are	modified	with	label	smoothing	to	prevent	overfitting	and	improve	
stability:
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where ε (=0.1)	controls	the	smoothness.	The	weight	of	each	cell	type	is	updated	every	epoch	
based on the accuracy of that cell type:
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where acct is the accuracy of class t in the current epoch.α is a hyperparameter that controls 
the	influence	of	the	accuracy	on	the	weight.	We	use� � 9 such that the weights are in the 
interval	[1,10]	which	restricts	the	relative	difference	in	weight	between	cell	types.	By	updating	
the weights, a cell type with a lower accuracy in the current epoch will have a higher weight 
in	the	next	epoch	and	thus	the	predictions	will	shift	to	that	cell	type.

The alignment loss aims to integrate the embedding space across the species, such that 
cross-species cells with a similar gene expression are close in the embedding space:

L X X
A A

i
cross

i
cross

A

N N j
B

j Ni

N
i
A

align MSE�
�� ��1 1

1
( , )

| |

Thesis_LM_final.indd   120Thesis_LM_final.indd   120 24-04-2024   18:54:5024-04-2024   18:54:50



121

TACTiCS

55

where NA is the number of cells of species A and Ni
cross are the 20 nearest cross-species neigh-

bours for cell i.	MSE	calculates	the	mean	squared	error	between	the	prediction	of	the	shared	
features of neighbours j and the actual shared features for cell i. If the alignment loss is min-
imized, neighbours in the embedding space can be used to predict the gene expression. The 
final	loss	is	a	combination	of	the	classifier	loss,	the	alignment	loss	and	a	regularization	loss:

L L L L L
A B A B

� � � � �cls cls align align � �|| ||2
2

whereθ consists	 of	 all	 parameters	 in	 the	model,	 and	 is	 used	 for	 the	 L2	 regularization	 to	
prevent	overfitting. γ is the weight of the L2 norm, which is set to 0.01. The model is trained 
for	200	epochs.	We	used	the	Adam	optimizer	with	a	learning	rate	of	0.001.	The	full	training	
process takes around 30 minutes.

To	efficiently	use	large	scRNA-seq	datasets,	the	neural	network	is	trained	in	batches.	A	batch	
size	of	5000	cells	per	species	is	used	to	speed	up	the	training	while	still	having	enough	cells	per	
cell	type.	Instead	of	sequentially	iterating	over	the	dataset,	each	batch	is	randomly	sampled	
from	 the	 full	 dataset,	 while	 accounting	 for	 the	 size	 of	 each	 cell	 type.	 More	 specifically,	
every cell is assigned a probability N NA

t
A/ or N NB

t
B/ , where NA is the total number of 

cells of species A and Nt
A is the number of cells of species A belonging to cell type t. These 

probabilities	are	then	used	to	sample	a	batch	of	cells	per	species	with	a	similar	number	of	
cells for each cell type.

5.2.5 Transferring cell type predictions across species

After	the	neural	network	is	trained,	the	cell	types	are	transferred	by	using	the	classifiers	on	
the	species	they	were	not	trained	on	(Figure	1E).	That	is,	we	calculate	hB,out for cells of species 
A, and hA,out for cells of species B. The transferred cell type for a single cell is the cell type 
with	the	highest	probability.	To	aggregate	the	information	of	the	single	cells	to	the	cell	type,	
we	calculate	the	fraction	of	cells	that	are	predicted	to	match	cell	types	across	species,	which	
forms	a	normalized	confusion	matrix	 for	both	transferring	directions.	We	average	the	two	
matrices to create a combined matrix, where high values indicate reciprocal matches. The 
values in the combined matrix can be used to score a match.

5.2.6 Dataset

We	evaluated	TACTiCS	on	snRNA-seq	data	taken	from	the	primary	motor	cortex	of	human,	
mouse and marmoset [20]. These datasets consist of 76k human cells, 159k mouse cells and 
69k	marmoset	cells,	respectively.	The	cell	type	distribution	varies	considerably	across	species.	
For instance, non-neuronal cells make up around a third of both mouse and marmoset cells, 
while	only	5%	of	the	human	cells	are	non-neuronal.	We	use	two	resolutions	of	the	cell	labels	
assigned	by	the	original	authors:	1)	a	higher	resolution,	consisting	of	45	cell	types	present	in	
all	species;	and	2)	a	lower	resolution,	consisting	of	20	human,	23	mouse	and	22	marmoset	
subclass	cell	types.	At	the	lower	resolution	not	all	cell	types	occur	in	all	species.	SMC	is	only	
present in mouse, while Meis2 and Peri are only present in mouse and marmoset. Species-
specific	cells	are	labeled	with	“NA”	at	the	higher	resolution.
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5.2.7 Evaluation

The combined matrix cannot be evaluated using standard metrics for confusion matrices, 
such	as	precision	or	F1	score,	since	we	cannot	distinguish	between	false	positives	and	false	
negatives.	 Instead,	we	 focus	on	 the	matching	scores	 from	corresponding	cell	 types	 in	 the	
combined	matrix,	which	ideally	should	be	1.	We	define	the	Average	Diagonal	Score	(ADS)	as	
the	average	score	of	the	diagonal	entries,	after	excluding	species-specific	cell	types.	A	high	
ADS	indicates	that	many	cell	types	are	correctly	and	reciprocally	matched.	However,	the	ADS	
does	not	indicate	how	many	cell	types	are	correctly	matched.	To	this	end,	we	define	the	recall	
as	the	fraction	of	diagonal	entries	where	the	score	is	highest	for	both	that	row	and	column.

We	compared	TACTiCS	to	SAMap	[8]	and	Seurat	(version	4)	[21]. SAMap is a cell type matching 
method	that	iterates	between	two	steps.	The	first	step	matches	the	genes,	which	is	initially	
done with BLAST on the DNA or protein sequences. Instead of taking the top-1 match, SAMap 
uses the BLAST bitscore directly in their model which allows for many-to-many matches. The 
second	step	uses	 the	gene	matches	to	first	 impute	genes	across	species	and	then	embed	
the	cells	by	concatenating	the	principal	components	of	the	original	expression	and	imputed	
expression.	Then,	the	correlation	between	genes	in	the	embedding	space	is	used	to	update	
the	gene	matches.	The	two	steps	are	repeated	until	the	process	converges.

Seurat can be used to transfer cell type labels from a reference to a query dataset. Since 
Seurat cannot use many-to-many matches, we use BLAST one-to-one matches for the data 
integration	and	label	transfer.	Since	labels	can	only	be	transferred	from	the	reference	to	the	
query dataset, we had to integrate the data twice for each pairwise comparison: once using 
one species as the reference and once using the other species as the reference.

5.2.8 Implementation

TACTiCS is implemented in Python 3.9. Pytorch [22] was used for the model architecture. The 
scRNA-seq data is stored as Anndata [23] objects, containing both the gene expression and 
the	cell	type	annotations.	The	implementation	of	TACTiCS	is	available	at	https://github.com/
kbiharie/TACTiCS.

As	 Tarashanky	 et	 al.	 have	 noted,	 the	 runtime	 of	 SAMap	 increases	 significantly	 for	 larger	
datasets, and we were unable to run SAMap for the full datasets [8]. Instead, we used SAMap 
on	subsets	of	50k	cells	per	species.	We	subsampled	the	data	to	keep	the	cell	type	proportions	
similar while making sure that all cell types are included. During sampling we ensured that 
at least 50 cells were present in the subset. If a cell type contained less than 50 cells, all cells 
were included in the subset.
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5.3 Results
5.3.1 Matching genes using sequence embeddings is comparable 
to sequence alignment with notable differences

First,	we	investigate	how	similar	the	gene	matches	returned	by	ProtBERT	and	BLAST	are.	We	
retrieved 17,435 human and 14,033 mouse protein sequences, discarding 47% of the human 
genes	and	49%	of	the	mouse	genes	for	which	we	do	not	have	the	protein	sequence.	We	used	
both ProtBERT and BLAST to generate gene matches.

For 13,935 human genes, we found a one-to-one mouse match using BLAST. For these human 
genes,	we	defined	the	ProtBERT	match	as	the	mouse	gene	with	the	most	similar	ProtBERT	
embedding.	For	13,050	out	of	13,935	human	genes	(94%),	the	BLAST	match	is	identical	to	the	
ProtBERT	match.	Thus,	the	top-1	match	is	identical	for	the	vast	majority	of	genes.	We	ranked	
the	BLAST	matches	according	to	the	ProtBERT	embedding	distance	to	all	mouse	genes	(Figure	
2A).	Most	of	the	BLAST	matches	have	a	rank	close	to	1	and	over	98%	of	the	BLAST	matches	
have	a	rank	below	100.	Additionally,	48%	of	the	BLAST	matches	that	differ	from	the	ProtBERT	
match are in the top-5 and thus considered in the many-to-many matches. Thus, if the BLAST 
match	is	not	considered	to	be	the	best	match	by	ProtBERT,	it	is	still	relatively	similar	based	on	
the embedding distance.

Next,	we	focus	on	the	human	genes	for	which	the	ProtBERT	and	BLAST	match	differ	to	inves-
tigate	which	method	returns	the	most	functionally	similar	match.	We	restrict	the	comparison	
to the 818 human genes where the human gene, the BLAST match and the ProtBERT match 
are	expressed	in	at	least	one	cell.	We	assess	functional	similarity	here	in	terms	of	gene	ex-
pression	similarity	across	cell	types.	Therefore,	we	calculated	the	Pearson	correlation	coeffi-
cient	across	cell	types	in	humans	and	mouse.	We	considered	the	harmonized	cell	types	as	de-
fined	in	[20]	(Figure	2B).	For	568	out	of	818	(69%)	genes,	the	BLAST	match	has	a	higher	gene	

Figure 2. Comparison of ProtBERT and BLAST matches. A) Rank of BLAST match according to ProtBERT embedding 
distances. Rank 1 indicates that the best ProtBERT match and the best BLAST match are the same. Rank NaN indicates 
a human gene with a ProtBERT match but no BLAST one-to-one match. B) Scatterplot	of	 the	 correlation	of	 the	
expression	of	human	and	mouse	genes	when	considering	the	best	BLAST	match	(x-axis)	and	the	best	ProtBERT	match	
(y-axis).	The	expression	correlation	is	calculated	as	the	Pearson	correlation	across	the	average	expression	profiles	
of	the	cross-species	harmonized	cell	types.	We	omitted	human	genes	where	the	BLAST	match	and	ProtBERT	match	
are	the	same.	Gene	matches	where	either	the	human	gene,	ProtBERT	match	or	BLAST	match	is	highly	variable,	are	
colored orange.
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correlation	than	the	ProtBERT	match.	This	is	to	be	expected	since	the	harmonized	cell	types	
were	defined	using	the	BLAST	matches.	However,	for	some	genes,	the	ProtBERT	match	has	a	
higher	correlation	than	the	BLAST	match.	For	example,	human	IL18R1 is matched to mouse 
Il1r1	according	to	ProtBERT	with	a	correlation	coefficient	of	0.945,	while	BLAST	matches	the	
gene to mouse Il18r1	with	a	correlation	coefficient	of	0.103	(Figure	3).	Human	IL18R1 and 
mouse Il1r1 both show an increased expression for the endothelial and VLMC cells, while 
mouse Il18r1	does	not	show	this	pattern,	and	is	lowly	expressed	in	all	cell	types.

5.3.2 TACTiCS accurately matches cortical cell types across mouse 
and human

Now that we have seen that ProtBERT matches can be a powerful way to capture gene 
relationships,	we	use	them	in	TACTiCS	to	match	cell	types	in	mouse	and	human	cortex	data.	
We	use	the	Allen	Brain	Data,	since	the	cell	types	have	been	carefully	matched	and	harmonized	
by	curators.	We	train	TACTiCS	for	the	human-mouse	comparison	for	both	the	subclass	and	
cross-species	resolution.	At	the	subclass	resolution,	TACTiCS	returns	the	correct	cell	type	for	
all	23	cell	types	that	are	present	in	both	human	and	mouse	(Figure	4A).	The	species-specific	
cell types, mouse Meis2, Peri and SMC, do not have a one-to-one match with a human cell 
type. Mouse Peri only matches human VLMC with a score of 0.5, but human VLMC matches 
mouse VLMC with a higher score of 1.0. Cell types present in both species have matching 
scores	of	≥	0.9	while	wrong	matches	all	have	matching	scores	≤	0.5.

Figure 3. Average expression of human IL18R1 and mouse matches across harmonized cell types. The mouse 
matches are ordered according to the ProtBERT embedding distances. BLAST matches human IL18R1 to mouse 
Il18r1.

Figure 4. TACTiCS’ performance when matching human and mouse cell types at the subclass resolution. A) Av-
erage confusion matrix of transferred cell types. B) UMAP of cell embeddings, colored by species. C) UMAP of cell 
embeddings, colored by cell type.
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To	 get	 better	 insight	 into	 TACTiCS	 performance,	 we	 visualized	 the	 32-dimensional	 cell	
embeddings	using	UMAP	 (Figure	 4BC,	 S3).	 Individual	 human	and	mouse	 cells	 do	not	mix	
well in the embedding space, but the UMAP does seem to align at the cell type level, i.e. 
corresponding	cell	 types	either	overlap	partially	 in	 the	embedding	space,	or	are	 relatively	
close. For example, Vip cells form a large cluster with partly human and mouse cells separated, 
and cells of mixed origin in the middle. The Sncg cells also form a larger cluster, but the 
separation	between	the	human	and	mouse	cells	is	more	visible.	The	Oligodendrocytes	form	
two separate clusters, but they are closer to each other than to other cell types. The cell type 
proportions	do	seem	to	have	an	effect	on	the	alignment	in	the	embedding	space.	Cell	types	
with	a	similar	number	of	cells	 in	human	and	mouse,	such	as	Vip	(6%	in	human	and	2%	in	
mouse),	are	clustered	more	coherently.	Cell	types	with	a	large	difference	of	occurrence	within	
human	and	mouse,	such	as	Astro	(1%	in	human	and	11%	in	mouse),	form	one	small	distinct	
cluster	that	is	close	to	the	larger	cluster.	The	mouse-specific	cell	types	Meis2,	Peri,	and	SMC	
are	(correctly)	clustered	separately	from	the	human	cells.	Thus,	the	embedding	space	can	
align the cell types across the species, but not the individual cells. Note that this can be due 
to	unresolved	batch	effects	or	actual	biological	differences	between	the	two	species.

At	 the	 cross-species	 resolution,	 TACTiCS	 returns	 correct	 matches	 for	 the	majority	 of	 cell	
types,	with	a	recall	of	0.96	(Figure	5A,	S1).	The	two	cell	types	that	are	not	properly	matched,	
namely	a	L5-IT	subtype	and	a	Sncg	subtype,	are	still	matched	with	closely	related	cell	types.	
The L5-IT subtype is matched with another L5-IT subtype and the Sncg subtype is matched to 
a subtype from the similar Lamp5 subclass.

To	evaluate	the	performance	of	TACTiCS	across	species	with	variable	evolutionary	distance,	
we	tested	TACTiCS	on	cortical	cell	types	between	human-marmoset	and	mouse-marmoset	
(Table	1).	At	the	subclass	resolution,	TACTiCS	performs	similar	on	all	three	comparisons	with	a	
recall	of	1.0.	At	the	cross-species	resolution,	TACTiCS	performs	best	for	the	human-marmoset	

Figure 5. Performance of A) TACTiCS and B) SAMap when matching human and mouse cell types at cross-species 
resolution. Cross-species	cell	types	are	grouped	per	subclass	(indicated	with	the	light-gray	lines)	and	class	(indicated	
with	dark-gray	lines).
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comparison and worst for the mouse-marmoset comparison. These results indicate that the 
performance	of	 TACTiCS	 is	 dependent	on	 the	evolutionary	distance	between	 the	 species,	
since	the	evolutionary	distance	to	the	closest	common	ancestors	from	human	and	marmoset	
(~40mya)	is	a	lot	less	than	human	and	mouse	(~70mya).

5.3.3 TACTiCS outperforms SAMap and Seurat in matching cortical 
cell types across mouse, human, and marmoset

To benchmark TACTiCS, we compare its performance to SAMap and Seurat using three pair-
wise	 comparisons	 (human-mouse,	 human-marmoset,	 and	 mouse-marmoset).	 Across	 all	
comparisons, TACTiCS has a higher ADS and recall than SAMap and Seurat at the subclass 
resolution	(Table	1).	TACTiCS	and	SAMap	perform	well	for	all	comparisons	with	a	recall	≥0.95.	
Seurat performs well for the human-marmoset comparison, but the performance drops for 
the other two comparisons with a recall of 0.85 and 0.86 for the human-mouse and mouse-
marmoset	comparisons	respectively.	Although	the	resulting	matches	of	TACTiCS	and	SAMap	
are similar, the scores assigned by TACTiCS to those correct matches is higher than SAMap. For 

Comparison Method Matching Subclass Cross-species

ADS Recall ADS Recall

Hu-mo TACTiCS P	(m:m) 0.991 1.000 0.856 0.956

Hu-mo TACTiCS B	(m:m) 0.915 0.900 0.509 0.489

Hu-mo TACTiCS B	(1:1) 0.992 1.000 0.724 0.778

Hu-mo Seurat B	(1:1) 0.821 0.850 0.435 0.400

Hu-mo	(50k) TACTiCS P	(m:m) 0.894 0.900 0.780 0.822

Hu-mo	(50k) SAMap P	(m:m) 0.814 1.000 0.635 0.733

Hu-mo	(50k) SAMap B	(m:m) 0.827 1.000 0.630 0.800

Hu-ma TACTiCS P	(m:m) 0.981 1.000 0.920 0.956

Hu-ma TACTiCS B	(m:m) 0.891 0.900 0.848 0.889

Hu-ma TACTiCS B	(1:1) 0.983 1.000 0.919 0.956

Hu-ma Seurat B	(1:1) 0.906 1.000 0.697 0.822

Hu-ma	(50k) TACTiCS P	(m:m) 0.982 1.000 0.949 1.000

Hu-ma	(50k) SAMap P	(m:m) 0.892 1.000 0.816 0.978

Hu-ma	(50k) SAMap B	(m:m) 0.899 1.000 0.816 0.978

Mo-ma TACTiCS P	(m:m) 0.990 1.000 0.735 0.733

Mo-ma TACTiCS B	(m:m) 0.844 0.864 0.483 0.467

Mo-ma TACTiCS B	(1:1) 0.991 1.000 0.770 0.778

Mo-ma Seurat B	(1:1) 0.819 0.864 0.488 0.489

Mo-ma	(50k) TACTiCS P	(m:m) 0.928 0.909 0.730 0.733

Mo-ma	(50k) SAMap P	(m:m) 0.798 0.955 0.608 0.689

Mo-ma	(50k) SAMap B	(m:m) 0.823 0.955 0.637 0.689

Table 1. ADS and recall for TACTiCS, Seurat, and SAMap on human, mouse, and marmoset.
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instance, SAMap correctly matches human L6b to mouse L6b, but with a very low matching 
score equal to 0.47, while TACTiCS matches the same cell types with a matching score of 
1.0.	 Interestingly,	for	the	species-specific	cell	types,	TACTiCS	suggests	matches	that	have	a	
low	score	(0.04-0.5),	allowing	to	detect	the	species-specific	cell	types.	The	performance	of	
SAMap	and	Seurat	for	the	species-specific	cell	types	is	not	consistent	across	all	cell	types	and	
comparisons. For example, SAMap correctly assigns zero scores to mouse Meis2, Peri and 
SMC in the human-mouse comparison, but incorrectly matches mouse SMC to marmoset 
Peri with a high matching score. Likewise, Seurat correctly assigns low scores to mouse Meis2 
across all three comparisons, but incorrectly assigns higher scores to mouse Peri and SMC.

At	the	cross-species	resolution	the	performance	of	all	methods	drops	compared	to	the	subclass	
level	as	expected,	but	the	difference	between	the	three	methods	becomes	more	apparent	
(Figure	5,	S2).	TACTiCS	achieved	the	highest	ADS	and	recall	for	the	human-mouse	and	mouse-
marmoset comparisons. SAMap has a higher recall than TACTiCS for the human-marmoset 
comparison,	but	not	a	better	ADS.	Seurat	performs	the	worst	across	all	three	comparisons	
and achieves a recall of only 0.4 for the human-mouse comparison. For mismatches between 
subtypes, TACTiCS usually matches to subtypes within the same subclass, while SAMap 
regularly	maps	to	cell	types	from	another	subclass.	While	both	TACTiCS	and	SAMap	partly	
match	human	Sncg	to	mouse	Lamp5,	SAMap	additionally	shows	similarity	between	human	
Sncg and mouse Vip.

While	 the	human	and	mouse	cells	did	not	overlap	much	 in	 the	UMAP	of	TACTiCS,	Seurat	
consistently	maps	the	query	dataset	onto	the	reference	dataset	(Figure	S3,	S4).	However,	the	
query dataset is not mapped equally onto the reference dataset, which leaves large regions 
of	the	clusters	consisting	of	only	one	species.	For	both	methods	the	mixing	of	species	is	the	
highest for the human-marmoset comparison and lowest for the human-mouse comparison.

To	account	for	the	differences	in	dataset	size,	we	compare	TACTiCS	and	SAMap	on	the	same	
50k subset. The performance of TACTiCS drops on the subset compared to the full dataset and 
does	not	match	all	common	cell	types	correctly	anymore	at	the	subclass	resolution.	However,	
TACTiCS	still	outperforms	SAMap	at	the	higher	resolution	across	all	three	comparisons.

5.3.4 Using ProtBERT matches improves the cell type matching for 
TACTiCS

Finally, we assessed the importance of using the ProtBERT embeddings to match genes 
compared	 to	using	BLAST	on	 the	final	 cell	 type	matches.	To	 this	end,	we	 trained	TACTiCS	
based on the BLAST many-to-many matches and SAMap using the ProtBERT matches on 
the human-mouse data. For a fair comparison of ProtBERT to BLAST in SAMap, we only 
apply	the	embedding	distance	threshold	to	the	ProtBERT	matches,	rather	than	filtering	the	
gene	matches	thoroughly.	Training	TACTiCS	at	the	cross-species	resolution	using	the	BLAST	
matches	decreased	the	ADS	and	recall	by	a	lot	across	all	comparisons	(Table	1).	For	SAMap,	
the performance remained similar, except for the human-mouse comparison where the 
recall decreased from 0.8 to 0.73 when ProtBERT matches were used instead of the BLAST 
matches.
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Additionally,	 we	 trained	 TACTiCS	 on	 the	 BLAST	 one-to-one	 matches.	 At	 the	 subclass	
resolution,	the	ADS	and	recall	remain	similar	if	BLAST	one-to-one	is	used	instead	of	ProtBERT	
many-to-many.	This	is	not	the	case	for	all	comparisons	at	the	cross-species	resolution.	The	
performance decreases for human-mouse, remains similar for human-marmoset and is 
increased for mouse-marmoset when BLAST one-to-one is used.

5.4 Discussion
Here,	we	present	TACTiCS,	a	method	 to	accurately	match	cell	 types	 from	scRNA-seq	data	
across	species.	We	applied	TACTiCS	to	match	cell	types	across	human,	marmoset,	and	mouse	
motor	 cortex,	 species	 with	 different	 evolutionary	 distances	 to	 each	 other.	 Even	 though	
TACTiCS	matches	 cell	 types	 from	 all	 three	 species	with	 high	 confidence,	we	 showed	 that	
human and marmoset cell types are considerably easier to match which correlates with 
their	closer	evolutionary	distance.	Furthermore,	we	showed	that	TACTiCS	outperforms	the	
state-of-the-art	method	SAMap	on	all	comparisons	with	the	biggest	difference	at	a	higher	
resolution	in	favor	of	TACTiCS.	We	should	note	that	our	evaluation	is	 limited	to	using	only	
three	datasets	from	one	tissue	with	a	relatively	small	evolutionary	distance,	while	SAMap	was	
originally	developed	to	match	cell	types	across	larger	evolutionary	distances	[8].

Even	 though	 TACTiCS	 outperforms	 SAMap	 on	 the	 (finer)	 cross-species	 resolution,	 its	
performance	drops	as	well.	We	would	like	to	note	that	the	cell	types	at	this	resolution	were	
established	by	Bakken	et	al.	by	integrating	datasets	from	the	different	species	and	clustering	
them in an embedding space [20]. This resulted in ambiguous clusters which were resolved 
manually by the authors to determine which cell types would be in one cross-species group. 
Since these matches are not perfect, it makes sense that we cannot achieve a perfect 
performance either.

Furthermore,	the	ground-truth	matches	used	for	evaluation	are	based	on	analyses	performed	
using	BLAST	one-to-one	matches,	also	causing	unwanted	differences	when	comparing	results.	
This might explain why the performance of TACTiCS using BLAST one-to-one is comparable to 
using	ProtBERT	many-to-many	matches.	Here,	we	only	see	an	improvement	for	species	with	
larger	evolutionary	distances	(i.e.	human-mouse	comparison).

All the results obtained by TACTiCS were obtained using the same hyperparameters, which 
have	 not	 been	 tuned.	 Although,	 tuning	 the	 hyperparameters	 could	 potentially	 improve	
matches between species, the advantage of the current set of hyperparameters is that 
they show robust performance across all pairwise-comparisons regardless of species and 
resolution	(i.e.	subclass	or	cross-species).

Gene	matching	is	one	of	the	main	components	of	TACTiCS.	We	match	genes	based	on	the	
distance between their corresponding protein embeddings, which are generated using 
ProtBERT instead of the commonly used sequence similarity based on BLAST. Even though the 
top-1 matches of ProtBERT and BLAST are largely similar, we have shown that using ProtBERT 
instead	of	BLAST	distances	improves	the	performance	of	TACTiCS.	When	aligning	sequences	
using BLAST, every amino acid is considered to be equally important, while we speculate 
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that	 ProtBERT	 focuses	more	 on	 functional	 domains.	 During	 further	 research,	 it	would	 be	
interesting	to	dive	deeper	 into	the	ProtBERT	embedding	space	and	see	how	this	could	be	
used	 to	 learn	more	about	 the	 relationships	between	cell	 types	and	 the	genes	 involved.	A	
downside, however, of using ProtBERT distances is that the protein sequence is needed and as 
a consequence, we can only use coding genes. Using DNA sequence embedding models, e.g. 
DNABert [24],	for	non-coding	genes,	could	in	the	future	be	used	to	overcome	this	limitation.

Some	 cell	 types,	 such	 as	Meis2	 and	Peri	 in	mice,	 are	 species-specific.	 A	 limitation	of	 our	
current	approach	is	that	the	classifiers	we	built	in	TACTiCS	are	missing	a	rejection	option	and	
therefore	we	cannot	identify	these	species-specific	cells	automatically.	Although	we	observed	
that	TACTiCS	usually	assigns	a	low	matching	score	to	these	species-specific	cell	types,	it	is,	
however, important to realize that the matching score represents the average accuracy of 
the	two	classifiers	and	does	not	represent	an	absolute	measure	of	cell	 type	similarity.	For	
instance,	if	two	human	cell	types	are	very	similar,	predictions	for	a	mouse	cell	type	may	be	
split	over	these	two	human	cell	types	(e.g.	both	get	a	score	of	0.5).	This	is,	for	instance,	the	
case with the Vip cross-species clusters in Figure 5A. This lower score indicates that there 
are similar human cell types in the data that both look like this mouse cell type. A high score, 
however, does not guarantee that the two cell types are very similar. It only indicates that 
these	two	cell	types	are	most	similar	to	each	other	and	that	they	are	transcriptionally	very	
distinct	from	the	other	cell	types	in	the	dataset.	In	other	words,	the	scores	are	summaries	
of	 the	classification	results,	and	as	such,	 they	are	very	much	dependent	on	the	cell	 types	
present	in	both	datasets	(i.e.	the	scores	will	change	if	one	cell	type	is	missing	from	one	of	the	
2	species).

When	inspecting	the	cell	embeddings	in	the	low	dimensional	space,	we	notice	that	the	cells	
from	difference	species	are	not	well	mixed.	Matching	cell	types,	however,	are	closest	to	each	
other	and	species-specific	cell	types	are	more	separated	from	all	other	cells.	There	are	many	
data	integration	methods	developed	for	single-cell	data,	such	as	scVI	[25], that would achieve 
a	significantly	better	integration.	Since	data	integration	is	not	the	main	goal	of	TACTiCS,	we	
did	 not	 add	 an	 explicit	mixing	 component	 to	 the	 loss	 function.	 The	 current	 loss	 function	
enforces that neighboring cells from the other species can predict the other cell’s gene 
expression	profile.	This	enforces	cells	of	the	same	cell	type	to	be	the	closest,	but	not	to	fully	
overlap.	Adding	a	component	to	the	loss	that	forces	cells	to	be	mixed	(e.g.	to	have	neighbors	
of	both	species)	could	greatly	improve	the	integration.	Alternatively,	if	good	integration	is	a	
user’s	desire,	an	option	would	be	to	replace	the	component	of	TACTiCS	that	generates	the	
cell	embeddings	with	another	data	integration	method	such	as	scVI.	The	flexible	architecture	
of	 TACTiCS	 allows	 the	 individual	 components	 (gene	 matching,	 cell	 embedding,	 and	 cell	
classification)	to	be	easily	replaced,	extended,	or	integrated	with	different	methods.

With	 TACTiCS	 we	 showed	 that	 using	 protein	 embeddings	 to	 match	 genes	 is	 a	 viable	
alternative	to	BLAST	when	matching	cell	types	based	on	their	scRNA	expression	levels	across	
species.	TACTiCS	can	accurately	match	cell	types	at	different	resolutions	for	large	datasets,	
outperforming	Seurat	and	SAMap.	We	envision	that	this	fast	and	accurate	cell	type	matching	
method,	will	make	comparative	analyses	across	species	considerably	easier,	contributing	to,	
e.g.	to	the	study	of	cell	type	evolution	or	translational	research.
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Most	regulatory	elements,	especially	enhancer	sequences,	are	cell	population-specific.	One	
could	even	argue	that	a	distinct	set	of	regulatory	elements	is	what	defines	a	cell	population.	
However,	discovering	which	non-coding	regions	of	the	DNA	are	essential	in	which	context,	
and	as	a	result,	which	genes	are	expressed,	is	a	difficult	task.	Some	computational	models	
tackle	 this	 problem	 by	 predicting	 gene	 expression	 directly	 from	 the	 genomic	 sequence.	
These	models	are	currently	limited	to	predicting	bulk	measurements	and	mainly	make	tissue-
specific	 predictions.	 Here,	we	 present	 a	model	 that	 leverages	 single-cell	 RNA-sequencing	
data	to	predict	gene	expression.	We	show	that	cell	population-specific	models	outperform	
tissue-specific	models,	especially	when	the	expression	profile	of	a	cell	population	and	the	
corresponding	tissue	are	dissimilar.	 Further,	we	show	that	our	model	 can	prioritize	GWAS	
variants	and	learn	motifs	of	transcription	factor	binding	sites.	We	envision	that	our	model	can	
be	useful	for	delineating	cell	population-specific	regulatory	elements.

6.1 Introduction
In	multicellular	organisms,	every	cell	has	the	same	DNA	apart	from	somatic	mutations.	Yet	its	
function	and	the	related	proteins	and	genes	expressed	vary	enormously.	This	is	among	others	
caused	by	 transcriptional	and	epigenetic	regulation.	Proteins	 that	bind	the	DNA	sequence	
around	the	transcription	start	site	(TSS)	control	whether	a	gene	is	transcribed	in	a	cell	[1,2]. 
Which	transcription	factors,	and	thus	which	DNA	binding	motifs,	are	essential	differ	per	cell	
population	[1–4].	As	such,	mutations	in	regulatory	regions	might	affect	specific	tissues	or	cell	
populations	differently.	 Improving	our	understanding	of	 these	 regulatory	mechanisms	will	
help	us	relate	genomic	functions	to	a	phenotype.	

For	 example,	while	 promoter	 sequences	 are	 identical	 across	 the	 four	major	 human	brain	
cell	populations	(neurons,	oligodendrocytes,	astrocytes,	and	microglia),	almost	all	enhancer	
sequences,	the	regions	in	the	DNA	where	a	transcription	factor	binds,	are	cell	population-
specific	 [3].	 These	 population-specific	 regulatory	 elements	 are	 discovered	 by	 combining	
single-cell	 measurements	 of	 different	 data	 types,	 including	 chromatin	 accessibility,	 ChIP-
seq,	 and	DNA	methylation.	Bakken	et	 al.,	 for	 instance,	 identified	differentially	methylated	
and	differentially	 accessible	 regions	 across	 neuronal	 cell	 populations	 in	 the	 human	brain,	
albeit	with	little	overlap	[5].	This	emphasizes	the	complexity	of	transcriptional	regulation	and	
the	need	for	more	measurements	to	fully	resolve	these	mechanisms	at	the	cell	population-
specific	level.

An	 alternative	 approach	 would	 be	 to	 train	 a	 computational	 model	 that	 directly	 predicts	
gene expression from the genomic sequence around the TSS. This way, we can learn which 
regulatory	elements	are	important	for	transcriptional	regulation	in	different	contexts.	Several	
computational	methods	have	been	developed	for	this	task	[6–12]. These methods have in 
common	that	they	one-hot	encode	the	DNA	sequence	and	input	this	to	either	a	convolutional	
neural	network	(CNN)	or	transformer.	ExPecto,	Xpresso,	and	ExpResNet	predict	expression	
measurements from bulk RNA-sequencing, while Basset, Basenji, BPNet, and the Enformer 
model	predict	regulatory	signals,	such	as	cap	analysis	gene	expression	(CAGE)	reads	or	TF	
binding	from	CHIP-nexus.	
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A	promising	application	of	 these	models	 is	 to	prioritize	variants	 that	have	been	 identified	
using	genome-wide	association	studies	(GWAS)	[6,13].	Using	GWAS	many	potential	disease-
associating	 variants	 have	 been	 identified	 [14–16].	Within	 each	 locus,	 however,	 it	 is	 often	
challenging	to	pinpoint	which	variant	is	causal	and	which	gene	is	affected	by	the	variant.	

These	current	computational	gene	prediction	models,	however,	are	designed	for	predicting	
bulk	gene	expression	data.	This	means	that	they	are	either	tissue-specific	or	could	be	applied	
to FACS-sorted cells [13].	Since	transcriptional	regulation	is	even	more	context-specific,	the	
resolution	of	current	methods	is	not	sufficient	for	heterogeneous	tissues	where	single-cell	
RNA-sequencing	(scRNA-seq)	has	revealed	hundreds	of	cell	populations	[5,17,18]. To increase 
the	resolution,	the	models	would	ideally	be	trained	on	scRNA-seq	data.

Here,	we	present	scXpresso,	a	deep	learning	model	that	uses	a	CNN	to	learn	cell	population-
specific	expression	 in	 scRNA-seq	data	 from	genomic	 sequences.	Since	single-cell	and	bulk	
data	have	different	characteristics	and	distributions,	we	explored	whether	this	type	of	model	
is	suitable	for	single-cell	data.	We	show	that	(i)	cell	population-specific	models	outperform	
tissue-specific	models	on	several	tissues	from	the	Tabula	Muris,	(ii)	increasing	the	resolution	
improves	 the	 predictions	 for	 human	 brain	 cell	 populations,	 and	 (iii)	 in-silico saturation	
mutagenesis	of	the	input	sequence	can	be	used	to	prioritize	GWAS	variants.

6.2 Materials and methods

6.2.1 Architecture of scXpresso

scXpresso	is	a	one-dimensional	convolutional	neural	network	(CNN)	adapted	from	the	(bulk	
gene	 expression-based)	 Xpresso	model	 [9]	 (Figure	 1A,	 S1).	 The	 input	 to	 the	 CNN	 is	 four	
channels	with	the	one-hot	encoded	sequence	around	the	transcription	start	site	(TSS)	(7kb	
upstream	and	3.5kb	downstream).	Every	channel	represents	one	of	the	four	nucleotides	(A,	
C,	T,	G).	For	some	positions,	the	exact	nucleotide	is	not	known	(e.g.	any	nucleic	acid	(N)	or	a	
purine	nucleotide	(R)).	The	exact	coding	scheme	for	such	positions	is	shown	in	Table	S1.	The	
CNN	consists	of	two	convolutional	layers.	The	output	of	the	convolutional	layers	is	flattened	
and	concatenated	with	the	half-life	time	features.	Together,	this	 is	subsequently	fed	into	a	
fully	connected	(FC)	 layer(s).	The	output	of	the	FC	 layers	 is	the	aggregated	expression	per	
tissue	or	for	each	cell	population.

Comparing	 scXpresso	 to	 Xpresso,	 there	 are	 three	 main	 differences:	 1)	 we	 designed	
scXpresso	as	a	multitask	model	so	that	it	predicts	the	expression	of	multiple	cell	populations	
simultaneously.	2)	We	decreased	 the	number	of	half-life	time	 features	 from	eight	 to	five;	
the	three	features	we	removed	(5’	UTR,	ORF,	and	3’	UTR	GC	content)	correlated	 less	with	
half-life	time,	so	we	removed	them	to	make	the	model	less	complex	[9,19,20].	Furthermore,	
removing	these	three	half-life	time	features	from	the	original	Xpresso	model	did	not	lower	its	
performance	(Table	S2).	3)	For	the	multitask	model,	there	is	only	one	FC	layer.	For	the	other	
models,	which	we	use	to	make	tissue-specific	predictions	as	a	comparison,	we	used	two	FC	
layers. 
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Figure 1. Schematic overview of scXpresso and performance on Tabula Muris datasets. A) We	one-hot	encode	
the	DNA	sequence	around	the	transcription	start	site	(TSS)	and	input	this	to	a	one-dimensional	convolutional	neural	
network	(CNN).	The	output	of	the	CNN	is	flattened	and	concatenated	with	the	five	half-life	time	features.	The	fully	
connected	layers	output	the	cell	population's	specific	gene	expression	levels	simultaneously	(Figure	S1,	see	Methods). 
B) Schematic	overview	of	 the	experiment. C-D) Performance of scXpressot,b	 (tissue-specific	 (t)	model	on	bulk	 (b)	
data)	and	scXpressot,pb	(tissue-specific	model	on	pseudo-bulk	(pb)	data),	respectively.	Every	dot	is	the	performance	
(Pearson	correlation)	across	one	 fold	of	 the	20-fold	CV. E) Performance of scXpressocp,pb	 (cell	population-specific	
(cp)	model	on	pseudo-bulk	data)	summarized	per	tissue.	Every	dot	represents	the	model’s	performance	on	a	cell	
population	in	that	tissue	(median	Pearson	correlation	across	the	20	folds). F) Performance of scXpressocp,pb on the 
different	lung	cell	populations.	The	grey	line	indicates	the	median	performance	across	all	cell	populations.	Every	dot	
is the performance across one fold of the 20-fold CV.
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6.2.2 Training scXpresso

We	split	the	genes	into	a	train,	validation,	and	test	dataset	and	evaluated	using	20-fold	cross-
validation.	These	sets	are	the	same	across	all	experiments	(i.e.	one	train,	validation,	and	test	
set	 for	mouse	genes	and	one	 for	human	genes)	 such	 that	 the	 results	of	different	models	
can	be	compared.	We	update	the	weights	of	scXpresso	using	the	Adam	optimizer	based	on	
the	mean	square	error	loss	on	the	training	set.	The	initial	learning	rate	is	set	to	0.0005	and	
if	the	loss	on	the	validation	set	is	not	improved	from	5	epochs,	the	learning	rate	is	reduced	
by	a	 factor	of	 10.	We	 train	 the	model	 for	40	epochs	and	 the	model	with	 the	 lowest	 loss	
on	the	validation	set	is	used	for	evaluation	on	the	test	dataset.	Since	there	is	always	some	
stochasticity	when	training	a	CNN,	we	always	train	5	models	and	average	the	predictions.	We	
used	 the	 following	software	packages	 for	 training	 the	model:	Pytorch	 (version	1.9.0)	 [21],	
CUDA	(version	11.1),	cuDNN	(version	8.0.5.39),	and	Python	(version	3.6.8).	

6.2.3 Datasets

Tabula Muris. The	 single-cell	 Tabula	Muris	data	 [22]	 for	 the	five	different	tissues	 (gland,	
spleen,	 lung,	 limb	muscle,	and	bone	marrow)	and	 two	different	protocols	 (10X	and	FACS-
based	 Smart-seq2)	 were	 downloaded	 from:	 https://figshare.com/projects/Tabula_Muris_
Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_
single_cell_resolution/27733. To extract input features, we downloaded the reference 
genome	 (MM10-PLUS)	 that	 was	 used	 during	 the	 alignment	 from:	 https://s3.console.
aws.amazon.com/s3/object/czb-tabula-muris-senis?region=us-west-2&prefix=reference-
genome/MM10-PLUS.tgz.

The	four	bulk	datasets	(spleen,	lung,	limb	muscle,	and	bone	marrow)	from	the	Tabula	Muris	
were downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040 
[23]. For the bulk data, we used the same reference genome as for the single-cell data.

Human motor cortex data. The	 human	motor	 cortex	 data	 from	 the	 Allen	 Institute	 [5] 
was	downloaded	 from	 the	Cytosplore	Comparison	Viewer.	We	downloaded	 the	 reference	
genome	(version	GRCh38.p2)	and	corresponding	GTF	file	with	information	about	the	location	
of	 transcription	 start	 sites	 of	 the	 genes	 here:	 (https://www.gencodegenes.org/human/
release_22.html)

6.2.4 Aggregated expression values

First, we normalized the count matrices. For the single-cell datasets, we performed library size 
normalization	in	the	same	way	as	The	Tabula	Muris	Consortium:	i.e.	counts	per	million	for	the	
smart-seq2 data and counts per ten thousand for the 10X data [22]. For the bulk Tabula Muris 
data,	we	performed	TPM	normalization.	For	the	single-cell	datasets,	we	used	the	annotations	
defined	by	the	authors	to	aggregate	the	expression	values	per	tissue	or	per	cell	population	
using log10(mean(x))	 (without	pseudocount)	 into	pseudobulk	values.	The	advantage	of	not	
adding	a	pseudocount	 is	that	the	distribution	looks	more	like	a	normal	distribution,	which	
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makes	it	easier	to	train	the	models	(Figure	S2).	A	limitation,	however,	is	that	we	could	not	
calculate the exact value for genes that were not expressed in any of the cells. For these 
genes, we replaced the pseudobulk values with -4 in the Tabula Muris and -5 in the motor 
cortex	 dataset,	 since	 this	 extrapolated	well	 (Figure	 S2).	 For	 the	bulk	 data,	we	 aggregated	
over	the	samples	instead	of	the	cells.	Here,	we	set	the	genes	that	are	not	expressed	in	any	
of	the	samples	to	-4.	We	standardized	the	expression	values	before	running	the	model	such	
that	 the	 average	 expression	of	 all	 genes	 in	 each	 cell	 population	or	 tissue	 is	 zero	 and	 the	
standard	deviation	is	one.	Before	analyzing	the	results	and	comparing	the	predictions	across	
cell	populations,	we	undid	the	z-score	normalization	but	kept	the	log	normalization.

6.2.5 Input features

Sequence around the transcription start site. Before	extracting	 the	sequences	around	
the	 transcription	start	 site,	we	 removed	genes	 that	are	 transgenes,	ERCC	 spike-ins,	 genes	
without a coding region, and genes on the Y chromosome. This resulted in 20,467 mouse 
genes	and	18,138	human	genes.	 Some	genes	had	multiple	 transcripts.	We	downloaded	a	
list with canonical transcripts for each gene from biomart and we used the transcript and 
transcription	start	site	belonging	to	the	canonical	transcript.	If	the	canonical	transcript	was	
not	defined,	we	used	the	transcript	that	had	the	longest	coding	region.	After	having	defined	
the	transcription	start	site	for	each	gene,	we	used	seqkit	[24] to extract sequences from the 
FASTA	file	containing	the	reference	genome.	

Half-life time features. For	 every	 gene,	we	extracted	five	half-life	time	 features:	 5’	UTR	
length,	3’	UTR	length,	ORF	length,	intron	length,	and	exon	junction	density	( #

( )
*exons

ORFlength
1000).	

We	obtained	these	features	by	first	filtering	the	GTF	files	for	the	canonical	or	longest	transcript.	
The	5’	UTR	length	is	the	length	of	the	sequence	from	the	start	of	the	first	exon	to	the	start	
codon. The 3’ UTR length is the length of the sequence from the last coding sequence to the 
end	of	the	last	exon.	The	ORF	length	is	the	sum	of	the	length	of	the	coding	sequences.	The	
intron	length	is	the	length	of	the	transcript	minus	the	length	of	the	ORF,	5’	UTR,	and	3’	UTR.	
All features are log-normalized using log10(x + 0.1)	and	afterwards	z-scaled.

6.2.6 Evaluating the predictions

For	 every	 gene	 in	 the	 test	 dataset,	 we	 averaged	 the	 predictions	 of	 the	 five	 models	 we	
trained.	We	evaluated	the	performance	for	every	cell	population	by	calculating	the	Pearson	
correlation	 between	 the	 true	 and	 predicted	 expression	 of	 the	 genes	 in	 the	 test	 set.	 To	
evaluate	the	increase	in	performance	between	the	tissue-specific	(t)	pseudobulk	(pb)	and	cell	
population-specific	(cp)	pseudobulk	(pb)	model	on	the	Tabula	Muris	datasets,	we	calculate:	
�cp t cp pbscEP, ,( )� �median Pearsoncorrelation median Pearsoncoorrelation( ),scEPt pb .	 On	 the	
motor	cortex	dataset,	we	also	evaluated	the	performance	of	each	gene	by	calculating	the	
Pearson	correlation	between	the	true	and	predicted	expression	per	cell	population.
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6.2.7 In-silico saturation mutagenesis

For CACNA1I,	 we	 mutated	 all	 positions in-silico, which means we tested all possible 
substitutions	 at	 every	 position.	 We	 undid	 the	 z-score	 normalization	 and	 calculated	 the	
difference	 between	 the	 original	 (wild-type)	 prediction	 and	 the	 mutated	 prediction.	 The	
prediction	models	used	during	 these	experiments	were	 the	models	where	CACNA1I itself 
was	originally	 in	the	test	set.	For	every	position,	we	only	plotted	one	predicted	difference	
in	 expression	 in	 Figure	4E.	 This	 is	 the	 substitution	 that	was	predicted	 to	have	 the	 largest	
absolute	effect.	We	downloaded	the	locations	of	the	candidate	cis-regulatory elements that 
fall within the input region for CACNA1I from	screen	 registry	 v3	 (release	date	2021)	 [25]. 
When	plotting	the	difference	between	two	cell	populations,	we	ignored	the	positions	where	
one	is	positive	and	the	other	predicts	a	negative	effect.	This	rarely	happened	and	if	it	was	the	
case,	the	predicted	effect	was	very	small.

For the 2000 highly variable genes, selected using scanpy [26], we applied ISM similar as 
described for CACNA1I. For	every	position	we	then	calculated	the	average	maximum	absolute	
predicted	effect:

y i y i y
alt A C G T alt ref pred g ref predmax

{ , , , },
, ,( ) max | ( )� �

� �

1

2000 ,, , ( ) |g altg HVG
i

��
where i	indicates	the	genomic	position,	HVG is the list of highly variable genes, ref indicates 
the reference allele, and alt indicates	the	alternative	allele.

6.2.8 Comparison to other models

Enformer. Enformer uses the DNA sequence to predict reads for 5,313 human tracks which 
include	CAGE,	DNAse,	CHIP,	and	ATAC-seq	[11].	Here,	we	only	looked	at	the	effect	of	a	variant	
on	the	CAGE	tracks	that	are	related	to	the	brain	(77	tracks	in	total,	see	Table	S3).	Enformer	
predicts	the	effect	of	variants	on	128bp	bins.	When	predicting	the	effect	of	a	variant	on	the	
CAGE	reads,	we	looked	at	the	effect	on	the	bin	containing	the	TSS.

ExPecto. ExPecto	predicts	gene	expression	for	218	tissues	and	cell	lines	[8].	Here,	we	only	
focused	on	27	outputs	that	are	related	to	the	brain	 (Table	S4).	We	used	the	ExPecto	web	
server	to	predict	the	effect	of	the	variants	(https://hb.flatironinstitute.org/expecto/?tabId=3).	
ExPecto	 is	 trained	using	Hg19	 instead	of	Hg39.	We	used	the	R-package	SNPlocs.Hsapiens.
dbSNP155.GRCh37	(v	0.99.23)	to	lift-over	the	variants.	Using	ExPecto	we	could	not	predict	the	
effect	of	all	variants,	since	for	some	variants	there	was	no	location	in	Hg19	found,	some	were	
too	far	away	from	a	TSS,	and	some	were	linked	to	a	different	gene	than	we	were	interested	in	
(see	Table	S5	for	an	explanation	per	variant).

Xpresso. We	trained	the	Xpresso	model	on	bulk	RNA-seq	data	from	the	precentral	gyrus	[9]. 
The	data	from	two	individuals	were	downloaded	from	the	Allen	Human	Brain	Atlas:	https://
human.brain-map.org/static/download	(H0351.2001,	H0351.2002).	We	used	the	normalized	
matrices. Labels were created as described in the Xpresso paper: we took the median 
expression across the 6 precentral gyrus samples, log-normalized the output using log10(x + 
0.1), and z-score normalized the expression. Similar to scXpresso, we trained the model using 
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20-fold	cross-validation.	Per	 fold,	we	trained	10	runs	and	used	the	model	with	the	 lowest	
MSE	on	the	validation	data	(as	described	in	[9]).	Afterwards,	we	predicted	the	effect	of	the	
variants.	We	could	not	predict	the	effect	of	all	variants,	since	some	genes	were	not	measured	
in	the	bulk	RNA-seq	data	and	for	some	genes,	there	were	no	Xpresso	input	features	defined	
(see	Table	S5	for	an	explanation	per	variant).	

6.3 Results

6.3.1 Predicting cell population-specific gene expression using 
scXpresso

Here,	 we	 present	 scXpresso,	 a	 multitask	 convolutional	 neural	 network	 (CNN)	 to	 predict	
cell	population-specific	gene	expression	using	genomic	sequences	only	(Figure	1A,	S1).	We	
developed	scXpresso	by	adapting	the	Xpresso	model	[9],	which	was	originally	designed	for	
bulk	data,	to	single-cell	data.	Similar	to	Xpresso,	we	use	two	types	of	input	to	the	model:	(1)	
the	DNA	sequence	around	the	transcription	start	site	(TSS)	(7kb	upstream	-	3.5kb	downstream)	
to	model	transcription,	and	(2)	five	half-life	time	features	(5’	UTR	length,	3’	UTR	length,	ORF	
length,	intron	length,	and	exon	junction	density)	to	model	mRNA	degradation.	We	input	the	
one-hot encoded DNA sequence into a CNN. The output of the CNN is concatenated with the 
half-life	time	features	and	fed	to	a	fully	connected	network	(see	Methods).	Since	our	model	is	
a	multitask	CNN,	the	desired	output	of	the	fully	connected	network	is	the	gene	expression	for	
every	cell	population.	We	predict	expression	per	cell	population	instead	of	per	cell	to	achieve	
more	stable	predictions	with	 less	noise	as	single-cell	data	 is	known	to	be	quite	sparse.	To	
obtain	one	expression	value	per	cell	population,	we	aggregate	the	single-cell	expression	into	
pseudobulk	measurements	(see	Methods).	

Since	single-cell	and	bulk	data	have	different	characteristics,	we	tested	whether	scXpresso	
performs	equally	well	on	single-cell	and	bulk	data.	We	used	scRNA-seq	data	from	five	different	
tissues	(limb	muscle,	spleen,	gland,	marrow,	and	lung)	from	the	Tabula	Muris	[22]	(Table	S6).	
Here,	we	used	cells	 isolated	via	FACS	that	were	sequenced	using	the	Smart-seq2	protocol.	
Using	the	annotations	defined	by	the	authors,	we	aggregate	the	values	per	cell	population	
and	per	tissue	 into	pseudobulk	values.	For	 four	tissues	(limb	muscle,	spleen,	marrow,	and	
lung),	there	are	also	bulk	RNA-sequencing	datasets	available	(Table	S7).	We	compared	the	
pseudobulk	to	the	bulk	expression	per	tissue	and	noticed	that	these	are	indeed	correlated	
(rmuscle	=	0.69,	rspleen	=	0.71,	rmarrow =	0.50,	rlung	=	0.67)	(Figure	S3).

Next,	we	trained	three	different	models:	1)	a	tissue-specific	(t)	model	on	the	bulk	(b)	values	
(scXpressot,b),	2)	a	tissue-specific	model	on	the	pseudobulk	(pb)	values	(scXpressot,pb),	3)	a	
cell	 population-specific	 (cp)	 model	 on	 the	 pseudobulk	 values	 (scXpressocp,pb)	 (Figure	 1B).	
The	cell	population-specific	model	 is,	 in	contrast	to	the	tissue-specific	models,	a	multitask	
model	 that	 predicts	 the	 expression	 of	 all	 cell	 populations	 in	 a	 tissue	 simultaneously.	We	
evaluated	 the	performance	of	 the	models	by	calculating	 the	Pearson	correlation	between	
the	 true	 and	 predicted	 expression	 values.	 In	 general,	 the	 tissue-specific	 models	 trained	
on	pseudobulk	 reach	higher	performance	 than	 the	models	 trained	on	bulk	 (Figure	1C-D).	
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Even	 though	 the	bulk	and	pseudobulk	values	are	correlated,	 the	pseudobulk	distributions	
are	bimodal	 compared	 to	 the	normally	distributed	bulk	data	 (Figure	 S3-4).	 This	 turns	 the	
problem	more	into	a	classification	problem	(is	a	gene	low	or	high	expressed),	which	might	
be	easier	to	learn.	On	average,	predicting	cell	population-specific	expression	is	more	difficult	
than	predicting	tissue-specific	expression	(Figure	1D-E):	scXpressocp,pb performs slightly worse 
than scXpressot,pb (median	correlation	of	0.71	vs	0.75),	but	still	better	than	scXpressot,b (0.58).	

One	of	 the	adaptations	 to	Xpresso	 is	 that	 scXpressocp,pb	 is	 a	multitask	model.	 This	 slightly	
increases	the	performance	compared	to	a	single-task	model	 (Figure	S5)	but	mainly	makes	
the	model	computationally	more	efficient.	The	marrow-FACS	dataset,	for	instance,	contains	
22	cell	populations.	Since	the	single-task	and	multitask	models	need	the	same	training	time	
(approximately	30-60	minutes),	this	gives	a	22x	speed	up.	

The	 Tabula	Muris	 scRNA-seq	 datasets	were	 generated	 using	 two	 different	 protocols:	 10X	
Genomics,	 a	 droplet-based	 method,	 and	 FACS-based	 Smart-seq2,	 a	 plate-based	method.	
When	comparing	scXpressot,pb and scXpressocp,pb trained	on	the	two	different	protocols,	e.g.	
lung-droplet	vs.	 lung-FACS,	we	conclude	that	they	perform	equally	well	(Figure	1DE,	S6-7).	
Depending	on	the	tissue	and	cell	population,	one	performs	slightly	higher	than	the	other,	but	
there	are	no	significant	differences.	This	is	as	expected	since	the	pseudobulk	values	of	both	
protocols	are	highly	correlated	(Pearson	correlation	>	0.85)	(Figure	S8).	Hence,	the	protocol	
used	to	create	the	single-cell	dataset	does	not	influence	the	results.	

For scXpressocp,pb, we tested how the two types of input features, DNA sequence and half-
life	time,	influence	the	performance.	We	tested	different	lengths	of	the	input	sequence	and	
whether	one	of	the	two	features	was	enough	to	predict	expression	(Figure	S9).	A	range	of	
different	 sequence	 lengths	 results	 in	 the	 same	 performance	 (3.5-3.5,	 7-3.5,	 and	 10-5kb	
upstream-downstream).	 A	 longer	 sequence	 gives	 more	 information	 but	 also	 adds	 more	
noise. Since the model also becomes more complex, more parameters have to be learned 
and	it	takes	more	time	and	memory	to	train	the	model.	Therefore,	we	decided	to	use	7kb	
upstream	and	3.5kb	downstream	for	further	experiments.	We	also	observed	that	adding	the	
half-life	time	features	results	in	higher	performance,	suggesting	that	these	features	are	not	
easily captured from DNA sequences alone. 

For	the	cell	population-specific	models,	the	performance	varies	considerably	across	different	
populations	 (Figure	 1E).	 Comparing	 the	populations	 in	 the	 lung	dataset,	 for	 instance,	 the	
performance	of	the	endothelial	cells	is	very	high	compared	to	leukocytes	(Figure	1F,	S10).	In	
general, the performance of scXpresso increases when more genes and cells are measured 
in	a	population	(Figure	1F,	S11).	The	leukocyte	population	is	small	(35	cells)	and	fewer	genes	
are	non-zero	compared	to	other	cell	populations	in	the	lung	(8,678	out	of	20,467	vs.	12,715	
on	average).	The	ciliated	cell	population,	on	the	other	hand,	is	also	small	(25	cells),	but	this	
model	reaches	a	higher	performance.	In	this	cell	population,	however,	more	genes	were	non-
zero	(11,717)	compared	to	the	leukocyte	population.	Hence,	to	train	the	model,	we	need	a	
good	representation	of	the	cell	population	that	includes	enough	expressed	genes.	

In	all	previous	experiments,	we	evaluated	scXpresso	using	20-fold	cross-validation	with	the	
genes	randomly	divided	over	the	folds.	The	results	could	be	positively	biased	if	genes	from	
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the	same	chromosome	are	in	different	folds.	Therefore,	we	also	evaluated	the	models	using	
cross-chromosomal	cross-validation.	This	slightly	reduces	the	models’	performance,	but	the	
difference	 is	not	significant	 (lowest	p-value	=	0.11	 for	myeloid	cells,	 two-sample	Wilcoxon	
rank	sum	test)	(Figure	S12).

6.3.2 Cell population-specific models outperform tissue-specific 
models

Now	 that	we	know	 that	 all	models	 are	well-trained,	we	predicted	 cell	 population-specific	
expression	 using	 the	 three	 different	models	 to	 see	 whether	 increasing	 the	 resolution	 of	
the	models	increases	the	performance	(Figure	2A).	Since	scXpressot,b and scXpressot,pb were 
trained	using	tissue-specific	expression	values,	these	models	predict	the	same	value	for	every	
cell	population.	On	all	datasets,	scXpressocp,pb outperforms	the	tissue-specific	models,	which	
shows	the	benefit	of	training	the	models	on	a	higher	resolution	(Figure	2B,	S13A).	Especially	
in	more	 heterogeneous	 tissues,	 where	 the	 gene	 expression	 of	 cell	 populations	 is	 weakly	
correlated	to	the	corresponding	tissue,	we	see	a	large	improvement	(Figure	2C,	S13B).	For	
the lung-FACS dataset, for instance, the performance increases the most for immune cell 
populations	(∆cp t, for	B	cells:	0.11,	NK	cells:	0.11,	T	cells:	0.09;	see	Methods)	and	the	least	
for	 lung-specific	populations	 (∆cp t, for stromal cells: 0.01, endothelial cells: 0.03, epithelial 
cells:	0.05).	In	the	B	cells	in	the	lung,	4,081	genes	are	not	expressed	in	any	of	the	cells	and	
thus	have	a	log-normalized	expression	of	-4,	but	for	which	the	tissue-specific	model	predicts	a	
positive	log-normalized	expression	value	(Figure	2D).	In	contrast,	the	model	trained	on	B	cells	
predicts	a	lower	expression	for	these	genes	(Figure	2E).	Almost	all	these	genes,	however,	are	
expressed	in	the	lung	(in	the	non-B	cells),	the	lung-model	learned	this	correctly	too	(Figure	
2F).

Some	 of	 the	 Tabula	Muris	 datasets	 contain	 similar	 cell	 populations.	 For	 instance,	 B	 cells,	
macrophages,	and	T	cells	are	measured	 in	 four,	 three,	and	 three	tissues,	 respectively.	We	
hypothesized	that	if	our	models	are	cell	population-specific,	they	should	accurately	predict	the	
expression	of	a	cell	population	in	one	tissue	with	a	model	trained	on	the	same	cell	population	
but	from	another	tissue	(even	though	a	cell’s	tissue	will	slightly	change	the	expression	for	
(some)	genes).	To	test	this,	we	predicted	the	expression	for	common	cell	populations	using	
three	different	 types	of	models:	1)	 scXpressocp,pb	 trained	on	 the	same	cell	population,	but	
from	a	different	tissue,	2)	scXpressocp,pb	trained	on	a	different	cell	population,	but	from	the	
same	tissue,	3)	scXpressot,pb trained	on	the	same	tissue	(Figure	3A).	For	example,	we	predict	
the	expression	of	B-cells	in	the	limb	muscle,	using	1)	a	model	trained	on	B-cells	in	the	lung,	2)	
a	model	trained	on	endothelial	cells	in	the	limb	muscle,	and	3)	a	model	trained	on	the	limb	
muscle.	 Again,	 the	 cell	 population-specific	models	 outperform	 the	tissue-specific	models,	
even	though	they	predict	either	a	different	dataset	or	a	different	cell	population	than	they	
were	trained	on	(Figure	3B,	S14-15).	This	 indicates	that	 if	you	want	to	train	a	model	 for	a	
cell	population	from	a	specific	tissue	where	no	single-cell	data	 is	available,	you	are	better	
off	using	a	model	 trained	on	a	 similar	 cell	 population	 from	a	different	tissue	 than	 relying	
on	a	tissue-specific	model.	Whether	a	model	trained	on	a	different	cell	population	and	the	
same	tissue	performs	better	than	a	model	trained	on	the	same	cell	population	but	a	different	
tissue,	differs	per	tissue	and	cell	population.	For	example,	when	predicting	the	expression	
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of B cells in the limb muscle, the models trained on B cells in the marrow and lung even 
outperform	the	model	trained	on	B	cells	in	the	limb	muscle	itself	(Figure	3C).	But,	the	models	
trained	on	different	cell	populations	within	the	limb	muscle	perform	variably	when	predicting	
B	cells	(Figure	3D).	The	models	trained	on	immune	populations,	e.g.	T	cells	or	macrophages,	
perform	 similarly,	 but	 the	 muscle-specific	 populations	 perform	 worse.	 This	 difference	

Figure 2. Comparison of the three scXpresso models for making cell population-specific predictions. A) Schematic	
overview of the experiment. B) Boxplot showing the performances of scXpressot,b	(tissue-specific	(t)	model	on	bulk	
(b)	data),	scXpressot,pb	(tissue-specific	model	on	pseudo-bulk	(pb)	data),	and	scXpressocp,pb	(cell	population-specific	
(cp)	on	pseudobulk	(pb)	data)	on	the	cell	population-specific	task.	Every	point	in	the	boxplot	is	the	performance	of	a	
model	on	one	cell	population	in	that	tissue	(median	Pearson	correlation	across	the	20	folds). C) Similarity between 
a	cell	population	and	corresponding	tissue	(Pearson	correlation	between	the	true	pseudobulk	expression	values)	
vs.	 the	 increase	 in	performance	 (∆

cp t,
,	median	Pearson	correlation	of	 scXpressocp,pb - scXpressot,pb).	Every	dot	 is	a	

different	cell	population	and	the	colors	 represent	 the	different	tissues. D-F) Comparing	the	predictions	made	by	
the	lung	tissue	model	(lung-model)	and	the	B	cell	population	model	(B	cell-model).	Genes	where	the	lung-model	
predicts	a	too-high	value	are	plotted	in	orange. D-E) True expression of the B cells vs. predicted expression by the 
D) lung-model and E) B cell-model. F) True expression of the lung cells vs. predicted expression of the lung model. 
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between the B cell and the endothelial, mesenchymal stem cell, and skeletal muscle satellite 
cell	models	might	seem	small	but	is	significant	across	the	20	folds	(p-value	=	9.5e-07	for	all	
three	populations,	one-sided	Wilcoxon	rank	sum	test	[27,28]).	Even	though	the	differences	
are	small,	this	indicates	that	our	models	indeed	learn	cell	population-specific	features.

6.3.3 scXpresso learns expression patterns across human brain 
cell populations

Next, we applied scXpresso to a human brain dataset of the motor cortex [5]. This dataset 
is	 annotated	 at	 different	 resolutions	 including	 a	 class	 (GABAergic,	 glutamatergic,	 and	
non-neuronal)	 and	 subclass	 (20	 subclasses)	 level.	 Again,	 we	 trained	 models	 of	 different	
resolutions:	a	tissue-	(t),	class-	(c),	and	subclass-specific	(sc)	model	(scXpressot, scXpressoc, 
and scXpressosc respectively).	We	used	 the	 trained	models	 to	predict	 the	subclass-specific	
expression	values	(Figure	4A).	Since	scXpressot was	trained	on	the	tissue-specific	pseudobulk	
expression, it predicts	the	same	expression	for	all	subclasses.	The	class-specific	model,	on	the	
contrary,	is	a	multitask	model.	Here,	we	use	the	predictions	of	the	parent	class	to	predict	the	
expression	of	each	subclass	(i.e.	subclasses	belonging	to	the	same	parent	class	are	predicted	
to	have	 the	same	expression)	 (Figure	S16).	Similar	 to	 the	Tabula	Muris,	we	observed	 that	
increasing	 the	 resolution	 increases	 the	 performance:	 scXpressosc outperforms scXpressoc 
which outperforms scXpressot,	(Figure	4B).	For	some	subclasses,	e.g.	L2/3	IT,	the	performance	
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Figure 3. Comparing the predictions of scXpresso across cell populations and tissues. A) Schematic	overview	of	
the experiment. B)	Performance	(Pearson	correlation)	of	three	different	types	of	models	on	different	cell	populations	
(rows)	in	different	tissues	(columns).	Every	dot	is	the	median	correlation	of	one	model	across	the	20	folds.	Since	
there	are	no	T	cells	and	macrophages	defined	in	the	Marrow	and	Lung	dataset,	these	boxes	are	missing.	C) Pearson 
correlation	 of	 different	models	when	 predicting	 the	 expression	 of	 B	 cells	 in	 different	 tissues.	 The	 rows	 indicate	
on	which	tissue	scXpressocp,pb	is	trained,	and	the	columns	indicate	for	which	tissue	the	expression	of	the	B	cells	is	
predicted. D) Pearson	correlation	of	different	scXpressocp,pb when	predicting	the	expression	of	B	cells	 in	 the	 limb	
muscle. Again the rows indicate which model is used.
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barely improves when comparing scXpressosc with scXpressoc, which happens when the true 
expression values of the subclass and corresponding class are strongly correlated, similar as 
for	the	Tabula	Muris	case	(Figure	S17).	

Since	 genes	with	 variable	 expression	 across	 subclasses	 are	 often	 interesting	 to	 study,	we	
tested whether scXpressosc can	learn	the	correct	pattern	for	a	gene	across	the	subclasses.	For	
every	gene,	we	calculate	the	Pearson	correlation	between	the	true	and	predicted	expression	
across the subclasses. If the expression of a gene shows some variance across the subclasses, 
scXpressosc predicts	the	pattern	correctly	(Figure	4C).	An	example	is	CACNA1I, a gene coding 
for a subtype of voltage-gated calcium channel that has been associated with schizophrenia 
[15,29–32].	Here	scXpressosc correctly	learns	that	the	expression	in	neuronal	populations	is	
higher	than	in	non-neuronal	(r	=	0.90)	(Figure	4D).	

6.3.4 In-silico saturation mutagenesis reveals the most interesting 
GWAS variants

Since scXpresso can predict expression from the DNA sequence, we expect that it can also 
predict how the expression changes when the sequence is mutated. Therefore, we applied 
in-silico mutagenesis	(ISM)	to	the	sequence	of	CACNA1I and evaluated the predicted change 
in	 gene	expression	 [6,7,11,33].	When	 comparing	 scXpressosc predictions	 for	 the	 Sst	Chodl	
subclass	across	all	possible	mutations,	we	find	mutations	 in	 the	 region	around	 the	TSS	 to	
affect	the	expression	of	the CACNA1l	gene	the	most	(Figure	4E).	When	applying	ISM	to	the	
2000	highly	variable	genes	 in	 the	data,	 the	maximum	absolute	predicted	effect	 is	highest	
around	the	TSS	as	well	(Figure	S18).	Note,	that	we	did	not	use	the	TSS	location	as	input	to	the	
model,	consequently,	the	model	correctly	identified	that	this	is	the	most	important	region	for	
transcriptional	regulation.	No	other	regions	within	our	input	window	were	found	that	affect	
the expression that strongly.

Besides	 visualizing	 the	mutation	 pattern	 for	 one	 subclass,	we	 can	 also	 visualize	 how	 ISM	
affects	two	subclasses	differently.	As	an	example,	we	compared	the	scXpressosc predictions	
for	the	Sst	Chodl	subclass	and	the	L2/3	IT	subclass	(Figure	S19).	These	predictions	show	that	
the	Sst	Chodl	 subclass	 is	more	 sensitive	 to	mutations	 than	 the	L2/3	 IT	 class	 for	CACNA1I, 
which might be explained by the fact that CACNA1I is also higher expressed in Sst Chodl cells.

In	addition,	ISM	can	be	used	to	prioritize	variants	of	interest	for	diseases.	CACNA1I is linked to 
18	Schizophrenia-associated	variants	according	to	the	NHGRI-EBI	Catalog	[34]. Two of these 
variants,	 rs7288455	and	 rs5757730,	 fall	within	our	 input	 region	 (7kb	upstream	and	3.5kb	
downstream of the CACNA1l TSS).	Mutating	the	reference	A	allele	with	the	C	or	G	variant	at	
the	position	of	rs7288455	increases	the	predicted	expression	for	all	cell	populations	(Figure	
4F).	 The	 disease-associated	 variant,	 the	 A	 allele,	 is	 expected	 to	 decrease	 the	 expression	
[15,34],	 which	 is	 in	 line	 with	 our	 predictions,	 although	 it	 is	 not	 known	 whether	 this	 is	
subclass-related.	Our	model	suggests	that	the	expression	of	CACNA1I increases the most in 
the	Sst	Chodl	subclass.	Interestingly,	for	the	Sst	Chodl	subclass,	this	mutation	results	in	one	
of	the	largest	differences	in	CACNA1l	expression	amongst	all	other	induced	mutations	(top	
1%	mutations	with	the	strongest	effect)	(Figure	S20).	For	the	other	variant,	rs5757730,	which	
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Figure 4. Performance of scXpresso on the human motor cortex. A) Schematic	overview	of	the	experiment.	We	train	
a	tissue-	(t),	class-	(c),	and	subclass-specific	(sc)	model	(scXpressot, scXpressoc, scXpressosc	respectively)	to	predict	
the	subclass-specific	expression	levels. B) Boxplots	showing	the	Pearson	correlation	between	the	true	and	predicted	
values.	Every	point	in	the	boxplot	is	the	performance	on	a	fold	(n=20). C) Scatterplot	showing	the	relation	between	
the	variance	of	a	gene	across	the	pseudobulk	values	of	the	subclasses	and	the	Pearson	correlation	between	the	true	
and predicted values across the subclasses. Every dot is a gene. D) True and predicted expression for CACNA1I. Every 
dot is the expression in a subclass. Dots are colored according to their class. E) Mutation	profile	for	CACNA1I for the 
Sst	Chodl	subclass.	For	every	position,	we	calculated	the	difference	in	expression	for	all	three	possible	substitutions	
and	visualized	the	substitution	with	the	highest	absolute	predicted	effect.	Mutations	that	are	predicted	to	increase	
or	decrease	the	expression	are	plotted	 in	blue	and	orange,	respectively.	The	grey	rectangle	highlights	the	region	
around	the	TSS.	The	grey	boxes	indicate	the	positions	of	candidate	cis-Regulatory	Elements	(cCREs)	derived	from	
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lies	in	an	intronic	region,	we	see	no	difference	in	expression	(Figure	S21).	Further	supporting	
our	 predictions,	 rs7288455,	 but	 not	 rs5757730,	 overlaps	 with	 an	 ENCODE	 candidate	 cis-
regulatory	element.	These	results	show	that	scXpresso	can	be	used	to	prioritize	GWAS	hits.

In	 total,	 there	 are	 3,971	 GWAS	 variants	 associated	 with	 Schizophrenia	 in	 the	 NHGRI-EBI	
Catalog [34].	We	focused	on	those	genes	that	have	two	or	more	variants	in	the	input	region	
(20	genes,	49	variants)	(Table	S5).	For	these	variants,	we	predicted	the	effect	of	all	possible	
substitutions	to	prioritize	the	likely	causal	variants	(Figure	S22).	For	most	genes,	scXpresso	
predicts	a	profound	effect	for	only	one	of	the	variants.	For	instance,	when	substituting	‘A’	with	
‘C’ for the HLA-B variant rs2507989, the predicted expression of HLA-B decreases, while none 
of	the	mutations	at	the	other	variant	positions	of	HLA-B,	i.e.	rs139099016	and	rs1131275,	are	
predicted	to	affect	the	expression.	Noteworthy,	rs1131275	is	classified	as	a	missense	variant	
and	thus	not	expected	to	alter	transcription	[34]. For some genes, however, all variants seem 
to	barely	affect	the	expression.	

Next,	we	checked	if	we	could	interpret	the	model	predictions	by	characterizing	the	genomic	
sequences	identified	by	scXpresso	to	have	a	strong	effect	on	gene	expression.	For	the	MROH-6 
variant	rs10866912,	two	substitutions	are	predicted	to	create	an	opposite	effect.	Substituting	
the	reference	‘T’	with	a	‘C’	is	predicted	to	decrease	the	expression	while	mutating	with	a	‘G’	
is	predicted	to	increase	the	expression	(Figure	4G).	This	variant	is	part	of	a	binding	site	for	the	
transcription	factor	INSM1,	a	transcriptional	repressor	[35]	(Figure	4H).	When	substituting	the	
‘T’ with a ‘C’, the sequence of the reference genome becomes more similar to the consensus 
motif,	while	substituting	with	a	‘G’	makes	the	two	sequences	more	dissimilar.	This	supports	
the	predictions	from	scXpresso.

We	compare	our	scXpresso	predictions	for	these	Schizophrenia	variants	to	the	predictions	
of Enformer, ExPecto, and Xpresso. For Enformer and ExPecto we used their pre-trained 
models	which	predict	the	expression	for	5,313	and	218	tissues/cell	lines,	respectively.	Here,	
we	only	focused	on	the	predictions	related	to	the	healthy	brain	(77	tracks	for	Enformer,	27	for	
ExPecto).	For	Xpresso,	there	were	no	pre-trained	models	for	the	brain	available,	so	we	trained	
the Xpresso model ourselves using bulk RNA-seq samples from the precentral gyrus, which is 
the	region	containing	the	motor	cortex	(see	Methods).	The	expression	values	of	the	precentral	
gyrus	are	correlated	to	the	pseudobulk	expression	values	of	the	motor	cortex	(Figure	S23A,	
r	=	0.68).	Similar	to	scXpresso,	we	used	a	20-fold	cross-validation	to	train	the	Xpresso	model.	
The	model	is	well-trained	and	reached	a	similar	median	correlation	on	the	precentral	gyrus	as	
the	scXpresso	models	on	the	motor	cortex	subclasses	(Figure	4B,	S23B-C,	r	=	0.69).	Figure	S24	
shows	the	predictions	for	all	models	for	the	variants	related	to	Schizophrenia.	Using	Xpresso	
and	ExPecto	we	could	not	predict	the	effect	of	all	variants,	since	some	genes	were	missing	
from	the	data	and	some	variants	were	lost	during	conversion	from	Hg38	to	Hg19	(Table	S5)	
(see	Methods).	It’s	challenging	to	compare	the	predictions	of	the	different	methods	since	all	
models	are	trained	on	different	brain	regions	or	cell	lines.	Enformer	usually	predicts	the	same	

ENCODE	data	[25]. F-G) Predicted	effect,	the	predicted	difference	between	the	reference	and	alternative	allele,	of	
the	three	substitutions	for F) rs7288455 on CACNA1I expression, and G) rs10866912 on MROH6 expression. Every 
dot is one subclass and the dots are colored according to the class. H) Sequence logo and the consensus sequence 
for the INSM1	transcription	factor	motif	together	with	the	sequence	of	the	reference	genome	(bottom	line).
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effect	 for	 the	 three	different	possible	nucleotide	mutations,	e.g.	 for	 rs1131275	 it	predicts	
that	all	three	substitutions	decrease	the	expression.	This	variant,	however,	is	classified	as	a	
missense	variant,	so	we	don’t	expect	it	to	alter	transcription	[34]. For rs7288455, the variant 
close to CACNA1I,	both	scXpresso	and	Xpresso	predict	a	similar	effect,	while	Enformer	and	
ExPecto	predict	only	a	very	minimal	effect.	For	rs10866912,	the	variant	close	to	MROH-6, we 
showed that scXpresso could learn the TF binding site of INSM1 while all the other models 
miss	this	pattern.	These	results	overall	illustrate	the	benefit	of	training	prediction	models	on	
single-cell data.

6.4 Discussion
We	presented	scXpresso,	a	model	to	predict	cell	population-specific	gene	expression	using	
the	 genomic	 sequence.	 We	 showed	 that	 scXpresso	 outperforms	 tissue-specific	 bulk	 and	
pseudobulk	models	especially	when	the	expression	profile	of	a	cell	population	is	dissimilar	
to	 that	 of	 the	 corresponding	 tissue.	 All	 scXpresso	models	 reach	 a	 Pearson	 correlation	 of	
approximately	 0.7	 regardless	 of	 the	 cell	 population	or	 tissue	 trained	 on.	 Additionally,	 the	
model	 learned	 the	 importance	of	 the	 region	 around	 the	 TSS,	 transcription	 factor	 binding	
motifs	 (such	 as	 for	 INSM1),	 and	 the	 expression	 pattern	 of	 genes	 across	 different	 cell	
populations.	Together,	our	findings	show	the	potential	of	using	single-cell	data	for	predicting	
gene	expression	from	sequence	information	in	complex	heterogeneous	tissues.	

We	showed	that	it	is	possible	to	prioritize	GWAS	variants	using	scXpresso.	Considering	the	
expression of CACNA1I,	we	noticed	 that	one	variant,	which	overlaps	with	an	ENCODE	cis-
regulatory	element,	is	predicted	to	have	a	large	effect,	while	another	variant	was	predicted	
to	have	a	negligible	effect.	The	latter	could	be	because	the	variant	might	affect	splicing	(which	
our	model	does	not	differentiate),	the	variant	could	be	in	a	linkage	disequilibrium	block	with	
other	(associating)	variants,	or	the	variant	could	affect	a	more	distant	gene.	

Comparing	the	predicted	effects	for	mutations	by	scXpresso	to	other	sequence-to-expression	
prediction	models	quantitatively	 is	difficult	as	 the	 true	effect	of	 these	variants	on	specific	
brain	 regions	 and/or	 cell	 populations	 is	 unknown.	We	 have	 shown	 that	 for	 a	 previously	
identified	variant	close	 to	CACNA1I gene, both Xpresso and scXpresso predict an increase 
in	 expression,	 while	 ExPecto	 and	 Enformer	 predict	 a	marginal	 effect.	 Note	 that,	 ExPecto	
and	Enformer	are	not	trained	on	specific	brain	regions,	or	cell	population-specific	data,	but	
contain	bigger	structures	such	as	the	frontal	cortex	or	frontal	lobe.	Hence,	these	models	miss	
the	cell	population-specific	effect	of	this	variant.	Training	these	models	on	cell	population-
specific	scRNA	data	could	be	an	interesting	next	step.

Using	our	model,	it	is	not	possible	to	test	trans-effects	of	variants	as	our	model	uses	a	limited	
genomic sequence region as input. Consequently, we could only test two variants related to 
Schizophrenia for CACNA1I, out of the 18 variants associated with CACNA1I [34]. Ideally, we 
would increase the length of the input sequence, however, it is not easy to learn long-range 
interactions	using	CNNs.	The	Enformer	model,	which	uses	a	200kb	sequence	as	input,	tackles	
this problem by combining transformers and CNNs [11]. Unfortunately, the Enformer model 
predicts	CAGE	reads	instead	of	expression	values,	so	we	cannot	trivially	extend	it	or	use	it	
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for	single-cell	data.	An	alternative	approach	might	be	to	use	their	well-trained	model	to	get	
an	embedding	for	every	input	sequence	and	use	this	embedding	to	predict	cell	population-
specific	expressions.

We	input	the	DNA	sequence	and	five	half-life	time	features	to	scXpresso.	However,	certain	
transcript	features,	which	are	related	to	the	half-life	time	features,	can	predict	zeros	in	the	
scRNA-seq	data	[36].	Whether	the	observed	zeros	in	scRNA-seq	data	are	technical	artifacts	
or	biologically	 informative	is	an	ongoing	debate.	We	believe	that	the	zeros	are	biologically	
informative	since	binarized	data	can	be	used	for	downstream	analysis,	resulting	in	comparable	
results to those obtained using scRNA-seq counts [37]. Furthermore, we would like to highlight 
that	 the	performance	of	 the	 cell	 population-specific	pseudobulk	models	when	 trained	on	
sequence-only	information	is	also	not	much	lower	as	compared	to	both	sequence	and	half-
life	time	features	(Figure	S9).	This	observation	supports	our	conclusion	that	the	half-life	time	
features	are	not	biasing	the	models	towards	scRNA-seq	artifacts.

Two future enhancements that we envision that could improve the performance of our model 
are	related	to	the	half-life	time	features	and	the	output	of	the	model.	Currently,	we	extract	five	
features	from	the	mRNA	sequence	to	approximate	the	half-life	time.	Recently,	a	new	model,	
Saluki,	was	developed	that	could	predict	mRNA	degradation	rates	directly	from	the	sequence	
of the gene [38]. Replacing the currently used features with those predicted by the Saluki 
model,	or	combining	these	features,	might	improve	the	cell	population-specific	predictions.	
A	 second	potential	 improvement	 relates	 to	 the	 current	output	of	 scXpresso,	which	 is	 the	
pseudobulk	expression	for	every	cell	population,	i.e.	the	average	gene	expression	across	all	
cells	from	that	population.	However,	this	ignores	the	variance	within	the	population.	It	might	
be	more	beneficial	 to	predict	 the	distribution	of	 gene	expression	across	each	population,	
instead of just one aggregated value. 

In	 summary,	 we	 have	 shown	 the	 potential	 of	 predicting	 cell	 population-specific	 gene	
expression	from	genomic	sequences	by	leveraging	the	resolution	of	single-cell	data,	opening	
the way for many new developments in this area. 

6.5 Code and data availability
The	pseudobulk	expression	values,	trained	models,	and	predictions	are	available	on	Zenodo:	
https://doi.org/10.5281/zenodo.7044908. 

The	code	to	reproduce	the	figures,	train	your	own	models,	show	the	effect	of	variants,	and	do	
in-silico saturation	mutagenesis	can	be	found	on	GitHub:	https://github.com/lcmmichielsen/
scXpresso. 
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CHAPTER 7

Alternative	splicing	contributes	 to	molecular	diversity	across	brain	cell	 types.	RNA-binding	
proteins	 (RBPs)	 regulate	 splicing,	 but	 the	 genome-wide	 mechanisms	 remain	 poorly	
understood.	 Here,	 we	 used	 RBP	 binding	 sites	 and/or	 the	 genomic	 sequence	 to	 predict	
exon inclusion in neurons and glia as measured by long-read single-cell data in human 
hippocampus	and	frontal	cortex.	We	found	that	alternative	splicing	 is	harder	 to	predict	 in	
neurons	compared	to	glia	in	both	brain	regions.	Comparing	neurons	and	glia,	the	position	of	
RBP	binding	sites	in	alternatively	spliced	exons	in	neurons	differ	more	from	non-variable	exons	
indicating	 distinct	 splicing	 mechanisms.	 Model	 interpretation	 pinpointed	 RBPs,	 including	
QKI,	potentially	regulating	alternative	splicing	between	neurons	and	glia.	Finally,	using	our	
models,	we	accurately	predict	and	prioritize	the	effect	of	splicing	QTLs.	Taken	together,	our	
models	 provide	new	 insights	 into	 the	mechanisms	 regulating	 cell-type-specific	 alternative	
splicing	and	can	accurately	predict	the	effect	of	genetic	variants	on	splicing.

7.1 Introduction
During	RNA	splicing,	introns	are	removed	from	the	precursor	mRNA.	Different	combinations	of	
exons	result	in	different	mRNA	isoforms,	which	may	differ	in	function [1–3]. This mechanism, 
called	alternative	splicing,	causes	most	of	the	complexity	of	human	tissues	and	cell	 types;	
approximately	 95%	of	 all	 human	 genes	 are	 believed	 to	 be	 spliced	 in	multiple	ways [4,5]. 
Across	different	tissues,	the	brain	has	the	highest	levels	of	exon	skipping	and	one	of	the	most	
distinctive	patterns	of	alternative	splicing [6]. 

Alternative	 splicing	 (AS)	 is	 partly	 regulated	 by	 RNA-binding	 proteins	 (RBPs) [7,8], which 
can	activate	or	inhibit	spliceosome	assembly	or	splice	site	recognition.	RBFOX	proteins,	for	
instance,	instruct	neuronal	differentiation	by	regulating	splicing	of	NIN which	in	turn	affects	
the	localization	of	the	corresponding	Ninein	protein [9,10].	Additionally,	splicing	regulation	
often	 relies	 on	 the	 combinatorial	 binding	 of	multiple	 RBPs.	 For	 example,	 the	 inclusion	 of	
exon 9 of Gabrg2 is	dependent	on	the	binding	of	RBFOX	and	NOVA [11]. Splicing simulators 
have taken into account splicing enhancers and silencers [12]	and	a	splicing	code	for	tissue-
dependent splicing has been elaborated [13–15].	However,	the	genome-wide	mechanisms	
regulating	splicing	across	different	cell	types	remain	largely	unknown.

Long-read	sequencing	is	an	emerging	technology	that	has	made	important	contributions	to	
RNA	biology	since	its	inception [16–20]. Long-read single-cell and single-nuclei sequencing 
in fresh [21,22] and frozen [23]	 tissue	 allows	 the	 study	of	 alternative	 splicing	 at	 the	 cell-
type	level	in	the	brain	and	other	complex	tissues.	Such	analyses	revealed	that	most	mouse	
genes	 show	differential	 isoform	expression	 across	 at	 least	 one	pair	 of	 cell	 types,	 regions,	
and/or	developmental	time	points	in	the	brain [24,25]. In accordance with prior studies [26–
28],	 single-nuclei	 isoform	RNA	sequencing	 (SnISOr-Seq)	of	 the	human	adult	 frontal	 cortex	
revealed	that	exons	associated	with	autism	spectrum	disorder	 (ASD)	are	variably	 included	
across cell types [23]. 

To	 understand	 (alternative)	 splicing	 mechanisms	 and	 the	 influence	 of	 RBPs,	 several	
computational	 methods	 have	 been	 developed.	 AVISPA,	 for	 instance,	 predicts	 alternative	
splicing	in	four	tissues	by	extracting	regulatory	features,	such	as	the	length	of	the	exon	or	
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the presence of RBP binding sites, from the mRNA sequence [14].	Other	methods,	including	
SpliceAI, DNABERT, Pangolin, and MTSplice, directly use the pre-mRNA sequence as input 
to their models [29–32].	However,	none	of	 the	 current	methods	predict	 cell-type-specific	
alternative	splicing	in	a	genome-wide	manner,	which	is	crucial	for	understanding	splicing	in	
heterogeneous	tissues	such	as	the	brain.	

Here,	we	 present	 two	methods	 to	 predict	 cell-type-specific	 exon	 inclusion	 using	 the	 pre-
mRNA	sequence	and/or	the	presence	of	RBP	binding	sites	in	the	hippocampus	and	frontal	
cortex.	After	training	our	machine	learning	models,	we	used	model	interpretation	to	study	
the	mechanisms	governing	cell-type-specific	exon	inclusion.	We	focused	on	variable	exons	
which	we	defined	as	exons	for	which	the	inclusion	rates	differ	in	neurons	and	glia.	We	found	
that the presence of RBP binding sites in variable exons compared to non-variable exons 
differs	more	in	neurons	than	in	glia.	This	indicates	that	the	alternative	splicing	mechanism	
in neurons deviates more from the non-variable mechanism. Furthermore, we show that 
some	RBPs,	including	QKI,	have	a	big	effect	on	exon	inclusion	in	glia,	that	the	regions	close	to	
the	splice	sites	are	most	important	for	predicting	exon	inclusion,	and	that	we	can	correctly	
predict	and	prioritize	the	effect	of	splicing	QTLs	and	prioritize	their	effects.

7.2 Results

7.2.1 Predicting exon inclusion is more difficult in neurons than 
in glia

To	define	the	rules	governing	exon	inclusion	in	distinct	cell	types,	we	trained	different	models	
to	predict	cell-type-specific	percent	spliced-in	(Ψ)	values	in	the	brain	(Figure	1A).	We	focused	
on	 neurons	 and	 glia	 in	 two	 human	 brain	 regions,	 hippocampus	 (HPC)	 and	 frontal	 cortex	
(FC),	and	calculated	Ψ	values	per	exon	by	aggregating	single-nuclei	isoform	RNA	sequencing	
(SnISOr-Seq)	 reads	 from	multiple	 individuals	 (Table	 1,	Methods) [23,25]. Most exons are 
either	almost	always	included	(Ψ ≈ 1)	or	excluded	(Ψ ≈ 0)	in	an	mRNA	molecule	(Figure	1B,	
S1A-C).	Furthermore,	most	exons	have	similar	values	 in	neurons	and	glia	(Figure	1C,	S1D).	
We	define	exons	with	different	inclusion	rates	in	neurons	and	glia	( | | .�� glia neur� � 0 25 )	as	
variable	exons.	 In	HPC	and	FC,	2,244	and	943	exons	are	variable	 respectively	 (Table	1).	 In	
contrast	to	non-variable	exons,	these	values	show	a	uniform	distribution	of	Ψ	 (Figure	1B).	
Even though we used a minimum of 10 reads per exon to calculate a Ψ	value	(Methods),	we	
believe	these	values	are	reliable.	When	comparing	the	Ψ values of the variable exons per 
individual	in	neurons	and	glia,	there	is	a	clear	separation	between	neurons	and	glia	(Figure	
S2).	 Since	 most	 exons	 are	 almost	 always	 included,	 we	 downsampled	 these	 exons	 when	
training	the	models	(Methods).

First,	we	used	a	logistic	regression	(LR)	model	to	predict	Ψ values from RBP binding sites of 
122	RBPs	from	the	ENCODE	project [8].	These	RBPs	were	measured	in	two	cell	lines	(K562,	
HepG2),	implying	that	this	data	is	not	brain	cell-type-specific.	We	generated	a	count	matrix,	
indicating	the	number	of	binding	sites	per	exon	for	each	RBP.	Since	the	position	of	an	RBP	
can	influence	its	function [33,34], we split these binding sites based on six possible binding 
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locations:	1)	upstream	of	the	exon	(up	to	400bp),	2)	overlapping	the	3’	splice	site,	3)	in	the	
exon,	4)	spanning	the	exon,	5)	overlapping	the	5’	splice	site,	and	6)	downstream	of	the	exon	
(up	to	400bp)	(Figure	1A).	

Any	model	 is	 strongly	 influenced	by	 its	 training	data.	A	model	 trained	on	all	 exons	might	
be	dominated	by	the	rules	governing	non-variable	exons,	while	cell-type-specific	 inclusion	
effects	 might	 be	 overlooked.	 Therefore,	 we	 trained	 three	 different	 models	 using	 10-fold	
cross-validation	and	either:	A)	all	exons	(LRall),	B)	exons	with	 | | .�� glia neur� � 0 1	 (LRvar0.1),	or	
C)	exons	with	 | | .�� glia neur� � 0 25	(LRvar0.25)	as	training	data	(Table	S1).	When	evaluating	the	
models on all exons, LRall showed	 the	highest	median	Spearman	correlation	between	 true	
and predicted Ψ values on all four datasets followed by LRvar0.1 and LRvar0.25	 (Figure	1D,	S3).	
On	 hippocampal	 variable	 exons,	 however,	 LRvar0.1 outperformed	 the	 other	 models	 (Figure	
1D).	The	performance	 increase	when	training	on	variable	exons	 indicates	that	the	splicing	
mechanism	in	these	variable	exons	is	somewhat	different	from	the	mechanism	in	non-variable	
exons. In the frontal cortex, the performance on neurons increased when the training data 
became	more	 specific,	while	 the	 performance	on	 glia	 decreased	 (Figure	 S3).	 Surprisingly,	
we predicted Ψ	values	more	accurately	in	glia	than	neurons	in	both	brain	regions	(median	
Spearman	correlation	of	0.54	vs.	0.23	 in	HPC,	and	0.57	vs.	0.10	 in	FC)	 (Figure	1D-F,	S3-4).	
Furthermore, using LRvar0.25 to predict Ψ values of all exons resulted in lower performance 
for	neurons	compared	to	glia	in	both	HPC	and	FC	(Figure	1D,	S3).	Indicating	that	the	learned	
splicing	patterns	for	variable	exons	in	neurons	do	not	generalize	to	non-variable	exons	-	likely	
because	the	underlying	molecular	grammar	is	different	in	the	two	exon	sets.	

7.2.2 Primary sequence is more informative for neurons

The	RBP	binding	sites	used	to	train	the	logistic	regression	models	were	measured	in	immune	
and	 liver	 cancer	 cell	 lines	and	are	 thus	not	 cell-type	 specific	 	-	 and	may	 reflect	glial	more	
than neuronal splicing as shown above. Furthermore, some RBPs known to be important 
for	splicing	in	the	brain,	such	as	NOVA1	and	NOVA2,	are	not	included	in	the	ENCODE	data 
[35,36]. To test whether this caused the low performance of the models on neurons, we 
trained sequence-based models - which are independent of any RBP data and comparable 
across	different	cell	types.	We	adapted	the	Saluki	model,	a	hybrid	convolutional	and	recurrent	
neural	network	that	uses	mRNA	sequences	to	predict	mRNA	degradation	rates [37], to predict 
Ψ	values	(Methods)	(Figure	1A,	S5).	The	input	sequence	is	6,144	bp	with	the	exon	of	interest	
centered in the middle. Since deep learning models need large training datasets, we trained 
a	model	using	all	exons	(DLall-seq)	and	a	model	using	exons	with | | .�� glia neur� � 0 1 (DLvar0.1-seq).	

Individuals Measured exons Variable exons

HPC	[25] 6 68,215 2,244

FC [23] 2 56,427 943

Table 1.	The	number	of	measured	exons	(exons	for	which	at	least	10	reads	were	sequenced	in	both	the	neurons	and	
glia)	and	variable	exons	(| | .��

glia neur�
� 0 25)	in	the	hippocampus	(HPC)	and	frontal	cortex	(FC).	
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Figure 1. Overview and performance of the Ψ prediction models. A) Schematic	overview	of	the	models	used	to	
predict	cell-type-specific	Ψ values. B) Distribution	of	Ψ values of glia in the hippocampus. C) Distribution	of	ΔΨglia-neur 
for the hippocampus. D)	Performance	of	the	different	models	during	10-fold	cross-validation	on	all	exons	and	the	
variable exons in glia and neurons in the hippocampus. E-F) Scatterplot	showing	the	predictions	of	LRvar0.1 for variable 
exons in glia and neurons. 
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In	 HPC,	 the	 LRall	 model	 outperformed	 the	 DL	 models	 when	 evaluating	 performance	 on	
all exons, but on variable exons, DLall-seq outperformed LRvar0.1 for	 neurons	 (Figure	 1D).	 For	
the	 variable	 exons	 in	 neurons,	 primary	 sequence	 is	more	 informative	 than	 the	measured	
ENCODE-derived	RBP-binding-site	data.	Even	though	the	performance	increases	for	neurons,	
the	performance	gap	between	neurons	and	glia	 remains.	Thus,	neuronal	 splicing	patterns	
probably	 have	 more	 complex	 regulation	 mechanisms	 that	 we	 do	 not	 capture	 with	 the	
current models. In FC, the performance of the DL models on all exons and variable exons was 
considerably	lower	compared	to	HPC	(Figure	1D,	S6).	This	is	likely	related	to	the	size	of	the	
training	data	which	is	significantly	smaller	for	FC	than	HPC	(Table	S1).	

Next, we combined sequence and RBP binding sites by adding a channel for every RBP which 
indicates	the	presence	of	a	binding	site	(DLall-seq-RBP)	(Figure	1A,	S5).	This	outperformed	the	LR	
models	and	resulted	in	the	best-performing	model	for	glia	(median	Spearman	correlation	of	
0.54	vs.	0.57	in	HPC,	and	0.57	vs.	0.65	in	FC)	(Figure	1D,	S3,	S6).	This	improvement	indicates	
that	we	can	capture	regulatory	information	from	sequence	beyond	those	present	in	RBP	data	
alone. For neurons, however, DLall-seq-RBP had lower performance than DLall-seq,	again	confirming	
that	the	ENCODE	RBP	data	is	more	informative	for	glia	than	neurons.	

We	also	 trained	DL	models	 that	do	not	use	 splice	 sites	or	only	use	RBPs	as	 input	 for	 the	
neurons	and	glia	in	HPC	to	understand	how	the	input	channels	affect	performance	(Figure	
S7).	Omitting	splice	sites	only	slightly	decreased	the	performance,	which	indicates	that	the	
model can recognize the splice sites quite easily from the sequence itself. For glia, using the 
RBPs as the only input feature results in a comparable performance to the LRall model	(median	
Spearman	correlation	of	0.55	vs.	0.54)	and	an	even	better	performance	than	sequence	and	
splice	sites	only	(median	Spearman	correlation	of	0.49).	However,	for	neurons,	we	observe	
the opposite; using RBP binding sites reduces performance compared to the DLall-seq model 
(median	Spearman	correlation	of	0.23	vs.	0.30).	

7.2.3 Exon inclusion mechanisms are conserved between human 
and mouse

As	cell-type-specific	alternative	splicing	is	partially	conserved	between	humans	and	mice [25], 
we	hypothesized	 that	 adding	mouse	data	 to	our	model	would	 increase	performance.	We	
combined	human	HPC	data	with	mouse	HPC [25]. Since mouse FC data is not available, we 
combined	human	FC	with	data	from	the	mouse	visual	cortex	(VIS).	While	these	two	cortical	
regions	are	not	identical,	they	do	share	many	common	characteristics.	Especially	in	mouse	
HPC,	few	exons	are	variable	(528)	compared	to	VIS	(1,404)	(Table	S2,	Figure	S8).	Although	
DLall-seq-RBP performed best in glia, we only trained models with sequence and splice sites as 
input	channels	 (DLall-seq-m, DLvar01-seq-m)	 since	RBP	binding	sites	were	not	measured	 in	mouse	
cell	lines.	In	HPC,	the	performance	on	variable	exons	of	both	cell	types	slightly	increased	by	
adding	the	mouse	data	(Figure	1D).	On	FC,	the	performance	on	all	exons	increased	as	well	
(Figure	S6),	supporting	our	hypothesis	that	not	enough	training	data	was	available	to	train	
these models on human exons alone. Similar to the human data, glial Ψ values were easier to 
predict	than	neuronal	ones	in	mice	(Figure	S9).	
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7.2.4 The splicing mechanisms in neurons diverged more than in 
glia

Our	above	results	show	that	neuronal	Ψ values are harder to predict than glial regardless of 
the	model	or	input	data.	Hence,	splicing	mechanisms	in	neurons	might	be	different	than	in	
glia	and	more	complex.	However,	Ψ values could be biased, making it easier to predict in glia. 
To	exclude	the	latter,	we	used	the	hippocampus	data	to	assess	whether	glia	and	neurons	are	
similar	 in	terms	of	1)	Ψ	-value	distributions,	2)	heterogeneity	within	each	cell	type,	and	3)	
variation	across	individuals.	

First, comparing Ψ	distributions,	more	values	are	close	to	0	or	1	in	glia	than	neurons	(Figure	
S10AB),	which	is	most	apparent	for	the	non-variable	exons	(two-sided	Kolmogorov-Smirnov	
test,	p-value	<	2.2e-16).	 For	 variable	exons	 (Figure	S10B),	however,	both	distributions	are	
not	different	 (two-sided	Kolmogorov-Smirnov	 test,	p-value	=	0.44).	Thus,	data	distribution	
differences	cannot	explain	all	observed	differences	between	neurons	and	glia.	

Second,	to	quantify	the	heterogeneity	within	a	cell	type,	we	measured	the	difference	in	Ψ 
values	between	finer	cell-type	classifications.	For	neurons,	we	compared	the	inhibitory	and	
excitatory	neurons,	and	for	glia,	we	compared	oligodendrocytes	and	astrocytes.	Within	glia,	
we	have	more	variable	exons	(| | .�� � 0 25)	compared	to	neurons	(831	vs.	745).	In	neurons,	
more	exons	have	an	extreme	difference	(| | .�� � 0 5)	(92	vs.	70)	(Figure	S10CD).	Compared	
to	the	total	exon	number	defined	for	both	cell	types	in	neurons	and	glia	(28,296	and	27,047	
respectively),	both	numbers	are	small.	Thus,	this	cannot	explain	the	difference	in	performance	
between neurons and glia. 

Third, to compare the variance across individuals for glia and, separately, for neurons, we 
calculated Ψ	values	per	individual	instead	of	using	the	aggregated	counts.	We	calculated	the	
variance	for	an	exon	only	if	≥3	individuals	have	≥10	reads	for	that	exon	in	both	neurons	and	
glia.	For	both	non-variable	and	variable	exons,	the	variance	is	higher	in	glia	(two-sided	paired	
Wilcoxon	signed-rank	test,	p-value	=	1.3e-28	and	8.9e-5	respectively)	(Figure	S10E).	Thus,	the	
data	do	not	explain	observed	differences	in	performance	between	neurons	and	glia.	

We	 then	 hypothesized	 that	 splicing	 mechanisms	 regulating	 variable	 exons	 in	 neurons	
might	 differ	 from	 the	 non-variable	 exons.	 To	 test	 this	 hypothesis,	 we	 compared	 the	 RBP	
binding	profiles	between	variable	and	non-variable	exons	 in	neurons	and	glia	 (Figure	2A).	
We	performed	these	comparisons	 for	exons	with	a	high	 (≥ 0 5. )	and	a	 low	Ψ	 value	 (< 0 5. )	
separately.	The	binding	profiles	between	variable	and	non-variable	exons	differ	significantly	
more	in	neurons	compared	to	glia	in	HPC	(Figure	2B)	and	FC	(Figure	2C).	Non-variable	exons	
with high Ψ	values	more	often	have	a	binding	site	at	the	3’	splice	site	for	splicing	factors	such	
as U2AF1, U2AF2, and SF3B4 compared to non-variable exons with low Ψ	values	(Figure	2D,	
S11AB).	In	glia,	variable	exons	show	a	similar	pattern	(Figure	2E,	S11AB).	However,	binding	
sites	for	these	splicing	factors	cannot	differentiate	between	exons	with	high	and	low	Ψ values 
in	neurons	(Figure	2F,	S11AB),	indicating	that	these	RBP	binding	sites	are	likely	not	used	in	
neurons.	In	the	hippocampus,	PTBP1	differs	the	most	between	neurons	and	glia	(Figure	S11C).	
PTBP1	is	a	position-dependent	RBP:	binding	within	or	upstream	of	an	exon	represses	splicing	
while	 binding	 downstream	 activates	 splicing	 in	 HeLa	 cells [38].	 Our	 RBP	 binding	 profiles	
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contradict	these	known	mechanisms.	 In	HeLa	cells,	however,	PTBP1	is	highly	and	PTBP2	is	
lowly	expressed,	while	this	is	vice	versa	in	the	hippocampus	(Figure	S12).	PTBP1	RBP	binding	
profiles	obtained	from	non-brain	cell	lines	are	thus	less	likely	to	reflect	splicing	mechanisms	
in	the	hippocampus.	Strikingly,	the	binding	profile	of	PTBP1	in	variable	exons	in	neurons	is	
again	considerably	different	from	the	variable	exons	in	glia	and	the	non-variable	exons.	There	
is	no	position-dependent	regulation	and	no	difference	between	exons	with	a	high	and	low	Ψ 
value.	In	the	hippocampus,	only	one	RBP,	HNRNPC,	showed	the	opposite	pattern	with	larger	
differences	in	glia	compared	to	neurons	(Figure	S11D).	

7.2.5 Interpretation of LR models reveals cell-type-specific splicing 
mechanisms

To	further	pinpoint	the	factors	underlying	differences	in	splicing	between	glia	and	neurons,	
we	analyzed	the	coefficients	of	the	logistic	regression	models.	These	coefficients	reflect	the	
importance	of	each	RBP	binding	position	in	regulating	cell-type-specific	splicing.	We	compared	
the	coefficients	of	four	models	for	the	hippocampus	(two	cell	types,	and	two	training	sets)	
and	focused	on	features	present	in	at	least	50	exons	and	with	a	coefficient	>	0.05	in	at	least	

Figure 2. The difference in RBP binding profiles between non-variable and variable exons. A) Schematic	over-
view	 showing	 how	 to	 generate	 the	 RBP	 binding	 profiles	 of	 non-variable	 (| | .��

glia neur�
� 0 25)	 and	 variable	

( | | .��
glia neur�

� 0 25 )	exons	in	neurons	in	the	hippocampus.	We	generated	these	RBP	binding	profiles	for	every	RBP	
and split the exons based on their Ψ	value	(threshold	=	0.5)	and	their	variability.	We	calculated	the	mean-squared	
error	(MSE)	between	the	profiles	in	non-variable	and	variable	exons.	We	do	this	for	the	exons	with	a	high	and	low	Ψ 
value	resulting	in	four	comparisons	per	RBP.	B-C)	Boxplot	showing	the	MSE	between	the	RBP	profiles	in	non-variable	
and	variable	exons	in	neurons	(blue)	and	non-variable	and	variable	exons	in	glia	(orange)	for	the	B) hippocampus 
and C)	frontal	cortex.	Every	point	in	the	boxplot	is	one	RBP.	P-values	are	calculated	using	a	two-sided	paired	Wilcox-
on signed-rank test. D-F)	Binding	profile	of	U2AF1	in	D) non-variable exons, E) variable exons in glia, and F) variable 
exons in neurons. 
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one	model	 (191	out	of	732	 features).	The	model	 coefficients	first	 cluster	based	on	which	
exons	are	used	during	training	(all	vs.	variable)	(Figure	3A).	This	clustering	indicates	that	the	
mechanisms for non-variable and variable exons, represented by the LRall and LRvar0.1,	differ	
more	than	the	cell-type-specific	mechanisms.	The	RBPs	cluster	into	two	groups:	features	with	
positive	and	features	with	negative	coefficients	(Figure	3A).	As	expected,	splicing	repressors,	
which	are	part	of	the	heterogeneous	nuclear	ribonucleoproteins	(hnRNP)	family [39], have 
a	 largely	negative	weight	 in	all	models	 (Figure	3B).	PTBP1,	 for	which	we	 saw	a	difference	
between the non-variable and variable exons in the hippocampus, is a member of the hnRNP 
family	and	has	a	potential	position-dependent	effect	in	glia	based	on	the	RBP	binding	profiles	
(Figure	S11C).	The	LRvar0.1-glia-HPC	model	correctly	 learned	this	effect:	PTBP1	binding	at	the	3’	
splice	site	and	within	the	exon	have	coefficients	of	-0.05	and	0.01	respectively.	The	model	
coefficient	for	PTBP1	binding	at	the	3’	splice	site	 is	among	the	ten	features	that	differ	the	
most	 between	 glia	 and	 neurons	 (Figure	 3C,	 LRvar0.1-glia-HPC	vs LRvar0.1-neur-HPC)	which	 indicates	 a	
potential	 cell-type-specific	effect	 corresponding	 to	 the	established	 switch	between	PTBP1	
and PTBP2 [40–42]. 

Figure 3. Interpretation of the logistic regression models. A) Heatmap	showing	the	coefficients	for	the	RBP-location	
features	in	the	different	logistic	regression	models.	The	input	features	are	filtered	using	a	minimum	of	50	RBP	sites	
and a value of at least 0.05 in one of the models. The values are clipped between  -0.2 and 0.2. B)	Heatmap	showing	
coefficients	of	hnRNPs	in	the	different	models.	C)	Heatmap	showing	the	top	10	cell-type-specific	input	features	with	
the	biggest	difference	between	HPC-glia	(var)	and	HPC-neur	(var).	D-E)	Binding	profiles	of	QKI	in	variable	exons	in	
neurons and glia.
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QKI	binding	at	the	3’	splice	site	has	the	strongest	cell-type-specific	effect	in	the	hippocampus	
(model	coefficient	=	-0.15	vs.	0.12	for	glia	and	neurons	respectively),	which	reflects	differences	
in	the	RBP	binding	profiles	(Figure	3D-E).	In	glia,	a	binding	site	that	overlaps	the	3’	splice	site	
leads to lower inclusion rates, while the opposite happens in neurons. In the scRNA-seq data, 
QKI	has	higher	expression	in	glia	compared	to	neurons	in	the	hippocampus	(Wilcoxon	rank	
sum	test,	adj.	p-value	<	2.2e-16)	(Figure	S13).	Both	observations	correspond	to	the	known	
mechanism	of	QKI,	which	 inhibits	 splicing	by	 competing	with	 the	 core	 splicing	machinery 
[10,43].	 In	mice,	 QKI	 is	 important	 during	myelination	 and	 oligodendrocyte	 differentiation 
[44,45].	Its	role	in	the	human	brain	is	less	studied,	but	a	role	in	oligodendrocyte	formation	
and Schizophrenia has been suggested [46,47].	Interestingly,	variable	exons	are	enriched	for	
QKI	binding	sites	compared	to	non-variable	exons	(Fisher’s	exact	test,	adj.	p-value	=	1.6e-13).	
Besides the 3’ splice site, QKI binding downstream of an exon is also in the top 10 cell-type-
specific	features.	The	effect	of	QKI	downstream	of	an	exon	is	the	opposite	compared	to	QKI	
binding	at	 the	3’	 splice	 site,	which	 indicates	a	potential	position-dependent	effect	of	QKI.	
Such	position-dependent	regulation	of	QKI	has	been	shown	in	lung	cancer [48] but, to our 
knowledge, not in the brain. 

In	 contrast	 to	QKI,	most	 of	 the	 cell-type-specific	RBPs	 identified	using	our	 LR	models	 are	
neither	 differentially	 expressed	 nor	 differentially	 spliced.	 Exceptions	 are	 STAU2,	 which	 is	
upregulated	in	neurons	(Wilcoxon	rank	sum	test,	adj.	p-value	<	3.39e-16),	and	EWSR1,	which	
is	differentially	spliced	(Table	S3).	The	latter	could	indicate	that	distinct	isoforms	of	EWSR1	
influence	RNA	splicing	in	different	ways.	

7.2.6 The sequence close to the splice sites is most important for 
predicting exon inclusion 

Given	that	the	RBP-binding-site	data	is	not	brain-specific	and	that	 it	 lacked	measurements	
from	some	key	RBPs,	we	set	out	to	identify	sequence	features	that	influence	Ψ	predictions	
in	 the	 deep	 learning	 models.	 We	 used	 in-silico saturation	 mutagenesis	 (ISM,	 Methods)	
to	 systematically	 predict	 how	 nucleotide	 substitutions	 in	 the	 input	 sequence	 affect	 the	
predicted Ψ value [49–52]. Since DLvar0.1 performed considerably worse than DLall	(Figure	1D),	
we	 focused	on	 interpreting	DLall for	 glia	 in	 the	hippocampus,	which	had	higher	prediction	
accuracy	than	neurons,	instead	of	looking	for	cell-type-specific	effects.	

Since	ISM	is	computationally	expensive,	we	mutated	the	input	sequence	of	the	9,929	exons	
with | | .�� glia neur� � 0 1 	instead	of	all	exons.	The	ISM	score	indicates	how	much	a	mutation	
increases or decreases the predicted Ψ	 value	compared	 to	 the	average	prediction	at	 that	
position	for	that	sequence	(Methods).	As	expected,	mutations	around	the	splice	sites	and	
within	the	exon	strongly	affect	the	predicted	Ψ	value	(Figure	4A).	These	results	reflect	the	
known importance of the splice site’s consensus sequence to be recognized by the splicing 
machinery.	The	two	nucleotides	before	and	after	the	exon		-the	AG	acceptor	and	GU	donor	
dinucleotides-	 have	 the	 strongest	 predicted	 effects.	 Looking	 at	 the	 maximum	 absolute	
ISM	score,	only	mutations	within	a	range	of	50bp	upstream	of	the	3’	splice	site	and	150bp	
downstream	of	the	5’	splice	site	have	a	value	>	0.1	(Figure	S14).	This	is	in	line	with	a	recent	
computational	model	that	predicted	human	splice	sites	using	a	window	of	400bp	on	each	
side of the splice site and obtained an overall accuracy of 96% [53].	However,	smaller	values	
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of	 >0.05	 could	 be	 observed	 across	 almost	 the	 whole	 input	 sequence.	 Although	 distant	
splicing regulators have been reported [54],	potential	variability	in	distant	motifs	and/or	their	
position	may	prevent	their	detection	by	our	model.

Besides the region around the exon of interest, we observed higher-than-average ISM scores 
within	nearby	exons	and	their	flanking	region	(Figure	S15).	The	enrichment	of	RBP	binding	

Figure 4. Interpretation of the deep learning model for glia in the hippocampus. A) Average absolute ISM score 
across	the	9,929	exons.	The	mutations	within	the	exons	are	binned	in	300	bins.	The	zoomed-in	plot	ranges	from	
200bp upstream of the 3’ splice site to 200bp downstream of the 5’ splice site. B)	Mutation	profile	for	an	exon	in	
XRN2.	The	colors	of	the	exons	below	the	profile	indicate	the	exon	of	interest	and	the	neighboring	exons	which	have	
an ISM score in the top 10. C) Single-cell long reads for XRN2.	Each	line	is	a	single	cDNA	molecule.	The	bottom	black	
track	shows	the	Gencode	annotation.	D)	Mutation	profile	for	an	exon	in	TPCN1.	In	the	exon,	a	motif	corresponding	
to RBM45 is found. E)	Schematic	overview	of	the	sQTL	analysis.	F)	Scatterplot	showing	the	predicted	effect	for	each	
variant. The color of the points indicates the distance to the closest splice site. A grey dot means that a variant falls 
within	the	exon	of	interest.	The	numbers	in	black	and	red	indicate	the	number	of	predictions	in	a	quadrant	when	no	
threshold	and	a	threshold	of	0.005	are	used	respectively.	G) ISM scores for two variants related to the same exon of 
RARS1.	A	negative	effect,	corresponding	to	the	positive	slope,	is	predicted	for	the	first	variant.	A	smaller,	but	positive	
effect	is	predicted	for	the	second	variant.
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sites	 in	 these	 regions	could	explain	 the	higher	scores.	Alternatively,	our	model	potentially	
recognized coordinated events between exons. To test this, we selected the top 10 exons 
with the highest absolute ISM scores within their neighboring exons and visualized the 
single-cell	long	reads	from	our	data	that	span	both	exons	(Methods).	These	reads	can	inform	
whether	the	two	exons	pair	non-randomly	(thus	in	coordination [21,23,55,56])	or	randomly.	
Exon 24 in XRN2	 appeared	 twice	 in	 the	 top	10	 list	with	 two	neighboring	exons	 (exons	21	
and	22)	strongly	 influencing	its	Ψ	value	(Table	S4).	All	three	exons	(21,	22,	and	24)	have	a	
Ψ value of around 0.8 and the exons are either all included or all excluded in the single-
cell	long-read	data,	suggesting	these	exons	are	mutually	associated	(Figure	4BC).	Mutations	
affecting	the	inclusion	of	one	of	these	exons	will	most	likely	affect	the	other	exons	as	well.	In	
the	top	10	scores,	four	other	cases	could	pinpoint	exon	coordination	events	(Figure	S16-19).	
In the remaining four cases, the exons pair randomly, so there is no evidence of exon-exon 
coordination	(Figure	S20-23).	

To further interpret sequences with a high ISM score, we used TF-MoDISco [57]	to	identify	
motifs	in	sequences	with	large	effects	on	exon	inclusion.	Since	the	region	around	the	splice	
site	had	the	highest	ISM	scores,	many	of	the	top	motifs	identified	by	TF-MoDISco	correspond	
to	the	consensus	splice	sites	and	associated	motifs,	 including	the	well-known	AG	acceptor	
dinucleotide,	the	poly-pyrimidine	tract	(PPT)	upstream	of	the	exon,	and	the	extended	splice	
donor	motif	with	 the	GU	dinucleotide	 (Supplementary	 File	 1,	 Figure	 S24).	We	also	 found	
motifs	that	match	known	RBP	binding	motifs,	which	were	not	 in	our	 input	data	for	the	LR	
model,	and	hence	could	not	be	tested	for	cell-type-specific	effects.	For	example,	we	found	
a	motif	corresponding	to	RBM45	 in	exon	12	of	TPCN1 (Figure	4D,	Table	S4),	which	seems	
to	promote	exon	inclusion.	RBM45	regulates	constitutive	splicing	and	can	probably	activate	
or repress the inclusion of an exon, but the exact mechanisms are currently unknown [58]. 
Taken	 together,	 characterizing	 important	 sequence	 features	 from	 DL	models	 can	 identify	
splicing	regulators	beyond	those	we	can	identify	based	on	available	RBP	measurements.	

7.2.7 Prioritizing the effect of splice QTLs using the DL models

So	far,	we	showed	how	LR	and	DL	model	interpretations	can	be	used	to	reveal	the	regulatory	
mechanisms	of	RBPs	governing	cell-type-specific	exon	 inclusion.	Besides	 this	 fundamental	
knowledge,	we	can	use	our	DL	models	to	predict	the	effects	of	genetic	variants	on	splicing.	
Accurately	predicting	these	effects	can	help	prioritize	variants	of	 interest.	To	test	the	rele-
vance	of	our	model	predictions	for	genetic	variants,	we	used	splicing	quantitative	trait	loci	
(sQTLs)	from	the	hippocampus	data	from	GTEx	v8 [59]. Variants in this dataset are linked to 
intron-excision	ratios	instead	of	exon	inclusion.	We	extracted	introns	and	their	corresponding	
variant(s)	that	span	an	exon	in	our	data	and	predicted	the	effect	of	the	variant(s)	on	that	exon	
(Figure	4E).	 In	 total,	326	variants	are	within	 the	 input	 range	of	our	model.	These	variants	
correspond	to	122	introns	and	158	exons.	Some	introns	thus	span	multiple	exons	and	most	
introns	have	multiple	variants	linked.	For	every	variant,	a	slope	indicates	whether	the	corre-
sponding	intron	is	excised	more	or	less	compared	to	the	reference	allele.	We	expect	negative	
slopes to correspond to an increased Ψ value of the exon of interest which would result in 
�ISMalt ref� � 0.	Conversely	a	positive	slope	would	result	in�ISMalt ref� � 0 (Figure	4E).	How-
ever,	more	complex	scenarios,	such	as	a	variant	affecting	adjacent	exons,	may	arise	as	well.	
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Using	our	model,	we	predicted	an	effect	(| | .�ISMalt ref� � 0 005)	for	71	out	of	326	variants	
which	corresponds	to	61	of	the	122	introns.	For	83%	(59	out	of	71)	of	these	variants,	our	
model	predicts	the	expected	effect	correctly	(Figure	4F,	S25).	Most	of	the	variants	with	an	
effect	are	very	close	to	the	splice	sites:	74.6%	are	within	the	exon	or	a	distance	of	15bp	to	
either	the	3’	or	5’	splice	site.	These	cases	most	likely	affect	exonic	splicing	enhancers	or	the	
binding	of	U1	and	U2	snRNA.	For	14	of	61	introns	where	our	model	did	not	predict	an	effect,	
all	corresponding	variants	are	outside	of	the	intron	itself.	Here,	the	splicing	of	adjacent	exons	
is most likely altered instead of our exon of interest. For 2 of these 14 exons, all variants are 
even outside of the gene itself.

Three	exons	have	multiple	 corresponding	 variants	with	a	predicted	effect.	 For	 exon	15	 in	
ZNF880 (Table	S4),	 three	variants	have	a	predicted	expected	effect.	The	other	 two	exons,	
however,	have	two	variants	with	a	contradicting	predicted	effect.	In	both	cases,	the	variant	
with	the	biggest	predicted	effect	is	in	line	with	the	slope	of	the	sQTL	of	the	intron.	For	exon	
25 in RARS1 (Table	S4),	for	 instance,	variant	one	is	 located	in	the	exon	(168,498,025;	G	→	
T)	 and	variant	 two	 is	 located	before	 the	exon	 (168,497,923;	C	→	T).	 For	 variant	one,	our	
model	predicted	the	expected	effect,	while	our	model	predicted	the	opposite	for	variant	two	
(Figure	4G).	Variant	one,	the	variant	with	the	biggest	and	correctly	predicted	effect,	is	located	
in a binding site for SRSF1 according to eCLIP data [8].	RNA	recognition	motif	2	(RRM2)	of	
SRSF1	interacts	with	the	GGA	motif.	A	G	→	T	mutation	in	the	first	nucleotide	will	thus	hinder	
the binding of SRSF1 [60].	Variant	two	is	located	in	a	stretch	of	G’s.	At	this	location,	there’s	
a	binding	site	 for	ELAVL1,	a	protein	 regulating	mRNA	stability,	and	hnRNP	 family	member	
HNRNPK,	which	 tends	 to	 repress	 splicing [8]. Using the DL models, we can thus correctly 
predict	the	effect	for	most	sQTLs	and	prioritize	their	effects.	

7.3 Discussion
We	trained	 logistic	 regression	and	deep	 learning	models	 to	predict	cell-type-specific	exon	
inclusion	in	human	brain	samples.	Since	this	is	the	first	attempt	to	leverage	long-read	single-
cell sequencing data for this task, we can use our models to decipher the grammar underlying 
cell-type	specificity	of	splicing.	Using	model	interpretation,	we	pinpointed	interesting	RBPs,	
such	as	QKI,	that	could	drive	differential	splicing	between	neurons	and	glia.	Furthermore,	we	
show	that	the	location	of	RBP	binding	sites	differs	more	between	variable	and	non-variable	
exons in neurons compared to glia. This indicates that the splicing mechanisms controlling 
exon	inclusion	in	neurons	are	more	different	compared	to	the	general	mechanism.	

For	 most	 RBPs,	 RBP	 binding	 profiles	 of	 non-variable	 exons	 with	 high	 and	 low	 Ψ values 
showed	distinct	 patterns.	 Considering	U2AF1	 for	 example,	 exons	with	 a	 high	Ψ value are 
more likely to have a binding site close to the 3’ splice site compared to exons with a low 
Ψ	value.	These	RBPs	behave	differently	in	variable	exons	in	neurons,	and	for	most	RBPs	the	
difference	between	exons	with	a	 low	and	high	Ψ value is missing. These features are thus 
not	informative	for	neurons,	which	explains	the	low	performance	of	the	logistic	regression	
models on neurons. The U2AF heterodimer, composed of U2AF1 and U2AF2, is believed to 
bind	every	polypyrimidine	tract	and	AG	dinucleotide	in	3’	splice	site	regions [61–63]. Binding 
may	not	happen	on	specific	sites	repressed	by	other	factors.	The	potential	binding	sites	are	
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still	there,	but	they	might	be	used	by	a	competing	RBP	in	neurons.	Interestingly,	most	RBPs	are	
not	differentially	expressed	or	differentially	spliced	between	neurons	and	glia.	For	these	RBPs,	
post-translational	modifications,	such	as	phosphorylation,	might	differ	between	neurons	and	
glia	and	could	change	 their	 function [64,65]. Furthermore, RBP binding sites measured in 
non-brain	cell	lines	might	not	always	be	representative	of	splicing	in	the	hippocampus	and	
frontal	 cortex.	 The	expression	of	RBPs	 can	differ	dramatically	 between	 the	non-brain	 and	
brain	tissues	as	was	seen	for	PTBP1.

The deep learning models, however, also perform poorly on the variable exons in neurons. 
The model trained on all exons focuses only on learning the general splicing mechanisms, 
and the model trained on the variable exons might not have enough training data. In glia, 
the	model	trained	on	all	exons	performs	well	on	the	variable	exons.	Again	indicating	that	the	
variable exons in glia follow the rules of the general splicing mechanisms more. The worse 
performance of the DLall-seq models	on	neurons,	in	combination	with	the	distinct	RBP	binding	
profiles,	supports	our	conclusion	that	the	splicing	mechanisms	in	variable	exons	in	neurons	
diverged from the mechanisms in non-variable exons. 

A	potential	explanation,	in	line	with	the	diverged	RBP	binding	sites,	is	that	splicing	in	neurons	
is	less	sequence-dependent.	Other	factors,	such	as	chromatin	features	and	polymerase	speed 
[66–79],	RNA	methylation [80–82]	as	well	as	other	modifications,	and	transcription	 factor	
binding sites [83],	 influence	 splicing	 as	 well.	 These	 features	might	 explain	 the	 difference	
between	neurons	 and	glia.	Altered	 chromatin	accessibility	or	RNA	methylation,	 could,	 for	
instance, explain why certain RBP binding sites are not used in neurons anymore. Furthermore, 
neuronal	genes	-	by	definition	more	expressed	in	neurons	-	are	more	susceptible	to	missplicing 
[84].	While	we	did	not	focus	on	missplicing,	this	indicates	that	splicing	mechanisms	might	be	
different	in	neurons.	Also,	the	gene	expression	of	human	neurons	diverged	faster	from	other	
primates compared to glia [85]. A similar divergence could have occurred with the splicing 
mechanisms.

For	the	deep	learning	model,	we	tested	the	effect	of	different	lengths	for	the	input	sequence.	
Even	though	all	lengths	showed	a	very	similar	performance,	we	used	a	relatively	long	input	
sequence	 (6,144	 bp)	which	 had	 the	 advantage	 that	we	 could	 predict	 the	 effect	 of	more	
mutations.	When	predicting	the	effect	of	sQTLs,	however,	we	predict	a	strong	effect	mainly	
for	variants	close	to	the	exon	of	interest.	The	region	close	to	the	splice	sites,	however,	still	
contributes	 the	most	 to	 the	predictions.	 This	 is	 in	 contrast	 to	 splice	 site	predictions	 from	
SpliceAI,	for	which	an	input	sequence	of	10kb	significantly	outperforms	400	bp [29]. SPLAM, 
however, outperforms SpliceAI while only using 400 bp [53].	Of	note,	this	does	not	preclude	
the	mechanistic	influence	on	splicing	decisions	by	motifs	further	upstream.	Rather,	these	data	
suggest	that	such	distant	RNA	binding	sites	are	highly	variable	regarding	their	position	to	the	
exon.	This	variability	in	position	could	prevent	the	model	from	detecting	such	motifs.	Similar	
observations	have	been	made	for	models	that	predict	gene	expression.	Even	though	the	best-
performing	model	uses	a	long	input	sequence	(196kb),	only	one-third	of	the	receptive	field	is	
used	during	predictions	and	distal	enhancers	are	not	captured	by	the	model [51,86].

Another possible advantage of a longer input sequence is that it would be possible to look 
at	coordinated	events.	Exons	in	the	human	brain	are	often	mutually	associated	or	mutually	
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exclusive [23,55,87–89].	 Such	 events	 can	 even	 be	 cell-type-specific.	 For	 instance,	 two	
neighboring exons in WDR49 are perfectly coordinated in astrocytes only [23]. Using our 
model, the ISM scores within neighboring exons are higher than the ISM scores of the rest of 
the sequence. For some exons, these higher scores indeed indicate that there is exon-exon 
coordination.	Since	exon-exon	coordination	is	so	common,	predicting	such	events	might	be	
more	beneficial	than	focusing	on	individual	exons.	

Furthermore,	 the	 longer	 input	 sequence	 enables	 predicting	 the	 effect	 of	 more	 sQTLs.	
However,	most	variants	the	model	predicted	an	effect	for	are	near	the	splice	sites.	For	these	
variants,	the	model	obtained	a	high	accuracy	(83%)	and	could	be	used	to	prioritize	the	effect	
of	sQTLs	as	well.	Nonetheless,	a	limitation	of	the	current	DL	models	is	that	they	lack	cell-type	
specificity.	 The	DL	models	 need	 substantial	 training	 data,	 so	 training	 on	 all	 exons	 yielded	
the highest performance. As a consequence, these models focused on the general splicing 
mechanisms	and	yielded	better	performance	on	variable	exons	in	glia	than	neurons.

In	conclusion,	to	increase	our	understanding	of	(alternative)	splicing	in	the	brain,	we	trained	
two types of models to predict exon inclusion in neurons and glia of the hippocampus and 
frontal	 cortex.	 Ideally,	 these	models	make	perfect	predictions	 such	 that	 they	can	be	used	
in	 the	 clinic	 for	 predicting	 the	effects	of	 variants	or	 for	 personal	 splicing	predictions.	 The	
performance	of	our	models,	however,	is	not	optimal	yet.	Nevertheless,	we	show	how	model	
interpretation	yields	important	biological	discoveries	including	the	different	mechanisms	in	
neurons	and	glia.	This	demonstrates	the	potential	of	using	long-read	single-cell	data	for	this	
task. 

7.4 Methods

7.4.1 Calculating cell-type-specific Ψ values

For	the	human	data,	we	combined	SnISOr-Seq	data	from	6	individuals	for	the	hippocampus	
and	2	individuals	for	the	frontal	cortex	(Table	1).	For	the	mouse	data,	we	combined	ScISOr-
Seq2	data	from	two	mice	for	the	hippocampus	and	two	mice	for	the	visual	cortex	(Table	S2).	
Scisorseqr	was	used	to	map	and	align	reads	to	GRCh38	for	human	and	mm10	for	mouse	to	
identify	splice	sites	for	each	dataset	separately [24].	We	used	IsoQuant	to	correct	the	splice	
sites [90]. Using all exons appearing as an internal exon in a read, we calculated:

●	 The	number	of	long-read	molecules	containing	this	exon	(both	splice	sites	included):	
Xin 

●	 The number of long-read molecules assigned to the same gene as the exon, which 
skipped the exon but includes 50 bases on both sides: Xout 

●	 The	number	of	long-read	molecules	supporting	the	acceptor	of	the	exon	and	ending	
on the exon: Xacc In

●	 The	number	of	long-read	molecules	supporting	the	donor	of	the	exon	and	ending	
on the exon: Xdon In

●	 The number of long-read molecules overlapping the exon: Xtot
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Non-annotated	exons	with	one	or	two	annotated	splice	sites,	≥70	bases	of	non-exonic	(in	the	
annotation)	bases,	were	excluded	as	intron-retention	events	or	alternative	acceptors/donors	
We	then	calculated:	

●	 �overall
X X X

X X X X
in accIn donIn

in accIn donIn out
� � �

� � �

●	 �acceptor
X X

X X X
in accIn

in accIn out
� �

� �

●	 �donor
X X

X X X
in donIn

in donIn out
� �

� �
 

If	0.02	≤	Ψi	≤	0.98	where	i ∈ {overall,acceptor,donor} in the pseudo-bulk data, the exon was 
kept.	Next,	we	filtered	exons	based	on	 the	number	of	 reads.	We	only	calculate	Ψoverall for 
a cell type in a certain brain region if at least 10 long-read UMIs are sequenced across the 
different	individuals	(Xtot ≥ 10).	Since	individuals	of	different	datasets	were	sequenced	using	
a	different	read	depth,	we	normalized	the	read	counts	by	dividing	it	by	the	total	number	of	
reads	for	an	individual	before	calculating	Ψoverall.	We	then	calculated	Ψoverall for each cell type 
(Ψneur and Ψglia)	for	the	hippocampus	and	frontal	cortex.	If	there	were	not	enough	reads,	for	
that exon and cell type Ψoverall	was	set	to	“NA”.	We	used	the	cell-type	labels	defined	in	the	
original datasets. For neurons, we grouped the inhibitory and excitatory neurons. For glia, we 
grouped the oligodendrocytes, astrocytes, and oligodendrocyte precursor cells. 

7.4.2 Downsampling cell-type-specific Ψ values

In	 the	 human	 data,	many	 exons	 (30,273	 out	 of	 68,215	 for	 the	 hippocampus	 and	 45,680	
out	of	56,427	 for	 the	 frontal	 cortex)	have	Ψneur > 0.9, Ψglia > 0.9, and | | .�� glia neur� � 0 03. 
We	downsampled	these	to	5,000	to	make	the	distribution	less	skewed	towards	one.	In	the	
mouse hippocampus data, 18,351 out of 23,857 exons have Ψ = 1 in neurons and glia, so we 
downsampled these to 5,000 as well. For the visual cortex, 27,073 out of 48,515 exons have 
Ψneur > 0.9, Ψglia > 0.9, and | | .�� glia neur� � 0 03.	We	downsampled	these	to	5,000.

7.4.3 RBP-binding-site data

We	 downloaded	 the	 eCLIP	 data	 for	 122	 RBPs	 from	 the	 ENCODE	 portal	 (https://www.
encodeproject.org/metadata/?status=released&internal_tags=ENCORE&assay_title=e-
CLIP&biosample_ontology.term_name=K562&target.investigated_as=RNA+binding+pro-
tein&biosample_ontology.term_name=HepG2&assembly=GRCh38&type=Experiment&files.
processed=true).	From	this	file	list,	we	used	the	BED	files	that	store	the	peaks	per	replicate.	
We	merged	peaks	from	different	replicates	or	cell	lines	to	ensure	one	BED	file	per	RBP.	

7.4.4 Logistic regression models

The	logistic	regression	model	is	implemented	as	one	fully	connected	layer	between	the	input	
features	(the	RBP	binding	sites)	and	the	output	(the	Ψ	value)	with	a	sigmoid	activation	function	
to scale the output between 0 and 1. The models are single-task models which means that 
a	separate	model	was	trained	for	each	cell	type.	When	training	the	model,	we	use	a	binary	
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cross	entropy	loss	with	L1	and	L2	regularization	(alpha	=	0.001,	and	L1-ratio	=	0.7),	a	learning	
rate	of	0.005,	and	a	batch	size	of	256.	As	input	for	the	logistic	regression	models,	we	counted	
the	number	of	peaks	in	the	BED	files	for	every	RBP	and	exon	at	six	locations:	1)	upstream	of	
the	exon	(maximum	400	bp	away	from	the	splice	site),	2)	overlapping	the	3’	splice	site,	3)	
within	the	exon,	4)	spanning	the	exon,	5)	overlapping	the	5	splice	site,	and	6)	downstream	of	
the	exon	(maximum	400	bp	away	from	the	splice	site).	Since	we	used	the	eCLIP	data	of	122	
RBPs	and	there	are	6	possible	 locations,	this	resulted	 in	732	input	features	for	every	exon	
(Figure	1A).	If	peaks	of	different	replicates	were	overlapping,	we	counted	those	peaks	only	
once.	The	logistic	regression	model	is	implemented	in	PyTorch	Lightning [91,92]. 

7.4.5 Deep learning models

We	adapted	the	architecture	of	the	Saluki	model [37]	by	removing	one	convolutional	layer,	
shortening	the	maximum	sequence	from	12,288	to	6,144	bp,	and	changing	the	final	activation	
function	to	a	sigmoid	activation	function	(Figure	S5).	The	exon	of	 interest	was	centered	in	
the middle of the input sequence. The input channels of the model depend on the input 
features	used	(sequence,	splice	sites,	and/or	RBP	binding	sites).	For	the	sequence,	we	one-
hot encoded the sequence which results in four channels. If the splice sites were used as 
input, this added an extra channel that indicates the start and end of the exon of interest. 
When	adding	the	RBP	binding	sites,	we	add	a	channel	for	every	RBP	which	one-hot	encodes	
whether there is a binding site in any of the replicates of the eCLIP data for that RBP based on 
the	BED	files.	Similar	to	the	logistic	regression	models,	we	trained	a	model	for	every	cell	type	
separately. Even though we adapted the Saluki model, we retrained all the weights in the 
model.	When	adding	the	mouse	data,	we	adapted	the	same	approach	as	Saluki	and	made	the	
model	a	multi-head	model	where	the	weights	of	the	convolutional	and	recurrent	neuronal	
network	layers	are	shared	and	the	weights	of	the	fully	connected	layer	are	species-specific	
(Figure	 S5).When	 training	 the	model,	 we	 used	 the	 same	 hyperparameters,	 including	 the	
learning	rate,	batch	size,	etc.,	as	the	original	Saluki	model	(Figure	S5).	For	the	hippocampus,	
we	 tested	 how	 input-sequence	 length	 and	 the	 number	 of	 convolutional	 layers	 affect	 the	
performance.	The	benefit	of	a	longer	input	sequence	is	that	the	model	can	learn	how	long-
distance	interactions	of	regulatory	elements	affect	splicing,	but	these	models	contain	more	
parameters	and	are	more	difficult	to	train.	The	different	models	performed	similarly	which	
indicates	that	the	most	important	information	is	close	to	the	splice	sites	of	the	exon	(Figure	
S26).	The	model	using	6,144	bp	and	five	channels	performed	slightly	better	for	both	neurons	
and glia and therefore we used it during all the experiments. 

7.4.6 Evaluation

We	evaluated	the	performance	of	the	models	using	a	10-fold	cross-validation.	We	ensured	
that the same set of exons was always in the same test fold such that we could compare 
the performance of the models. Exons from the same gene were always in the same test 
fold.	When	training	the	deep	learning	models	on	human	and	mouse	data	simultaneously,	we	
ensured	that	human-mouse	homologs	were	in	the	same	test	fold.	We	used	biomart	to	obtain	
the human-mouse homologs. Some exons do not have any binding sites measured for any 
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of	the	RBPs	(5,560	exons	in	the	hippocampus	and	3,462	in	the	frontal	cortex).	This	could	for	
instance happen if certain genes were not expressed in the cell lines when the RBP binding 
sites	were	measured.	Since	the	logistic	regression	model	could	not	predict	a	Ψ value for these 
exons,	we	filtered	these	from	the	training	set	used	for	the	logistic	regression	model	and	from	
all	test	sets	(to	enable	a	fair	comparison	between	the	logistic	regression	and	deep	learning	
models).	The	deep	learning	models	are	thus	trained	on	more	exons	(Table	S1).	In	the	test	set,	
there	are	1,827	and	1,072	variable	exons	for	the	hippocampus	and	frontal	cortex	respectively.
We	trained	all	models	five	times	for	every	fold	and	averaged	the	predictions	across	these	five	
runs.	We	evaluated	the	performance	by	calculating	the	Spearman	correlation	between	the	
true and predicted Ψ values. 

7.4.7 RBP binding profiles

We	generated	RBP	binding	profiles	by	calculating	the	fraction	of	exons	with	an	RBP	binding	
site	at	every	location	(400	bp	upstream	of	the	exon	-	400	bp	downstream	of	the	exon).	Since	
exons have variable lengths, we bin the exons in 50 bins and only include exons that are 
at	 least	50	bp	 long	 in	the	analysis.	We	also	filter	out	exons	without	RBP	binding	sites.	We	
calculate	these	profiles	for	four	different	groups	of	exons:	1)	non-variable	exons	with	Ψ ≥ 0.5, 
2)	non-variable	exons	with	Ψ < 0.5,	3)	variable	exons	with	Ψ ≥ 0.5,	and	4)	variable	exons	
with Ψ < 0.5.	To	define	how	much	the	mechanisms	in	the	variable	exons	diverged	from	non-
variable	exons,	we	calculate	the	mean-squared	error	between	the	RBP	binding	profiles	of	the	
non-variable	and	variable	exons.	We	do	this	for	the	exons	with	a	high	and	low	Ψ separately.

7.4.8 RBP expression data

We	used	 the	10X	 scRNA-seq	data	 from	 the	 same	samples	 to	 look	at	 the	gene	expression	
of	the	RBPs	that	were	measured	using	the	eCLIP	data.	We	used	Seurat	v4	for	the	analysis 
[93]. To create the heatmap in Figure S13, we normalized the data per dataset using log 
normalization	and	a	scale	factor	of	1e6.	Next,	we	averaged	the	expression	over	all	the	cells.	
We	plotted	 the	 log(x + 1)	 values.	We	used	 the	FindConservedMarkers()	 function	
using	the	default	parameters	(including	Bonferroni	multiple	testing	correction)	from	Seurat	
to	find	differentially	expressed	RBPs	between	neurons	and	glia.	This	 tests	 for	differentially	
expressed genes per individual and merges the results.

7.4.9 Interpretation of logistic regression model

For	the	interpretation	of	the	logistic	regression	models,	we	looked	at	the	coefficients	of	the	
input	features.	To	obtain	one	value	per	input	feature,	we	average	the	coefficients	of	the	10	
folds	and	5	runs	per	fold	(so	the	average	across	50	models	in	total).	We	only	compared	the	
coefficients	across	models,	if	there	were	at	least	50	exons	with	a	binding	site	for	that	input	
feature. 
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7.4.10 In-silico saturation mutagenesis

We	used	in-silico saturation	mutagenesis	(ISM)	to	interpret	how	nucleotide	substitutions	in	
the	 input	 sequence	affect	 the	predictions.	We	did	 this	 for	9,929	exons	using	 the	DLall-seq-m 
model trained on glia in the hippocampus. For every exon, we used the fold for which that 
exon	was	 in	the	test	set.	We	averaged	the	predictions	across	the	5	runs.	The	 ISM	score	 is	
defined	as	follows:

 ISMe p n pred e p n pred e p ii A C G T, , , , , , , ,, , ,
� �

��� �1

4
 

where e is the exon we predict the Ψ value for, and p and n	are	the	position	and	nucleotide	
used at that	position	respectively.	To	visualize	the	ISM	scores	across	the	input	sequence,	we	
binned the upstream region, exon, and downstream region since they all had varying lengths.

7.4.11 Analysis of neighboring exons

We	compared	the	ISM	scores	at	the	exon	of	interest,	the	neighboring	exons,	and	the	remaining	
sequence.	We	extracted	the	locations	of	annotated	exons	from	GENCODE	v35 [94]. The ISM 
scores	for	the	exon	of	interest	and	the	neighboring	exons	include	the	flanking	sequence	of	
150	bp	upstream	and	downstream	of	the	exon.	Next,	we	selected	ten	exons	on	the	positive	
strand	with	the	highest	absolute	ISM	scores	in	a	neighboring	exon.	We	visualized	the	long-
reads	spanning	both	exons	using	ScisorWiz [95]

7.4.12 Motif discovery

We	used	TF-MoDISco-lite	(v2.2.0) [57]	to	discover	motifs	using	the	ISM	scores	as	input.	When	
creating	 the	 report,	 we	 compare	 the	 found	motifs	 to	 the	 position	weight	matrices	 from	
oRNAment	which	includes	motifs	found	using	RNAcompete	and	RNA-bind-n-seq	experiments 
[8,96,97]. TF-MoDISco-lite is designed for DNA instead of RNA and tries both the forward 
strand	and	 its	reverse	complement	when	finding	seqlets	 (parts	of	 the	sequence	with	high	
ISM	scores).	We	used	the	results	file,	to	check	whether	the	forward	or	reverse	complement	
was	 used	 to	 generate	 a	 motif.	 We	 kept	 forward	 motifs	 if	 at	 least	 for	 25	 sequences	 the	
forward	strand	was	used.	We	kept	the	reverse	motif	if	at	least	for	25	sequences	the	reverse	
complement was used. 

7.4.13 sQTL analysis

We	used	 the	sQTLs	defined	 for	 the	hippocampus	 in	GTEx	v8.	These	variants	are	 linked	 to	
introns	instead	of	exons.	We	predicted	the	effect	for	variants	that	are	linked	to	an	intron	that	
spans	an	exon	in	our	dataset	(Figure	4E).	For	most	introns,	there	are	multiple	variants	linked	
to	 them.	We	only	predicted	 the	effect	 for	 the	best	 variants	 (the	 variants	with	 the	 lowest	
p-value	for	an	intron).	For	most	introns,	there	were	still	more	than	two	after	this	filter.	
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7.4.14 Exon naming

We	named	exons	after	their	position	in	the	transcript	by	counting	their	position	in	the	GTF	
file.	A	conversion	from	exon	names	to	genomic	coordinates	can	be	found	in	Table	S4.

7.5 Code and data availability
The Ψ	values,	predictions,	and	RBP	binding	profiles	are	available	on	Zenodo:	https://zenodo.
org/doi/10.5281/zenodo.10669666.	 The	 code	 to	 reproduce	 the	 figures,	 and	 train	 your	
logistic	 regression	 or	 deep	 learning	models	 can	 be	 found	 on	GitHub:	 https://github.com/
lcmmichielsen/PSI_pred.
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Single-cell	RNA	sequencing	(scRNA-seq)	has	massively	increased	our	understanding	of	tissue	
compositions,	cellular	interactions,	and	developmental	processes.	Especially	in	heterogeneous	
tissues	such	as	the	brain,	this	single-cell	resolution	led	to	many	newly	discovered	cell	types,	
insights	 into	 the	 specificity	 of	 cell	 types	 for	 particular	 brain	 regions	 or	 layers,	 and	 the	
proportions	of	cell	types	across	the	brain	[1–5].	Besides	generating	massive	datasets,	smaller	
publicly	available	datasets	are	combined	 into	tissue-specific	reference	atlases,	such	as	the	
Human	Lung	Cell	Atlas	[6].	However,	analyzing	individual	datasets	or	creating	these	atlases	is	
still	mainly	done	using	unsupervised	methods.	

In	 this	 thesis,	 we	 introduced	 several	 supervised	 methods	 to	 solve	 two	 broad	 tasks:	 1)	
automatic	cell-type	identification	in	scRNA-seq	data,	and	2)	understanding	cell-type-specific	
(post-)transcriptional	regulation.	In	part	I,	we	benchmarked	different	cell-type	classification	
methods	 for	 scRNA-seq	 data	 (chapter	 2),	 developed	 scHPL	 (chapter	 3)	 and	 treeArches	
(chapter	4)	to	automatically	match	cell	types	across	datasets	to	construct	a	reference	atlas	
with corresponding cellular hierarchy, and developed TACTiCS to match cell types across 
species	(chapter	5).	In	part	II,	we	showed	how	scRNA-seq	with	the	corresponding	cell-type	
labels	can	improve	our	understanding	of	transcriptional	regulation	(chapter	6)	and	alternative	
splicing	(chapter	7)	by	developing	cell-type-specific	feature-prediction	models.	However,	for	
both	tasks,	several	challenges	remain	that	we	will	discuss	in	the	sections	below.

8.1 What is a cell type?
In	simple	eukaryotic	organisms,	such	as	C.	Elegans,	every	adult	consists	of	the	same	amount	
of cells - 959 in hermaphrodites and 1031 in males [7,8]. This low and consistent number of 
cells allows researchers to study every cell individually. Studying more complex organisms, 
such as humans, similarly is challenging since we consist of approximately 37 trillion cells, 
and	 this	 number	 varies	 across	 individuals	 due	 to,	 for	 instance,	 differences	 in	 height	 [9]. 
Categorizing all these cells into cell types enhances our understanding of cells and facilitates 
effective	communication	and	comparison	of	results	across	studies.	

Is	this	discrete	grouping	that	we	use	repeatedly	throughout	this	thesis	optimal,	or	would	a	
continuous	spectrum	be	beneficial?	At	least	at	a	high	level,	cell	types	seem	separate	categories.	
For	example,	a	muscle	fiber	differs	from	a	neuron	regarding	its	function,	morphology,	and	the	
genes	expressed.	Still,	both	arise	from	the	same	stem	cell	and	become	continuously	more	
specialized.	At	what	stage	during	development	would	one	consider	these	cells	differentiated	
enough	to	call	them	different	cell	types?

Furthermore,	due	to	perturbations,	such	as	stimulations	or	pathogens,	cells	can	transition	to	
another	cell	type	or	state.	Should	these	possible	responses	be	considered	in	our	definition	as	
well [10]?	In	the	pancreas,	some	alpha	cells	can,	for	instance,	change	into	beta	cells,	which	
can occur naturally in persons with diabetes [11]. Also in the immune system, naive T-cells 
transition	 into	memory	cells	after	activation	 [12].	Both	are	considered	different	 cell	 types	
with	a	gradient	containing	the	transitioning	cells	in	between.	
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Despite	this	evidence	for	a	more	continuous	spectrum,	we	still	focus	on	cell-type	classification	
since most downstream methods require cells from the same cell type or cell-type labels as 
input.	This	downstream	analysis	can	be	a	relatively	simple	task,	such	as	testing	for	differentially	
expressed genes between healthy and diseased cells of the same cell type. But for more 
complex	tasks,	such	as	detecting	expression	quantitative	trait	loci	(eQTLs),	the	cell-type	labels	
may	be	beneficial	as	well.	A	cell-type-specific	eQTL	analysis	can	reveal	the	effect	of	variants	
that were previously hidden when analyzing the complete sample [13]. Also in Chapters 6 and 
7,	we	rely	on	the	cell-type	labels	to	improve	our	understanding	of	transcriptional	regulation	
and	alternative	splicing.	Especially	for	heterogeneous	tissues,	using	this	increased	cell-type-
specific	resolution	improved	the	performance.	

A	potential	alternative	could	be	to	redevelop	current	downstream	methods	such	that	they	
produce similar results, but do not rely on cell-type labels. An example is Milo, which tests for 
differential	abundance	between	two	samples	[14]. First, cells are assigned to neighborhoods 
and	afterwards,	Milo	tests	whether	cells	from	a	certain	condition	are	enriched	or	depleted	
within each neighborhood. Cell-type labels are unneeded during this analysis and will thus 
not bias the results. For the sequence-based models, this problem could be overcome by 
predicting	the	features	at	the	cell	instead	of	cell-type	resolution	as	is	done	by	scBasset	[15] 
and seq2cells [16].	As	datasets	grow	bigger	and	bigger,	this	might	become	computationally	
too	expensive	at	some	point.	However,	the	results	of	cell-type-agnostic	methods	might	be	
harder	to	interpret.	As	a	solution,	cells	could	be	aggregated	into	cell	types	again	solely	for	
interpretation.	Then,	at	least	the	cell-type	labels	do	not	bias	the	analysis	itself.

Since	cells	exist	in	a	continuous	spectrum,	a	second	alternative	is	moving	from	binary	to	fuzzy	
cell-type	labels.	Using	fuzzy	labels,	a	cell	can	belong	to	multiple	cell	types	simultaneously	with	
different	probabilities.	A	probability	above	zero	for	two	cell	types	can	indicate	that	a	cell	is	
transitioning	between	these	two.	For	scRNA-seq	data,	this	approach	has	been	explored	for	
clustering methods [17,18],	but	not	yet	for	classification	methods.	During	classification,	the	
posterior probability could easily indicate which cell types a cell belongs to.

8.2 Consistent cell-type classification
Since most downstream methods rely on discrete cell-type labels, cells must be labeled con-
sistently	to	enable	combining	or	comparing	information	from	different	datasets.	For	instance,	
the	 sc-eQTL	 consortium	aims	 to	 find	 how	 variants	 affect	 gene	 expression	 in	 immune	 cell	
types	by	combining	datasets	from	multiple	labs	containing	hundreds	of	 individuals	[19]. In 
every	individual,	the	cell	types	should	thus	be	defined	similarly.	A	high	precision	in	cell-type	
annotations	might	be	even	more	important	than	a	high	accuracy.	Since	unsupervised	meth-
ods	are	subjective	and	time-consuming,	an	automatic	supervised	approach	is	needed	here.

Ideally,	 such	 a	 classifier	 is	 trained	 on	 a	 reference	 atlas	 that	 combines	 data	 from	 enough	
individuals	so	that	inter-individual	variation	and	rare	cell	types	are	captured.	The	cell	types	
in such a reference atlas should not be characterized as in a periodic table but in a hierarchy 
[20].	 A	 hierarchical	 classifier	 divides	 the	 classification	 problem	 into	 smaller	 subproblems	
which	 improves	 the	classification	performance.	We	showed	that	a	hierarchical	 linear	SVM	
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outperforms	 a	 flat	 linear	 SVM	 in	 Chapter	 3.	 Besides,	 when	 using	 a	 hierarchical	 classifier,	
users	can	easily	choose	their	resolution	of	interest.	Using	Azimuth	[21], an easy-to-use web 
portal,	cells	can	also	be	annotated	at	different	resolutions.	However,	these	resolutions	are	
not	connected	 in	a	hierarchy.	Consequently,	a	cell	can,	 for	 instance,	be	 labeled	as	a	CD8+	
T-cell	and	CD4+	memory	T-cell,	which	is	impossible	and	therefore	inconsistent.

Reference	atlases	exist	 for	many	human	and	mouse	tissues	and	can	be	downloaded	 from	
platforms,	such	as	Azimuth	[21]	or	CELLxGENE	[22,23].	For	these	reference	atlases,	either	1)	
one	big	dataset	is	used	(e.g.	the	human	PBMC	reference	containing	eight	individuals	[21]),	
2)	multiple	 datasets	 are	 combined	 and	 re-annotated	manually	 (e.g.	 the	 human	 lung	 cell	
atlas containing 107 individuals from 14 datasets [6]),	or	3)	multiple	annotated	datasets	are	
combined	using	 scHPL	and	 their	 labels	 are	manually	 refined	 (e.g.	 the	mouse	 kidney	atlas	
combining data from 59 mice from 8 datasets [24]).	

However,	 many	 datasets	 are	 still	 annotated	 using	 unsupervised	 methods	 even	 though	 a	
reference	atlas	for	that	specific	tissue	is	available	[25–27].	Why	is	this	the	case?	Researchers	
might not trust supervised methods since their performance is not perfect yet. In Chapter 
2,	 however,	 we	 showed	 that	 cell-type	 classification	 is	 a	 relatively	 easy	 problem	 at	 a	 low	
resolution	 since	 almost	 all	methods	 perform	 (nearly)	 perfectly.	 The	 performance	 of	most	
methods	drops	when	increasing	the	resolution	or	complexity	of	the	data.	For	most	reference	
atlases,	 however,	 the	 performance	 is	 not	 benchmarked	 per	 resolution,	making	 it	 hard	 to	
know how consistent label transfer will be. 

Another	 complicating	 factor	 is	 the	 batch	 effects	 between	 the	 reference	 atlas	 and	 the	
unlabeled	dataset.	Batch	effects	are	technical	variations	between	datasets	due	to	variations	
in	labs,	protocols,	sequencing	depths,	etc.	This	technical	variation	has	to	be	removed	while	
preserving	the	biological	variation.	This	 is	a	complex	problem	since	the	effects	are	usually	
non-linear and the ground truth is unknown. Benchmark studies showed that methods 
including scVI [28]	and	Harmony	[29] perform well for this task. For most methods, however, 
parameters	have	to	be	tuned	for	optimal	performance,	which	might	decrease	the	usability.

Interestingly,	researchers	are	 imperfect	when	annotating	a	scRNA-seq	dataset	manually	as	
well.	In	Chapter	3,	we	applied	scHPL	to	multiple	annotated	PBMC	datasets,	which	resulted	
in a hierarchy with unexpected edges. Visualizing marker genes in the individual datasets 
indicated that cells had been wrongly annotated in the original datasets. Amongst others, 
the	authors	had	swapped	two	cell-type	labels,	which	explained	the	incorrect	hierarchy.	We	
experienced	 that	 scHPL	 is	 a	 great	 tool	 for	 discovering	 such	misannotations.	 Cells	 can	 be	
relabeled based on this unexpected hierarchy.

Besides	 being	 subjective	 and	 time-consuming,	 another	 problem	 with	manual	 annotation	
is	a	missing	naming	convention	for	cell	 types.	CELLxGENE	resolves	this	problem	by	forcing	
users	to	use	Cell	Ontology	terminology	when	uploading	their	datasets.	A	downside	of	 the	
Cell	Ontology	is	that	this	hierarchy	only	consists	of	names	but	lacks	information	about	the	
cell	type,	such	as	its	function,	morphology,	or	transcriptomic	profile.	Consequently,	cell	types	
from	different	datasets	with	 the	 same	name	could	have	a	different	underlying	expression	
pattern.	The	most	straightforward	solution	might	seem	to	add	marker	genes	to	Cell	Ontology,	
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which	can	be	used	to	identify	cell	types.	In	the	benchmark	in	Chapter	2,	however,	we	noticed	
that	methods	relying	on	marker	genes	perform	worse	during	cell-type	 identification,	most	
likely because of the sparsity of scRNA-seq data.

Ideally,	 all	 datasets	 from	a	 similar	tissue	 in	CELLxGENE	are	not	 harmonized	based	on	 the	
names	but	based	on	the	expression	profile	 in	a	data-driven	way	using	tools	such	as	scHPL	
and	treeArches.	These	tools	can	be	enhanced	by	reflecting	(inter-individual)	variation	in	the	
width of a branch and allowing for fuzzy labels at the leaf nodes. The growing amount of data 
poses	a	challenge	and	as	such	both	methods	must	become	computationally	more	efficient.	
The	resulting	reference	atlases	should	be	updated	continuously	with	newly	generated	data.	

8.3 Automatically detecting new cell types
Even though many reference atlases are being constructed [6,21,24], these will never be 
complete since rare and diseased cell types might be missing. In the human lung cell atlas, 
for	 instance,	six	rare	cell	types	were	not	defined	in	any	of	the	individual	datasets	and	had	
not	 been	 defined	 in	 the	 lung	 before,	 but	 could	 be	 discovered	 when	 combining	multiple	
datasets [6].	Besides,	new	viruses,	such	as	SARS-Cov-2,	can	infect	cells	from	different	tissues	
and perturb these cells [30,31].	Identifying	such	diseased	cell	types	is	important	for	drug	or	
therapy development. Adding such data to a reference atlas leads to new insights in both 
healthy and diseased samples. 

To	 detect	 rare	 or	 diseased	 cell	 types	 automatically,	 a	 classifier	 needs	 a	 rejection	 option.	
In	Chapter	2,	we	benchmarked	 the	 rejection	options	of	 scRNA-seq	cell-type	 identification	
methods	by	removing	a	cell	type	completely	from	the	data.	Here,	we	noticed	that	the	linear	
SVM,	 which	 had	 the	 highest	 classification	 performance,	 performed	 poorly	 since	 it	 relied	
on	 the	posterior	probability.	 In	Chapters	3	and	4,	we	 introduced	scHPL	and	 improved	 the	
rejection	option	by	incorporating	distance	metrics.	This	improved	the	detection	of	unknown	
cells	but	still	did	not	perform	perfectly.	Diseased	cells,	such	as	inflamed	monocyte-derived	
macrophages,	are	immediately	rejected	(labeled	“unknown”)	instead	of	labeled	as	internal	
node	(e.g.	macrophages),	which	would	be	preferred.	

A	 hierarchical	 classifier	 that	 can	 return	 internal	 nodes	 of	 the	 hierarchy,	 so-called	 “partial	
rejection”,	is	beneficial	according	to	a	recent	benchmark	[32].	Here,	they	only	evaluated	how	
a	 full	 or	 partial	 rejection	 option	 affected	 the	 classification	 performance	 and	 not	whether	
new	cell	 types	could	be	detected.	Detecting	new	cell	 types	using	reference	atlases	should	
be benchmarked properly in upcoming benchmarks. An example experiment would be to 
remove	one	cell	type	from	the	training	data	and	test	whether	the	classifier	correctly	rejects	
cells from that cell type in the test dataset.

Ideally,	 cell-type	 identification	 and	 data	 integration	 methods	 should	 be	 benchmarked	
simultaneously.	Data	integration	considerably	influences	whether	these	new	cell	types	can	
be	detected.	During	data	integration	biological	variation	should	be	preserved	and	technical	
variation	should	be	removed.	If	the	difference	between	a	diseased	and	healthy	cell	type	of	
two	samples	is	seen	as	a	technical	artifact,	this	difference	can	be	removed	as	well.	Regardless	
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of	the	cell-type	identification	method	used	afterwards,	the	cell	type	will	never	be	detected	as	
a new cell type. Ideally, a diseased and healthy sample are sequenced together, so there are 
no	batch	effects.	As	such	the	difference	between	biological	and	technical	variations	between	
the reference atlas and these new samples can be detected more easily [33]. 

8.4 Towards cell-type-specific sequence-based models
Studying	tissues	untargeted	and	at	a	high	resolution	using	scRNA-seq	has	led	to	the	discovery	
of	many	new	 cell	 types.	 Since	 these	 cell	 types	 are	 defined	based	on	 their	 transcriptional	
profile,	 the	 underlying	 transcriptional	 regulation	 must	 be	 unique	 for	 every	 cell	 type.	 In	
Chapter	6,	we	aimed	to	unravel	these	cell-type-specific	mechanisms	by	training	sequence-
based models using scRNA-seq data with the corresponding cell-type labels to predict gene 
expression.	In	Chapter	7,	we	focused	on	alternative	splicing	mechanisms	by	training	models	
to	predict	cell-type-specific	exon	inclusion	in	the	brain.	Interpreting	which	motifs	guide	the	
model	to	make	certain	predictions,	increases	our	understanding	of	the	biological	mechanisms	
underlying	transcriptional	regulation	and	alternative	splicing.	

Furthermore,	these	models	aid	in	understanding	how	variants	affect	a	cell	type.	Approximately	
95%	of	the	GWAS	variants	fall	in	non-coding	regions	[34].	Usually,	only	an	association	between	
a group of variants and a trait is discovered, but it remains unclear which variant causes a trait 
due to linkage disequilibrium, through which mechanism a variant acts, and which cell type is 
most	disrupted.	Models	that	use	the	genome	to	predict,	for	instance,	transcription	or	splicing	
in	a	cell-type-specific	way	can	address	these	problems.

In	 Chapter	 6,	 we	 showed	 that	 cell-type-specific	models	 always	 outperformed	 the	 tissue-
specific	models	when	predicting	cell-type-specific	gene	expression	levels.	The	difference	in	
performance	becomes	most	apparent	if	a	tissue	and	cell	type	are	dissimilar.	Even	though	this	
increase	was	significant,	we	were	unable	to	pinpoint	what	caused	this	increase	such	as	cell-
type-specific	transcription	factor	binding	sites.	

To	reliably	predict	the	cell-type-specific	effect	of	variants,	our	models,	as	well	as	other	state-
of-the-art sequence-based models, such as Enformer [35] and SpliceAI [36], have to overcome 
several	limitations:	1)	missing	cell-type-specificity,	2)	ignoring	distal	regulatory	elements,	and	
3)	 incorrectly	predicting	personalized	gene	expression.	 I	will	 discuss	 these	 limitations	and	
potential	solutions	in	the	coming	sections.	

8.5 Missing cell-type-specificity of sequence-based models
The	 cell-type-specificity	 or	 tissue-specificity	 of	 sequence-based	models	 is	 not	 thoroughly	
evaluated.	 Enformer	 is	 trained	 on	 5,313	 genomic	 tracks	 including	 different	 tissues	 and	
measurement	techniques	such	as	CAGE	and	DNase-seq	reads,	and	predicts	different	values	
for	very	dissimilar	cell	types,	such	as	keratinocytes	and	monocytes.	However,	an	evaluation	
for	more	similar	tracks,	such	as	77	CAGE	tracks	related	to	the	brain,	is	missing.	We	noticed	
the same for Pangolin [37],	a	model	to	predict	tissue-specific	splicing.	Pangolin	outperformed	
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SpliceAI,	the	tissue-agnostic	model,	but	no	tissue-specific	regulatory	elements	were	discussed.	
Ideally,	the	models	should	be	evaluated	using	cell-type-specific	variants,	but	the	ground	truth	
for most variants is missing. A missing ground truth makes proper benchmarking impossible. 
A	feasible	alternative	is	to	evaluate	the	models’	performance	on	marker	genes	for	specific	
cell types or whether the models correctly learn in which cell type a gene is higher expressed 
using	for	instance	the	log-fold	change	or	the	difference	between	two	cell	types.

Exploiting	the	current	models	as	pre-trained	models	could	be	beneficial	for	learning	cell-type-
specific	mechanisms.	Some	cell	types	are	so	similar	that	it	is	challenging	to	train	a	complete	
model	with	millions	of	parameters	from	scratch	to	learn	these	subtle	differences.	Seq2cells,	
for	instance,	extracts	an	embedding	from	Enformer	and	trains	a	simple	model,	a	multi-layer	
perceptron,	to	predict	the	cell-type-specific	gene	expression	[16]. Seq2cells assumes that all 
regulatory features are stored in the embeddings and the simpler model only needs to learn 
how	to	combine	these	during	the	fine-tuning	step.

8.6 Limited context of sequence-based models
In	our	models,	the	region	around	the	transcription	start	site	and	splice	sites	contributed	most	
to	the	predictions	of	gene	expression	and	exon	inclusion.	These	regions	are	most	important	for	
transcription	and	splicing	since	RNA	polymerase	and	the	spliceosome	bind	there	respectively.	
However,	this	signal	dominates	the	predictions	entirely,	and	as	such	the	predicted	effect	of	
mutations	further	away	is	negligible.	While	mutations	in	enhancers	far	away	or	deep	intronic	
variants can cause a disease [38–40]. A recent benchmark showed that other models do not 
capture distal regulatory elements either [41]. Even though Enformer inputs a sequence of 
196kb,	it	incorrectly	predicts	the	effect	of	variants	in	distal	regulatory	elements.	

For	splicing	models,	this	has	yet	to	be	investigated,	but	since	the	model	architectures	and	
training	strategies	are	similar,	we	can	assume	the	models	suffer	here	as	well.	 Interestingly,	
SpliceAI, which inputs 10kb around the splice sites, was recently outperformed by Splam [42], 
a	model	that	only	uses	400	bp,	indicating	that	regions	further	away	might	not	be	needed	to	
predict	splicing	accurately.	However,	SpliceAI	and	Splam	are	both	classification	methods	that	
predict	whether	a	certain	site	is	a	splice	junction	instead	of	how	often	the	junction	is	used.	
Distal	variants	may	affect	the	latter	more.

8.7 Sequence-based models are data-hungry
Current	sequence-based	models	still	suffer	from	limited	training	data.	For	instance,	only	a	few	
genes	are	cell-type-specific	or	regulated	by	distal	regulatory	elements.	Few	examples	in	the	
training	data	make	it	difficult	for	models	to	learn	the	patterns.	However,	the	number	of	genes	
or exons in the human genome limits the size of the training data, so this cannot be easily 
increased. To overcome this, several models, including Enformer, are trained on human and 
mouse data simultaneously to increase the size of the training data [35,43]. The weights of 
the	first	layers	in	the	model	are	shared	across	the	species	exploiting	that	regulatory	elements	
are	partially	conserved.	The	final	fully	connected	layer	is	species-specific	to	allow	learning	of	
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species-specific	mechanisms	as	well.	In	Chapter	7,	we	applied	this	trick	when	training	exon-
inclusion models, which improved their performance. In general, the current models only 
combine human and mouse, while data from more closely related species is available. For 
instance,	for	a	cell-type-specific	model	predicting	gene	expression	 in	the	brain,	scRNA-seq	
data	from	five	primates	could	be	combined	[44]. 

8.8 Personalized sequence-based models
The	third	limitation	is	that	current	sequence-based	models	cannot	predict	variation	of	gene	
expression across individuals yet [45,46]. Ideally, for every individual genome, these models 
would	predict	 the	correct	expression	 level,	 i.e.	making	personalized	predictions.	However,	
when	evaluating	models	using	variants	found	across	individual	genomes,	Enformer	predicted	
the	wrong	direction	of	effect	for	one-third	of	the	tested	variants.	We	did	not	evaluate	making	
personalized	 predictions	 in	 our	 models,	 but	 since	 our	 models	 rely	 on	 models	 that	 were	
evaluated in the benchmark, we assume they incorrectly predict this as well.

State-of-the-art	expression	and	splicing	prediction	models	are	all	trained	on	the	reference	ge-
nome.	However,	the	predicted	genomic	features	were	measured	in	individuals	with	specific	
variants in their genomes. Recent benchmarks suggested that training on individual genomes 
could	 improve	personalized	gene	expression	predictions	[45,46]. Training on individual ge-
nomes	might	enhance	learning	of	the	effect	of	distal	regulatory	elements	as	well	because	of	
the increased variance in the training data. Recently, BigRNA [47] was released which predicts 
gene	expression	in	51	tissues	for	70	individuals.	For	each	individual,	both	haplotypes	are	in-
put	to	identical	instances	of	the	model	and	the	output	is	combined.	Their	results	look	prom-
ising, but the personalized gene expression task has not been evaluated for this model yet. 

8.9 What should sequence-based models predict?
One	might	also	question	whether	predicting	gene	expression	or	exon	inclusion	directly	from	
the	 sequence	 is	 the	most	 optimal	 approach	 to	 reach	 the	 goal	 of	 predicting	 the	 effect	 of	
mutations.	Measurement	techniques	are	noisy	and	the	measured	gene	expression	does	not	
directly	reflect	how	often	a	gene	is	transcribed	in	a	cell.	A	gene	can	be	highly	transcribed	but	
rapidly	degraded	as	well	due	to	(aberrant)	splicing	 isoforms.	Also	 in	healthy	tissues	or	cell	
types,	alternative	splicing	is	a	way	to	control	gene	expression	levels	[48,49]. If the inclusion 
of	an	exon	activates	nonsense-mediated	decay,	this	exon	might	not	be	measured	or	only	in	
low	levels	even	though	it	was	originally	highly	included.	An	alternative	would	be	to	train	the	
models on RNA-sequencing data of samples where nonsense-mediated decay was blocked, 
but this data is scarce.

Instead	of	predicting	gene	expression	directly,	it	might	be	beneficial	to	predict	intermediate	
layers,	such	as	chromatin	accessibility.	Models	trained	to	predict	cell-type-specific	chromatin	
accessibility in the drosophila brain [50] or for human melanoma [51] could be used to 
design	 cell-type-specific	 enhancers	 [52]. These models are not limited by the number of 
genes	in	the	genome	but	are	trained	on	differentially	accessible	regions	between	cell	types.	
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This	increased	the	size	of	the	training	data	and	might	explain	the	cell-type-specificity	of	the	
models.	However,	the	designed	enhancers	are	only	500	bp.	The	effect	of	these	enhancers	
was tested using a luciferase assay which means that these enhancers are inserted before the 
transcription	start	site	of	the	luciferase	gene.	The	effect	of	distal	enhancers	is	thus	not	tested	
during the design. ExPecto [53] and their recent successor ExPectoSC [54] try to overcome 
this	by	first	predicting	2002	regulatory	features	for	the	40kb	region	around	the	transcription	
start site and using this to train a simpler model to predict gene expression. 

An	alternative	could	be	to	input	chromatin	accessibility	measurements,	or	similar	regulatory	
features, to the models [55].	 This	 improves	 the	 cell-type-specificity	 since	 the	 input	 data	
is	different	now	for	every	cell	 type	or	tissue.	Another	advantage	 is	 that	 these	models	can	
extrapolate	to	new	cell	types	as	long	as	chromatin	accessibility	data	is	available	for	that	cell	
type.	Evaluating	the	effect	of	variants	or	model	 interpretation	becomes	more	complicated	
though since the input sequence cannot be in-silico mutated anymore as it is unknown how 
a	mutation	will	affect	the	chromatin	accessibility	input	track.

ENCODE-rE2G	[56]	combines	a	cell-type-specific	input	with	an	interesting	training	strategy:	
instead	of	training	on	healthy	data,	the	model	is	trained	on	perturbation	data.	This	logistic	
regressor predicts whether an element, a part of the DNA sequence, regulates a gene based 
on	extracted	features	from	the	cell-type-specific	DNase	and	cell-type-agnostic	features,	such	
as the distance between the element and the gene of interest. Since the model learns the 
relation	between	an	element	and	the	gene,	 it	 is	not	biased	 towards	 features	close	 to	 the	
transcription	start	site	and	learns	distal	regulatory	elements	as	well.	However,	they	assume	
that	a	variant	that	falls	in	an	element	is	always	linked	to	the	gene,	and	the	direction	of	effect	is	
not predicted. Instead of using the extracted features, a sequence-based model with a similar 
training	strategy	might	be	beneficial	here.	

8.10 Final remarks
Single-cell	RNA	sequencing	has	revolutionized	our	understanding	of	heterogeneous	tissues.	
In	this	thesis,	we	presented	several	methods	to	automatically	identify	cell	types	in	scRNA-seq	
data	and	use	scRNA-seq	data	to	increase	the	resolution	of	current	sequence-based	models.	
However,	when	analyzing	scRNA-seq	data,	or	using	this	data	to	train	sequence-based	models,	
we should remember that cells or cell types are not isolated compartments, but that they 
interact	and	communicate	with	each	other.	Many	spatial	transcriptomics	datasets	are	now	
generated	to	focus	on	this.	Ideally,	we	integrate	this	spatial	information	into	the	sequence-
based models.

Not	only	do	neighboring	cells	 influence	which	genes	are	expressed,	but	 the	expression	of	
other	genes	in	a	cell	can	influence	the	gene	of	interest	as	well.	A	more	holistic	view	might	
be	needed	instead	of	predicting	the	expression	of	one	gene	at	a	time.	Also	when	predicting	
splicing,	we	know	that	exons	are	very	often	coordinated.	Using	a	different	transcription	start	
site	might	determine	the	complete	isoform	used.	Predicting	the	inclusion	of	individual	exons	
might	be	very	difficult	or	near	 impossible	 in	 such	a	 case.	 Ideally,	 sequence-based	models	
would	predict	the	expression	of	multiple	isoforms	simultaneously	in	the	future.
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