SUPPLEMENTARY INFORMATION CHAPTER 2

Supplementary Table 1. The *EGFR*ex20+ mutations (original data) from 36 studies and case reports to evaluate the distribution and relative frequency of different NSCLC *EGFR*ex20+ mutations by amino acid position. Some amino acid sequence changes within *EGFR* exon 20 were 'unknown' because (1) the exact variant was not reported, (2) the insertion mutations were identified just by PCR testing or (3) the exact variant could not be characterized by Sanger sequencing due to very low mutant peaks. The 'other' mutations within *EGFR* exon 20 are, for example, rare point mutations or coexisting mutations together with *EGFR* exons other than exon 20 and where therefore excluded for table 1. The point mutation p.S768I [a substitution at codon 768 of exon 20 (c.2303G>T, p.S768I)] was also excluded from table 1, since it is not a insertion/deletion.

Jose Luis Leal et al, 2021	# Cardona et al, 2018	# Beau Falleret al, 2014	# Oxnard et al, 2013		Naidoo et al, 2015	H	Koopman et al, 2021	# Wu et al, 2019		Yang et al, 2021	# As	ircila et al., 2013	# Prelajetal, 2021	# Riess et al, 2018	# F	liely et al, 2022
V769_D770insASV	11 H773insH	19 A767 V769dupASV	5 V769_D770insASV	6	D770_N771insSVD	1:	A 763_Y764insF QEA	1 A763_Y764insFQEA	9	D770_N771insSVD	17 D	7770_N771insSVD	7 H773_V774insH	1 A767_V 769dupASV	55 A	1763_Y764insFQEA
D770_N771insSVD	7 V 769 D 770ins ASV	16 D761_E762insEAFQ	1 H773insH	3	V769 D770insASV	10	A767_V769dup	16 A767_V769dupASV	30	V769_D770insASV	11 V	769 D770insASV	4 H773 V774insAH	2 S768 D770dupSVD	52 /	1767 V769dup
N771_P772insPH	4 A 763_Y764insFQEA	13 A763_Y764insFQEA	1 A763_Y764i rts FQEA	3	H773_v774insNPH	4	5768_D770dup	9 5768_D770dupSVD	17	7 A763_Y764insFQEA	5 A	1767_\$768insTLA	1 D770_N771insSVD	4 N771_H773dupNPH	20 5	768_D770dup
D770insG	3 H773_V774insPH	13 M766_V769insWPA	1 H773_V774PH	2	H773_V774insH	4	D770_H773dup	1 V769_D770insGSV	1	D770delinsGY	3 H	773_V774insNPH	2 V769_D770insASV	1 A763_Y764insFQEA	15 V	/769dup
H773_V774insPHPH	3 H773_V774insNPH	9 A767_S768insSVR	3 H773_V774NPH	2	H773_V774insPH	2	D770_N771insG	3 D770delinsGY	3	D770_N771irsG	3 V	7774_C775insHV	2 A767_V769dup	2 D770_N771insG	10 0	0770delinsGY
H773dup	3 H773_V774insSVD	5 S768_D770dup5VD	3 V774_C775insHV	2	H773_V774insAH	2	D770_N771insGF	1 D770_N771insG	4	H773_V774insNPH	2 H	773_V774insPH	3 M766_A767insASV	4 P772_H773dupPH	9 [0770_N771insH
D770delinsGY	1 V 774_C775insHV	4 V769_D770delinsGl	1 D770_N771insSVD	2	A763_Y764insFQEA	1	D770_N771insSVA	2 D770_N771insGTT	1	V769_D770insSSV	2 H	773_V774insAH	1 S768_D770dup	1 H773dupH	8 8	0770_N771insAGH
H773_V774dup	1 D770delinsGY	4 V769_D770insL	1 D770delinsGY	2	A767_S768insTLA	1	D770_N771insT	1 D770_N771insY	1	V769_D770insASE	1 D	7770_N771insGT	1 P772_H773insHV	1 D770_N771>GYN	6 0	0770_N771insNPG
H773_V774insNPH	1 N771_P772insV	2 D770_H773dupTTP	1 N771_P772insV		V769_D770insGE			1 N771delinsTH				7770_N771insGF	1 D770_N771insG	1 H773_V 774dupHV		1771dup
M766_A767insASV	1 N771delinsGY	2 D770_N771insSVD	4 P772_H773insPNP		V774_C775insHV			1 N771delinsKH				1770>GY	1 Other	4 V774_C775>AHVC		7772_H773dup
N771_delinsGF	1 H773_V774insAH	1 N771dupN	1 D770_N771insGL		N771_P772insH			1 N771_P772insS				770_N771insY	1	N771_P772>GYP		7772_H773insNPH
N771_H773dup	1	N771delinsKPP	1 N771delinsGY	1	N771_P772insN	1	D770delinsGY	3 N771_H773dupNPH			1 H	773_V774insH		# D770_N771>GSV DN	4 F	7772_H773irtsPNP
N771_P772insT	1 Yang et al, 2020	# P772_C775dupPHVC	1 H773_V774insAH	1	P772_H773insNP	11	N771_H773dup	2 P772_H773 insGHP	1	N771delinsRH	1 N	1771_P772insH	1 A763_Y764insFQEA	1 N771_P772insH	3 F	1773_V774dup
P772_H773dup	1 V769_D770insASV	38 P772_H773insLGNP	1		P772_H773insNPH	1	N771_P772insH	1 P772_H773dup	1	N771delinsKH	1 A	1763_Y764insFQEA	3 A767_V769dup	3 Other	64 F	(773delinsSNPY
P772_H773insHV	1 D770_N771insSVD	29 P772_H773insDNP	1 By eon et al., 2019	=	D770_N771insGV	1	N771_P772insR	1 P772_H773insTNP	1	N771delinsGF	1 0	Other	1 S768_D770dup	2	9	1773_V774insNPH
P772_H773insPHPH	1 H773_V774insNPH	11 P772_H773insT	1 His-773_Val774insHis	7	D770_N771insGT	1	N771delinsGF	1 H773_V774insH	1	N771_P772insH	1		S768_V769delinsIL	1 Shi et al, 2022	#	
P772_H773insRCP	1 D770_N771insG	8 H773_V774dupH	3 Val 774_Cys 775insHisVal	3	H773_V774insY	1	N771delinsGY	1 H773_V774dup	1	N771_P772insNPN	1 G	ieng et al, 2022	# D770_N771insG	2 N771_H773dup	1 F	relaj et al, 2022
S768_V769delinsIL	1 H773_V774insH	6 H773_V774insPH	2 His 773_Val 774 ins ProHis	2	Unknown	2	N771delinsKG	1 N771dup	2	H773dup	1 57	768_D770dup	1 D770_P772dup	1 D770_P772dup	2 [0770_N771insSVD
V769_P772dup	1 A 763_Y764insFQEA	5 Unknown	11 His 773_Val 774ins Asn ProHis	1			N771delinsTH	1 P772_C775 dupPHVC	1	P772_H773irsPHP	1 N	1771_H773dup	1 N771_P772insH	2 A767_S768insTLA	1	
578GI	27 V 774_C775insHV	4 Other	7 Pro772_His773insThrThrPro	1	Fang en al., 2019	Ħ	P772 P772_C775dup	1 H773_V774 insGTNPH	1	H773_V774insTH	1 A	.767_V769dup	2 N771_P772insV	1 A767_V769dup	3 F	ang et al, 2019
Unknown	47 D770delinsGY	3	Pro 772_His 773i nsGl y Asn Pro	1	A767_V769dup	1	P772_H773dup	3		H773_V774insPH	1 A	1763_Y764insFQEA	1 N771_H773dup	3 S768_D770dup	1 /	1767_\$768ins\$VD
	H773_V774insTH	3 Jenn-Yu Wu et al., 2008	# Val 769_Asn 771 ins Val Gl yVal	1	5768_D770dup	2	P772_H773insANP	1 Takeda et al, 2018		H773delinsYNPY	1 H	773delinsQY	1 P772_H773dup	2 H773dup	1	
Piotrowskaet al, 2020	# P772_H773insGHP	2 A767_V769dupASV	3 Asp-770_Asn771insGly	1	N771_P772insL	1	H773_V774dup	2 M766_A767insASV	2	H773delinsYPNPY	1 57	768_D770dup	1 P772_H773insR	1 N771delinsSVDS	1 (Chan et al, 2018
A767_V769dupASV	5 H773delinsPNPY	2 5768_D770dupSVD	4 57681	17	D770_N771insG	1	H773_V774insAH	2 A767_S768insSVD	3	V774_C775insHV	1 N	1771 delinsGY	1 Other	2	1	1767_V769dup
D770_N771insG	2 N771delinsGY	2 D770_N771insD	1 Other	4	A763_Y764insFQEA	1	H773delinsYNPY	1 V769_D770insASV	1	C775_R776insPHVC	1 D	770_N771insGF	1	Piotrowska et al, 2018		
N771_P772insH	1 V774_C775insCPHV	2 D770_N771insG	2 Unknown	29			V 774delinsHC	1 D770_N771insGL	1	Unknown	1 H	(773insHA	1 Riess et al, 2021	# A763_Y764insFQEA	1 L	in et al., 2020
P772_H773insF	1 Unknown	24 N771_H773dupNPH	1		Tsigelny et al, 2015	H	H773dup	5 P772_H773insGNP	1		U	Inknown	2 A767_V769dup	3 A767_V769dup	5 1	1771delinsKG
D770 N771insSVD	1 Other	26 Other	9 Robichaux et al, 2018		exon 20 (D770>GY)	1	S768I	5 57681	2	Van Veggel et al, 2018	Ħ		5768 D770dup	2 5768 D770dup	4	
N771_H773dup	1		V769_D770insGSV	1	D770_P772del_insKG	1	Unknown	4 Other	2	Ser768_Asp770dup	1 Ya	ang ey al, 2022	# N771delinsGY	1 D770 P772dup	1 2	öchbauer-Müller et al. 2021
V769 D770insASV	1 Van Veggel et al., 2020	# Yasuda et al, 2013	# H773 V774insAH		Other	1	Other	1				1763 Y764insFQEA	8 H773dup	1 D770 N771insY	1 1	(773dup
H773 V774insNPH	1 H773delinsUM	2 A763 Y764insFQEA	3 H773 V774insPR	1						His773dup	1 D	770delinsGY	4 H773 V774dup	1 D770 N771insGV	1	
H773_V774insPH	1 H773delinsYNPY	1 Y764_V765insHH	1 N771_P772insHH	1						Al a767_Val769dup	1 V	769_D770insASV	7 H773_V774insGTNPH	1 D770_N771insNPY	1 (Irbán et al., 2021
P772 H773insARG	1 N771delinsTH	1 M766 A767insASV	1 D770delinsGY	1							D	770 N771insSVD	9 V774 C775insHNPHV	1 D770 N771insQVH	1 0	4771 H773dup
	H773 V774insAH	2 A767 V769dupASV	1 D770 N771insG	1									1	N771delinsFH	1	
	A 767 V 769dup	4 V769_D770insASV	1 A767 V769dupASV	1									1	N771delinsGF	1 2	hu et al., 2022
	N771 H773dup	2 D770 N771insGL	2 5768 D770duq5VD	1							H	(773delins8Y	1	N771 H773dup	1 0	1771delinsGF
	5768_D770dup	1 D770 N771insGT	1 5768	1							D	770_N771insGD	1	N771_P772insH	1	
	N771 P772insH	1 D770 N771insSVD	2 P772 H773insDNP	1									1	P772_H773dup	4	
	N771delinsGY	1 D770delinsGY	2									1771 P772insH	1	H773dup	1	
	S768_V769delinslL	1 P772_H773insYNP	1									772_H773insH	1	1		
	V 769_D 770ins GG	1 P772_H773dup	1													
	N771delinsGH	1 H773_V774insH (H773dup)	2													
	V 769 D 770insSFL	1 H773 V774 rsNPH														

#; represents the count of each EGFRex20+ mutation present in the study.

Supplementary Table 2. Overview of the original mutations (see supplementary table 1) and the annotation after converting according to the HGVS using the NP_005219.2 EGFR transcript. All variants were manually checked by adding the mutated amino acids into the *EGFR* exon 20 wild type amino acid position, as highlighted in yellow per variant. The *EGFR* exon 20 mutations variants M766_V769insWPA and D770_H773dupTTP (Beau Faller et al, 2014) were not recognized by the ncbi isoform and could not be manually reproduced, and are therefore excluded from the overview mentioned in supplementary Figure 1.

			D	E	Α	Y	V	M	A	S	V	D	N	P	н	V	C	R				
		EGFR mutation variant																				
		(protein abbreviation, after																				
Input Status Normalized DNA	g. RNA Protein, mentioned in source article	mutalyzer batch checker)																				
NP_005219.2:p.D761_E762insEAFQ	NP_005219.2:p.(Ala763_Tyr764insPheGlnGluAla)	A763_Y764insFQEA	D	E	A	F	Q	E	A	Y	V	M	A	S	V	D	N	P				
NP_005219.2:p.M766_A767insASV	NP_005219.2:p.(Ala767_Val769dup)	A767_V769dup	D	E	Α	Υ	V	M	Α	S	V	Α	S	V	D	N	P	Н	V (C	2	
NP_005219.2:p.M766_V769insWPA	N/A N/A N/A	EXCLUDE	D	E	Α	Υ	V	M	A	S	V	D	N	Р	н	V	С	R				
NP_005219.2:p.A767_\$768ins\$VR	NP_005219.2:p.(Val769_Asp770insArgSerVal)	V769_D770insRSV	D	E	A	Y	V	M	A	S	V	R	S	V	D	N	P	Н	V (C I	R	
NP_005219.2:p.A767_V769dupASV	NP_005219.2:p.(Ala767_Val769dup)	A767_V769dup	D	E	Α	Y	V	M	Α	S	V	Α	S	V	D	N	P	Н	V (C	2	
NP_005219.2:p.S768_D770dupSVD	NP_005219.2:p.(Ser768_Asp770dup)	S768_D770dup	D	E	A	Υ	V	M	Α	S	V	D	S	V	D	N	P	н	V (C I	R	
NP 005219.2:p.A767 S768insSVD	NP 005219.2:p.(Ser768 Asp770dup)	S768 D770dup	D	E	A	Y	V	M	A	S	V	D	s	V	D	N	P	Н	V (C I	R	
NP_005219.2:p.V769_D770insASV	NP 005219.2:p.(Ala767 Val769dup)	A767_V769dup	D	E	Α	Y	V	M	А	S	V	Α	S	V	D	N	P	Н	V (C I	3	
NP_005219.2:p.D770_H773dupTTP	N/A N/A N/A	EXCLUDE	D	E	A	Υ	V	M	A	S	V	D	N	Р	н	V	С	R				
NP 005219.2:p.D770 N771>GSVDN	N/A N/A N/A	D770 N771insGSVDN	D	E	Α	Y	V	M	A	S	V	D	G	S	V	D	N	N	P 1	Η	v c	R
NP_005219.2:p.D770_N771>GYN	N/A N/A N/A	D770_N771insGYN	D	E	A	Υ	V	M	A	S	V	D	G	Υ	N	N	Р	н	V (C I	R	
NP 005219.2:p.D770 N771insD	NP_005219.2:p.(Asp770dup)	D770dup	D	E	A	Y	V	M	A	S	V	D	D	N	Р	н	V	С	R			
NP 005219.2:p.D770insG	NP 005219.2:p.(Asp770 Asn771insGly)	D770 N771insG	D	E	Α	Y	V	M	Α	S	V	D	G	N	P	Н	V	С	R			
NP_005219.2:p.D770_N771insSVD	NP_005219.2:p.(Ser768_Asp770dup)	S768_D770dup	D	E	A	Υ	V	M	Α	S	V	D	S	V	D	N	P	Н	V (C I	R	
NP 005219.2:p.D770>GY	N/A N/A N/A	D770 N771insGY	D	E	Α	Y	V	M	A	s	V	D	G	Y	N	Р	Н	V	C I	R		
NP 005219.2:p.N771 H773dupNPH	NP 005219.2:p.(Asn771 His773dup)	N771 H773dup	D	Ε	Α	Υ	V	M	A	S	V	D	N	Р	Н	N	P	н	V (C I	3	
NP_005219.2:p.N771_P772>GYP	N/A N/A N/A	N771_P772insGYP	D	E	Α	Y	V	M	Α	S	V	D	N	G	Υ	Р	Р	н	V (C I	R	
NP 005219.2:p.N771 P772insN	NP 005219.2:p.(Asn771dup)	N771dup	D	E	Α	Υ	V	M	Α	s	V	D	N	N	Р	н	v	С	R			
NP_005219.2:p.N771_P772insPH	NP_005219.2:p.(Pro772_His773dup)	P772_H773dup	D	E	Α	Υ	V	M	Α	S	V	D	N	Р	Н	Р	н	V	C I	R		
NP_005219.2: p.D770_P772del771NinsTH	NP_005219.2:p.(Asp770_Pro772delAsn771insThrHis)	N771delinsTH	D	E	Α	Y	V	M	Α	S	V	D	T	н	Р	н	V	С	R			
NP 005219.2:p.N771dupN	NP 005219.2:p.(Asn771dup)	N771dup	D	Ε	Α	Υ	V	M	Α	S	V	D	N	N	P	н	V	С	R			
NP_005219.2:p.P772_C775dupPHVC	NP_005219.2:p.(Pro772_Cys775dup)	P772_C775dup	D	E	A	Υ	V	M	A	S	V	D	N	Р	Н	٧	С	Р	н 1	V (C R	
NP 005219.2:p.P772 H773dupPH	NP 005219.2:p.(Pro772 His773dup)	P772 H773dup	D	E	Α	Y	V	M	Α	S	V	D	N	Р	Н	Р	Н	٧	C I	R		
NP 005219.2:p.P772 H773insDNP	NP 005219.2:p.(Asp770 Pro772dup)	D770 P772dup	D	E	Α	Υ	V	M	Α	S	V	D	N	Р	D	N	Р	н	V (C I	3	- 1
NP_005219.2:p.P772_H773insNP	NP_005219.2:p.(Asn771_Pro772dup)	N771_P772dup	D	E	A	Y	V	M	A	S	V	D	N	Р	N	Р	н	٧	C I	R		
NP 005219.2:p.H773 V774dupHV	NP 005219.2:p.(His773 Val774dup)	H773 V774dup	D	E	Α	Y	V	M	Α	S	V	D	N	Р	Н	V	н	V	C I	R		
NP_005219.2:p.H773_V774insH	NP_005219.2:p.(His773dup)	H773dup	D	E	A	Υ	V	M	Α	S	V	D	N	Р	н	н	V	С	R			
NP 005219.2:p.H773 V774dupH	NP 005219.2:p.(His773dup)	H773dup	D	E	A	Y	V	M	A	S	V	D	N	Р	н	н	V	С	R			
NP 005219.2:p.H773 V774insPH	NP 005219.2:p.(Pro772 His773dup)	P772 H773dup	D	Ε	Α	Υ	V	M	Α	S	V	D	N	Р	Н	Р	н	V	C	R		
NP 005219.2:p.H773dupH	NP_005219.2:p.(His773dup)	H773dup	D	E	Α	Υ	V	M	Α	S	V	D	N	Р	н	н	V	С	R			
NP 005219.2:p.H773insH	N/A N/A N/A	H773dup	D	E	Α	Y	V	M	Α	s	V	D	N	Р	н	н	v	С	R			
NP_005219.2:p.V774_C775>AHVC	N/A N/A N/A	V774_C775insAHVC	D	E	Α	Υ	V	M	A	S	V	D	N	Р	н	٧	Α	Н	V (C (C R	
NP 005219.2:p.V774 C775insCPHV	NP 005219.2:p.(Pro772 Cys775dup)	P772_C775dup	D	E	A	Y	V	M	A	S	V	D	N	Р	Н	V	С	Р	н	V (C R	
NP_005219.2:p.V774_C775insHV	NP_005219.2:p.(His773_Val774dup)	H773_V774dup	D	E	Α	Υ	V	M	Α	S	V	D	N	Р	Н	V	н	V	C	R		
NP_005219.2:p.C775_R776insPHVC	NP_005219.2:p.(Pro772_Cys775dup)	P772_C775dup	D	E	A	Υ	V	M	Α	S	V	D	N	Р	н	V			н		C R	
- · -	=	= -																				-

<u>Supplementary Table 3.</u> Overview of the Ba/F3 cell line models used for the *in vitro* TKI sensitivity studies.

Reference	Tested <i>EGFR</i> ex20+ mutational variants	TKI	Cell viability instrument	Reported value	Year published	DOIs
Hasako et al, 2018	Wild type EGFR A763_Y764insFQEA A767_V769dup S768_D770dup D770_N771insG	Erlotinib Afatinib TAS6417	CellTiter-Glo luminescent cell viability assay (Promega)	IC ₅₀	2018	10.1158/1535-7163.MCT-17- 1206
	H773_V774insNPH H773_V774insPH					
Lee et al, 2019	Wild type EGFR A763_Y764insFQEA A767_V769dup S768_D770dup D770_N771insNPG P772insPR H773insH H773insNPH	Erlotinib Gefitinib Afatinib Dacomitinib Rociletinib Olmutinib Nazartinib	CellTiter-Glo luminescent cell viability assay (Promega)	IC ₅₀	2019	10.1016/j.jtho.2019.05.006
Hirano et al, 2015	Wild type EGFR A763_Y764insFQEA A767_V769dup D770_N771insNPG Y764_V765insHH	Erlotinib Afatinib Osimertinib Rociletinib	CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega)	IC ₅₀	2015	10.18632/oncotarget.5887
Udagawa et al, 2019	Wild type EGFR A763_Y764insFQEA A767_V769dup S768_D770dup D770_N771insG H773_V774insNPH H773_V774insPH	Erlotinib Afatinib Osimertinib TAS6417 Poziotinib	CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega)	IC ₅₀	2019	10.1158/1541-7786.MCR-19- 0419
Hirano et al, 2018	Wild type EGFR A763_Y764insFQEA Y764_V765insHH A767_V769dup D770_N771insNPG	Erlotinib Afatinib Osimertinib Naquotinib	CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega)	IC ₅₀	2018	10.1158/1535-7163.MCT-17- 1033
Jia et al, 2016	Wild type EGFR A767_V769dup S768_D770dup	EGF816	Bright-Glo Luciferase Assay System (Promega)	EC ₅₀	2016	10.1158/0008-5472

	H773_V774insNPH					
Fan et al, 2020	Wild type EGFR	Osimertinib	CellTiter-Glo luminescent cell	IC ₅₀	2020	10.1016/j.tranon.2020.100961
	A763_Y764insFQEA	BEBT-109	viability assay (Promega)			
	A767_V769dup					
	S768I					
	S768_D770dup					
	N771_H773dup					
	P772_H773dup					
Yun et al, 2020	Wild type EGFR	Poziotinib	CellTiter-Glo 2.0 Assay Kit (Promega)	IC ₅₀	2020	10.1158/2159-8290.CD-20- 0116
	Y764_V765insHH					
	A767_V769dup D770delinsGY					
	S768_D770dup					
	H773dup					
Vasconcelos et al,	Wild type EGFR	Osimertinib	CellTiter 96 AQueous One	IC ₅₀	2021	10.1016/j.jtocrr.2020.100105
2021	A763_Y764insFQEA	Pozitionib	Solution proliferation kit (Promega) and/or Cell Counting			
	A767_V769dupA	Mobocertinib	Kit-8 (Dojindo Molecular Technologies)			
	S768_D770dup					
	H773dup					
Jorge et al, 2018	Wild type EGFR	Erlotinib	CellTiter 96 AQueous One	IC ₅₀	2018	10.1158/1078-0432.CCR-18- 1541
	A763_Y764insFQEA	Afatinib	Solution Cell Proliferation Assay (Promega)			1541
	Y764_V765insHH	Rociletinib				
	M766_A767insAl	Luminespib				
	A767_V769dup					
	S768_D770dup D770_N771insNPG					
	H773dup					
Robichaux et al,	A763_Y764insFQEA	Erlotinib	CellTiter-Glo luminescent cell	Mutant to WT	2021	10.1038/s41586-021-03898-1
2021	A767_V769dup	Afatinib	viability assay (Promega)	ratios (dividing the IC50 values		
	S768I	Gefitinib		of mutant cell lines by the		
	D770_ N771insNPG	Osimertinib		average IC50 value of Ba/F3		
	H773_V774insNPH	AZD3759		cells expressing		
		Sapatinib		WT EGFR)		
		Dacomitinib				
		Neratinib				
		Poziotinib				
		Tarlox-TKI				

	CLN-081			
	AZ5104			
	Mobocertinib			
	Nazartinib			
	Olmutinib			
	Rociletinib			
	Naquotinib			
	Lazertinib			
	l		l	

<u>Supplementary Table 4.</u> IC₅₀ values (recalculated to nmol/L) and mutant to wild type ratios for the published models mentioned in Supplementary Table 3.

Reported IC₅₀ values (unit: nmol/L) per inhibitory com Tested EGFRex20+ mutational variants BEBT-109 Rociletinib Naquotinib TAS6417 EGF816 Erlotini Gefitinib Osimertinib Olmutinib Nazartinib Luminespib Dacomitinib Poziotinib Hasako et al. 2018 Wild type EGFR A763_Y764insFQEA A767_V769dup S768_D770dup D770_N771insG 1459 H773_V774insNPH H773_V774insPH Wild type EGFR Lee et al, 2019 5051 1325 A763_Y764insFQEA A767_V769dup S768_D770dup D770_N771insNPG P772insPR 50 H773insNPH H773insH Wild type EGFR A763_Y764insFQEA Hirano et al, 2015 A767_V769dup D770_N771insNPG Y764_V765insHH Y764_V765insHH
Wild type EGFR
A763_Y764insFQEA
A767_V769dup
S768_D770dup
D770_N771insG Udagawa et al, 2019 H773_V774insNPH H773_V774insPH Wild type EGFR A763_Y764insFQEA 667 Hirano et al, 2018 Y764_V765insHH A767_V769dup D770_N771insNPG Jia et al, 2016 Wild type EGFR A767_V769dup S768_D770dup H773_V774insNPH Fan et al. 2020 Wild type EGFR A763_Y764insFQEA A767_V769dup S768I 198 52 \$768_D770dup N771_H773dup P772_H773dup Yun et al. 2020 Wild type EGFR Y764_V765insHH A767_V769dup D770delinsGY S768_D770dup H773dup Wild type EGFR A763_Y764insFQEA 65.83 A767_V769dup S768_D770dup H773dup Wild type EGFR 180 Jorge et al, 2018 3400 A763 Y764insFQEA A763_Y764InsFQEA Y764_V765insHH M766_A767insAl A767_V769dup S768_D770dup D770_N771insNPG

Lazertinib Erlotinib Reference mutational variants 0,42 Robichaux et al, 2021 A763_Y764insFQEA A767_V769dup 1.57 42,75 3.30 1.09 0.14 0,19 0,01 0,85 17,66 10,70 4,86 16,70 26,32 1,33 4,93 1,30 D770 N771insNPG 6,26 0,31 0,69 H773 V774insNPH

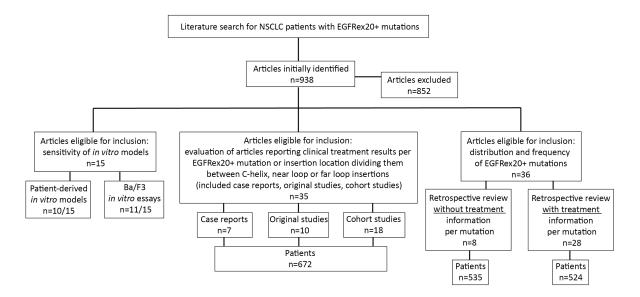
<u>Supplementary Table 5.</u> Published EGFRex20+ patient derived cell lines with IC₅₀ values (calculated to nmol/L) of several inhibitory compounds and the IC₅₀ values of the control matching mutational cell lines (if applicable). All experiments were performed in triplo.

*; When experiments were performed twice instead of in triplo, both values were mentioned. #; Ba/F3 cell lines were used as a control. \$; A431 cell line was used as a control.

			Reported IC	so values (ca	lculated to r	mol/L) per inhi	bitory compou	nd										
Reference	Patient- derived cell	Mutational status	Erlotinib	Afatinib	Gefitinib	Osimertinib	Rocelitenib	Poziotinib	Naquotinib	Luminespib	TAS6417	Mobocertinib	Cetuximab	Dacometinib	Nazartinib	Olmutinib	Tarloxotinib	Tarlox-E
	line																	
Yesuda et	BID007	A763_Y764insFQEA	82	5	565													
al, 2013	#	A763_Y764insFQEA	48	4	174													
Hirano et al,	BID007	A763_Y764insFQEA	45	8		40	1278											
2015	#	A763_Y764insFQEA	154	3		44	673											
	#	Wild type EGFR	1020	31		938	2052											
Hirano et al,	BID007	A763_Y764insFQEA	233	13		108			52									
2018	#	A763_Y764insFQEA	84	0.6		16			19									
	#	Wild type EGFR	667	28		704			830									
Udagawa et	BID007	A763_Y764insFQEA	53	3		87		1			3							
al, 2019	BID019	N771_P772insH		221				1			21							
	#	A763_Y764insFQEA	138	3		45		1			5							
	#	Wild type EGFR	980	48		688		6			702							
Jorge et al,	BID007	A763_Y764insFQEA								7								
2018	#	A763_Y764insFQEA								3								
	#	Wild type EGFR								3								
Vasconcelos	BID007	A763_Y764insFQEA										60.36						
et al, 2021	BID019	N771_P772insH										109.70						
	#	A763_Y764insFQEA										109						
	#	Wild type EGFR										763,4						
Yang et al,	LU0387	H773_V774insNPH	11621	10823	>10000	3298	2636						Insensitive					
2016*		_	>10000	>10000	>10000	5721	3442						Insensitive					1
	LU3075	P772_H773insDNP	96665	1230	4369	1591	2095						Insensitive					
			>100000	1816	6790	2570	2501						Insensitive					1
Gonzalez et	LU0387	H773_V774insNPH	2793	20	364	195						21						
al, 2021	CUTO14	A767_V769dup	2679	66	1021	575						33						
	#	H773_V774insNPH	2764	103	4054	469						18						
	#	A767_V769dup	1340	46	369	173						11						
	\$	Wild type EGFR	71	3.9	56	-						35						
Lee et al,	SNU-3173	H773_V774insAH	4535	16.7	1050	62.7	1202.5							13.7	139.7	627		
2019	#	Wild type EGFR	1333	7	1127	259								39	82	236		
Estrada et	CUTO14	A767_V769dup		110.9	374	303											4645	72.2
al, 2021	CUTO17	N771_H773dup		219.7	4197	426											3090	48.1
	CUTO18	S768_D770dup		841.3	>10000	647											>10000	158.4

Supplementary Table 6. Articles reporting clinical treatment results (ORR and PFS if applicable) of in total 672 patients per *EGFR*ex20+ mutation or insertion location dividing them between C-helix, near loop or far loop insertions. *Platinum based chemotherapy regime. Abbreviations: ICI = immune checkpoint inhibitor (ICI)-based treatment.

Reference	Type of study	Treatment	Year published	DOIs
Wu, Jenn-Yu et al. "Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response." Clinical cancer research : an official journal of the American Association for Cancer Research vol. 14,15 (2008): 4877-82.	Cohort	Gefitinib	2008	10.1158/1078- 0432.CCR-07- 5123
Yasuda, Hiroyuki et al. "Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer." Science translational medicine vol. 5,216 (2013): 216ra177.	Cohort	Erlotinib Geftinib	2013	10.1126/scitrans lmed.3007205
Beau-Faller, M et al. "Rare EGFR exon 18 and exon 20 mutations in non-small-cell lung cancer on 10 117 patients: a multicentre observational study by the French ERMETIC-IFCT network." Annals of oncology: official journal of the European Society for Medical Oncology vol. 25,1 (2014): 126-31.	Cohort	Erlotinib Gefitinib	2014	10.1093/annonc /mdt418
Naidoo, J et al. "Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib." Cancer vol. 121,18 (2015): 3212-3220.	Cohort	Erlotinib	2015	10.1002/cncr.29 493


Tsigelny, Igor F et al. "Molecular determinants of drug-specific sensitivity for epidermal growth factor receptor (EGFR) exon 19 and 20 mutants in non-small cell lung cancer." Oncotarget vol. 6,8 (2015): 6029-39.	Cohort	Erlotinib/ cetuximab	2015	10.18632/oncot arget.3472
Chan, Raymond Tsz-Tong. "Afatinib for an EGFR exon 20 insertion mutation: A case report of progressive stage IV metastatic lung adenocarcinoma with 54 months' survival." Asia-Pacific journal of clinical oncology vol. 14 Suppl 1 (2018): 7-9.	Case report	Afatinib	2018	10.1111/ajco.12 853
van Veggel, Bianca et al. "Afatinib and Cetuximab in Four Patients With EGFR Exon 20 Insertion-Positive Advanced NSCLC." Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer vol. 13,8 (2018): 1222-1226.	Cohort	Afatinib/ cetuximab	2018	10.1016/j.jtho.2 018.04.012
Takeda, Masayuki et al. "Clinical characteristics of non-small cell lung cancer harboring mutations in exon 20 of EGFR or HER2." Oncotarget vol. 9,30 21132-21140. 20 Apr. 2018.	Cohort	ICI	2018	10.18632/oncot arget.24958
Piotrowska, Z et al. "Activity of the Hsp90 inhibitor luminespib among non-small-cell lung cancers harboring EGFR exon 20 insertions." Annals of oncology: official journal of the European Society for Medical Oncology vol. 29,10 (2018): 2092-2097.	Original study	Luminespib	2018	10.1093/annonc /mdy336
Robichaux, Jacqulyne P et al. "Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer." Nature medicine vol. 24,5 (2018): 638-646.	Original study	Poziotinib	2018	10.1038/s41591 -018-0007-9
Fang, Wenfeng et al. "A Patient with EGFR Exon 20 Insertion-Mutant Non-Small Cell Lung Cancer Responded to Osimertinib plus Cetuximab Combination Therapy." Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer vol. 14,9 (2019): e201-e202.	Case report	Afatinib/ cetuximab	2019	10.1016/j.jtho.2 019.04.013
Wu, Jenn-Yu et al. "Effectiveness of Treatments for Advanced Non-Small-Cell Lung Cancer With Exon 20 Insertion Epidermal Growth Factor Receptor Mutations." Clinical lung cancer vol. 20,6 (2019): e620-e630.	Cohort	Chemother apy* Gefitinib Erlotinib Afatinib	2019	10.1016/j.cllc.2 019.06.018
Byeon, Seonggyu et al. "Clinical Outcomes of EGFR Exon 20 Insertion Mutations in Advanced Non-small Cell Lung Cancer in Korea." Cancer research and treatment vol. 51,2 (2019): 623-631.	Cohort	Chemother apy*	2019	10.4143/crt.201 8.151
Fang, Wenfeng et al. "EGFR exon 20 insertion mutations and response to osimertinib in non-small-cell lung cancer." BMC cancer vol. 19,1 595. 17 Jun. 2019.	Cohort	Osimertinib 80mg	2019	10.1186/s12885 -019-5820-0
Lin, Ling et al. "Response to Afatinib in a Patient with NSCLC Harboring Novel EGFR Exon 20 Insertion Mutations." OncoTargets and therapy vol. 13 9753-9757. 30 Sep. 2020.	Case report	Afatinib	2020	10.2147/OTT.S 268694
Piotrowska, Zofia et al. "ECOG-ACRIN 5162: A phase II study of osimertinib 160 mg in NSCLC with EGFR exon 20 insertions.," Journal of Clinical Oncology, vol. 38, no. 15_suppl, p. 9513, May 2020.	Cohort	Osimertinib 160mg	2020	10.1200/JCO.20 20.38.15_suppl. 9513
Yang, Guang-Jian et al. "Osimertinib for Chinese advanced non-small cell lung cancer patients harboring diverse EGFR exon 20 insertion mutations." Lung cancer (Amsterdam, Netherlands) vol. 152 (2021): 39-48.	Cohort	Osimertinib 80mg and 160mg	2020	10.1016/j.lunge an.2020.11.027
van Veggel, B et al. "Osimertinib treatment for patients with EGFR exon 20 mutation positive non-small cell lung cancer." Lung cancer (Amsterdam, Netherlands) vol. 141 (2020): 9-13.	Cohort	Osimertinib 80mg and 160mg	2020	10.1016/j.lungc an.2019.12.013
Le, Ziuning et al. "Poziotinib shows activity and durability of responses in subgroups of previously treated EGFR exon 20 NSCLC patients." Journal of Clinical Oncology, vol. 38, no. 15_suppl, p. 9514, May 2020.	Original study	Poziotinib	2020	10.1200/JCO.20 20.38.15_suppl. 9514
Zöchbauer-Müller, Sabine et al. "Case Report: Afatinib Treatment in a Patient With NSCLC Harboring a Rare EGFR Exon 20 Mutation." Frontiers in oncology vol. 10 593852. 26 Jan. 2021.	Case report	Afatinib	2021	10.3389/fonc.20 20.593852
Urbán, László et al. "Major Clinical Response to Afatinib Monotherapy in Lung Adenocarcinoma Harboring EGFR Exon 20 Insertion Mutation." Clinical lung cancer vol. 22,1 (2021): e112-e115.	Case report	Afatinib	2021	10.1016/j.cllc.2 020.09.005
Park, Keunchil et al. "Amivantamab in EGFR Exon 20 Insertion-Mutated Non-Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results From the CHRYSALIS Phase I	Original study	Amivantam ab	2021	10.1200/JCO.21 .00662

Study." Journal of clinical oncology: official journal of the American Society of Clinical Oncology vol. 39,30 (2021): 3391-3402.				
Riely, Gregory J et al. "Activity and Safety of Mobocertinib (TAK-788) in Previously Treated Non-Small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations from a Phase I/II Trial." Cancer discovery vol. 11,7 (2021): 1688-1699.	Original study	Mobocertin ib	2021	10.1158/2159- 8290.CD-20- 1598
Zhou, Caicun et al. "Treatment Outcomes and Safety of Mobocertinib in Platinum-Pretreated Patients With EGFR Exon 20 Insertion-Positive Metastatic Non-Small Cell Lung Cancer: A Phase 1/2 Open-label Nonrandomized Clinical Trial." JAMA oncology vol. 7,12 (2021): e214761.	Original study	Mobocertin ib	2021	10.1001/jamaon col.2021.4761
Riess, Jonathan W et al. "Erlotinib and Onalespib Lactate Focused on EGFR Exon 20 Insertion Non-Small Cell Lung Cancer (NSCLC): A California Cancer Consortium Phase I/II Trial (NCI 9878)." Clinical lung cancer vol. 22,6 (2021): 541-548.	Original study	Onalespib Erlotinib	2021	10.1016/j.cllc.2 021.05.001
Yasuda, Hiroyuki et al. "A phase I/II study of osimertinib in EGFR exon 20 insertion mutation-positive non-small cell lung cancer." Lung cancer (Amsterdam, Netherlands) vol. 162 (2021): 140-146.	Original study	Osimertinib 80mg	2021	10.1016/j.lungc an.2021.10.006
Prelaj, Arsela et al. "Poziotinib for EGFR and HER2 exon 20 insertion mutation in advanced NSCLC: Results from the expanded access program." European journal of cancer (Oxford, England: 1990) vol. 149 (2021): 235-248.	Cohort	Poziotinib	2021	10.1016/j.ejca.2 021.02.038
Nikanjam, Mina et al. "Cetuximab in Patients with Non-Small Cell Lung Cancer and EGFR Exon 20 Insertion Alterations." Clinical oncology, case reports vol. 5,1 (2022): 210.	Cohort	Afatinib/ cetuximab	2022	
Geng, D et al. "Clinical and molecular characteristics of epidermal growth factor receptor exon 20 insertion mutations in non-small-cell lung cancer." Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico vol. 24,2 (2022): 379-387.	Cohort	ICI	2022	10.1007/s12094 -021-02701-x
Zhu, Lingling et al. "Case Report: Partial Response Following Nivolumab Plus Docetaxel in a Patient With EGFR Exon 20 Deletion/Insertion (p.N771delinsGF) Mutant Lung Adenocarcinoma Transdifferentiated From Squamous Cell Carcinoma." Frontiers in cell and developmental biology vol. 9 755135. 10 Jan. 2022.	Case report	ICI/chemot herapy*	2022	10.3389/fcell.20 21.755135
Shi, Chao et al. "Real-world clinical treatment outcomes in Chinese non-small cell lung cancer with EGFR exon 20 insertion mutations." Frontiers in oncology vol. 12 949304. 2 Sep. 2022.	Cohort	ICI/chemot herapy*	2022	10.3389/fonc.20 22.949304
Zwierenga, Fenneke et al. "High dose osimertinib in patients with advanced stage EGFR exon 20 mutation-positive NSCLC: Results from the phase 2 multicenter POSITION20 trial." Lung cancer (Amsterdam, Netherlands) vol. 170 (2022): 133-140.	Original study	Osimertinib 160mg	2022	10.1016/j.lungc an.2022.06.012
Yang, Guangjian et al. "EGFR exon 20 insertion variants A763_Y764insFQEA and D770delinsGY confer favorable sensitivity to currently approved EGFR-specific tyrosine kinase inhibitors." Frontiers in pharmacology vol. 13 984503. 8 Nov. 2022.	Cohort	Osimertinib 80mg Gefitinib Erlotinib Afatinib	2022	10.3389/fphar.2 022.984503
Prelaj, Arsela et al. "Case Report: Exceptional Response to Poziotinib in Patient with Metastatic Non-Small Cell Lung Cancer With EGFR Exon 20 Insertion Mutation." Frontiers in oncology vol. 12 902967. 8 Jun. 2022.	Case report	Poziotinib	2022	10.3389/fonc.20 22.902967
Elamin, Yasir Y et al. "Poziotinib for EGFR exon 20-mutant NSCLC: Clinical efficacy, resistance mechanisms, and impact of insertion location on drug sensitivity." Cancer cell vol. 40,7 (2022): 754-767.e6.	Original study	Poziotinib	2022	10.1016/j.ccell. 2022.06.006

<u>Supplementary Figure 1.</u> Flowchart on number of articles selected from literature search with results on in vitro experiments and clinical treatment and how patient selection was performed. Fifteen articles

were found to be eligible for reporting sensitivity of in vitro models. Six articles reported data both on patient derived in vitro models and Ba/F3 in vitro essays. Thirty-five articles were found to report an evaluation on clinical treatment per *EGFR*ex20+ mutation location, including articles reporting results only dividing the location between C-helix, near loop or far loop insertions. For the distribution and frequency of *EGFR*ex20+ mutations, 36 articles were retrospectively analyzed. The 28 articles founded which contained treatment information, are also included within the 35 articles for the evaluation of clinical treatment per *EGFR*ex20+ mutation.

Abbreviations: NSCLC = non-small cell lung cancer; EGFRex20+ = in-frame deletion and/or insertion mutations clustering within the EGFR exon 20 region.

<u>Supplementary Figure 2.</u> A cross-tabulation comparing observed clinical benefit with chemotherapy, ICI and chemotherapy/ICI combination therapy based on tumor responses in NSCLC patients across different *EGFR*ex20+ mutations (Sup. Table 6). The size of the bar representing the responses reflects the relative frequency of all responses mentioned for the corresponding mutation. Used chemotherapy was platinum-based and the used anti PD1 are camrelizumab, sintilimab, pembrolizumab and nivolumab. The mPFS is the median progressive free survival of all reported mPFS in the different studies, if applicable. Abbreviations: ICI = immune checkpoint inhibitor (ICI)-based treatment, PD1 = programmed death protein 1.

		EGFRex20+ mutation	Cher	nothe	rapv	mPFS	ICI			mnec.	Chemoth	nerapy/IC	050
	A763	A763_Y764insFQEA	n=3		n=1 n=1	7				IIIFFS	Ciricinio ti	.с. цр , , . с	mPF2
C-helix	764	No data	11-5		11-1 11-1								
ı₽	765	No data											
ŀ	766	No data											
		A767_V769dup	n=5	n=7	n=6	4.6	n=1	n=1	n=1	n.a.	n=1	n=1	12.1
	767	A767_S768insSVG					n=1			14.8			
		A767_S768insTLA									n=1		14.8
	768	S768_D770dup	n=3	n=5		4.9	n=2			n.a.	n=1		10.6
	769	No data											,
		D770_P772dup					n=1			2.5			
	770	D770_N771insG	n=2			2.2							
	,,,	D770_N771insY	n=1			1.9							
lear		D770_N771insGTT	n=1			0.6							
Near loop		N771delinsGF									n=1		n.a.
		N771delinsKH	n=1			2.2							
	771	N771delinsTH	n=1			4.1							
		N771delinsSVDS									n=1		9.1
		N771_H773dup	n=1	n=2		3.4					n=1		3.6
		P772_H773dup	n=1	n=1	n=1	2.8							
		P772_H773insGHP	n=1			24.5							
	772	P772_H773insGNP	n=1			2.7							
		P772_H773insTTP	n=1			2.4							
أي		H773dup	n=1 n	i=3	n=2	5					n=1		3.8
Far loop	773	H773_V774dup	n=2		n=1	7.7							
尚		H773_V774insNPH	n=1			2.7							
	774	No data											
		Partial response											
		Stable disease											
		Progressive disease	!										