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General introduction

1. THE PRIMARY CILIUM AND BRAIN DEVELOPMENT

Brain development is a complex and dynamic process that requires fine-tuned regulation
of neural progenitor specification, neurogenesis, neuronal migration, and neuronal wiring
to form complex neural networks and higher-order cognition. At a volumetric size of about
1350 cubic centimeters, the human brain contains approximately 100 billion neurons, 20% of
which lie within the cerebral cortex. Each of these cortical neurons forms an average of 7000
synaptic connections to other neurons, resulting in roughly 150 trillion synapses and more
than 150,000 km of myelinated nerve fiber 1. During the process of corticogenesis, an effective
intracellular response to extracellular cues is essential for the proper coordination of temporal
and spatial events that underlie the formation of the cerebral cortex.

Named for its eyelash-like appearance, the cilium, or plural cilia, is a microtubule based,
mother centriole derived, antenna-like structure that protrudes from the surface of most
vertebrate cell types 2. Primary cilia are cellular signaling hubs, highly enriched with receptors,
ion channels, and effector proteins. They effectively decode a variety of extracellular cues
including sensory stimuli such as light, sound, odor, chemical and signaling ligands 3 (Figure 1)
to facilitate appropriate cellular responses. The primary cilium is essential for integration and
transmission of signal transduction and due to the complexities in their architecture, multiple
independent regulatory mechanisms and signaling cascades are able to effectively coincide.
Hedgehog 7, Wnt 8, Notch %, mTOR °%, and TGF[3 *? signaling have all been associated with the
primary cilium.

Due to their function as a signaling hub, primary cilia play a unique and essential role in
central nervous system patterning via progenitor cell specification >4, neuronal migration *°,
and neuronal circuitry formation . Neurons, in addition to their complex web of axons and
dendrites, rely on primary cilia to sense and respond to their environment Y’. The importance
of primary cilia in brain development and neuronal network formation is highlighted by
the vast array of neurodevelopmental disorders, including neural tube defects, cortical and
cerebellar malformation, and intellectual disabilities, that result from genetic disruption of
ciliary architecture and/or function ¥, Genetic disorders that result from dysfunction of the
cilium are known as ciliopathies. A large subset of ciliopathy-associated genes are linked to

neurological defects 22 indicating that impaired ciliary function impacts brain development.
1.1. The cilium: structure and function

There are two types of cilia: motile and immotile (primary) cilia, also known as sensory cilia

(Figure 1). The microtubules of the eukaryotic primary ciliary axoneme are typically structured
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Chapter 1

in a 940 fashion (reviewed in %) (Figure 1) and motile cilia have a core of 9 + 2 microtubule
doublet structure with nine radially arranged microtubule doublets centering around a pair of
singlets (Figure 1) known as the central pair. Motile cilia propel fluid, thereby controlling fluid
and particle flow over epithelium as seen in airways %4, fallopian tubes 2, and brain ventricles
%, The ependymal cilia that line the ventricles of the brain possess mechanoreceptive and
chemoreceptive properties and are essential for directional cerebrospinal fluid flow (CSF) and
proper ventricular development ?’. Primary cilia exist in solitude and were long believed to
be vestigial remnants of their motile counterpart. However, research over the past several
decades has demonstrated that this highly structured, polarized cellular organelle plays
a critical part in neuronal development %8, tumorigenesis 2° and cellular homeostasis *°, as
mutations in genes encoding ciliary proteins cause defects in these processes.

The cilium is composed of several subdomains that function together to regulate proper
signal integration and transduction from the extracellular to intracellular space. Ciliogenesis
is cell cycle dependent and requires cellular quiescence. The centrosome, made up of the
mother and daughter barrel shaped centrioles and surrounded by pericentriolar material
(PCM), acts as the main microtubule organizer of the cell. As the centrosome does not have
a known function during interphase, it can repurpose its microtubule organizing potential
at the cell surface to generate a cilium. The cilium is nucleated by microtubules extending
from the basal body, a modified mother centriole (Figure 1). The ciliary axoneme is made
up of af3 tubulin heterodimers that are post-translationally modified for mechanical stability
31-33 (Figure 1). The mother centriole docks at the plasma membrane via fibrous distal and
subdistal appendages and matures into the basal body 34. The basal body is a g-tubulin based,
cartwheel-like structure formed from a core of nine triplets of A-, B-, and C-tubules. At the
distal end of the basal body, the region where the centriolar microtubule triplets change to the
microtubule doublets of the ciliary axoneme is called the transition zone (TZ). The transition
fibers (TFs), also called distal appendages, which serve to mount the basal body to the plasma
membrane, are a vesicle docking site where Golgi derived vesicles containing membrane
lipids and transmembrane proteins are processed for ciliary entry 3 (Figure 1). Collectively
the TFs and the TZ form the ciliary gate, a specialized permeability barrier between the ciliary
compartment and the cytosol * (Figure 1).

The cilium relies on intraflagellar transport (IFT) for formation, maintenance and function
3739 |FT particles A and B are biochemically distinct complexes that participate in retrograde
and anterograde transport respectively *>*! (Figure 1). IFT-B and the molecular motor protein
kinesin-Il are required for transport from the ciliary base to the tip, mutations in IFT-B complex
members, such as IFT88, or kinesin-Il components, such as KIF3A, result in absent or acutely

stunted cilia and severely attenuated intracellular signaling “2. IFT-A and the cytoplasmic motor
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General introduction

protein dynein mediate transport from the ciliary tip to the cell. In the absence of proper IFT
function, signal transduction pathways essential for tissue development and homeostasis are
disrupted “2. Mutations in components of IFT-A or dynein result in abnormal ciliary morphology
due to the accumulation of proteins within the tip of the cilium 444, This accumulation can

result in a blockade of signal transduction or cause ectopic activation of signaling pathways.

1.2. Hedgehog signaling and neural specification

During mammalian development cell patterning and neuronal diversity in the ventral neural
tube is coordinated in a temporal spatial fashion by ciliary specific signal transduction 1434546,
One of the principal ways in which the cilium shapes embryonic development is via its role in
organizing hedgehog signaling. Hedgehog (Hh) signaling regulates a diverse array of cellular
processes from tissue patterning during embryogenesis to adult tissue homeostasis and repair
47, Erroneous activity associated with aberrant activation or inhibition of Hh signaling results
in a variety of congenital malformations “, defects in neuronal patterning “>*°, as well as
tumorigenesis °. Specifically, Hh signaling is essential for proper dorsoventral patterning of the
central nervous system °2°3, Hh signaling propagates via the cilium, and all core components
of the transduction pathway localize dynamically to the cilium upon pathway activation
(Figure 2). In the absence of ligand, the membrane associated Patched (PTCH1) receptor acts
as a repressor of Smoothened (SMO) by inhibiting its localization to the cilium. Upon ligand
binding, the receptor ligand-complex is removed from the cilium and the co-receptor SMO
moves into the cilium, allowing for downstream transcription of GLI dependent target genes
via a complex interplay of post-translational modifications and protein translocations .

There are three mammalian Hh proteins that act as ligands to PTCH1: Sonic Hedgehog
(SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH). SHH and IHH have several,
sometimes overlapping, functions in multiple tissues. SHH is essential in nervous system
development and specification *°. IHH plays an important role in endochondral ossification and
other aspects of skeletal development, and DHH is restricted to the granulose cells of ovaries
and Sertoli cells of testis .

The primary function of PTCH1 is to inhibit the activity of SMO and maintain pathway
inactivation. Without SMO activation, the GLI transcriptional regulators are proteolytically
cleaved into their repressive forms preventing transcription of Hh target genes. Proteolytic
processing of GLI2 and GLI3 is contingent upon cAMP-dependent PKA activation, which is
controlled by the Hh negative regulating GPCR, GPR161. Additionally, in the absence of ligand,
GLI2 and GLI3 are sequestered by the Suppressor of Fused (SUFU) within the cilium and in the

cytosol.
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The formation of both activated and repressive forms of the GLI transcription factors
requires trafficking into and out of the cilium. Upon induction, KIF7 blocks SUFU resulting in
the dissociation of the SUFU/GLI complex and allowing for the induction of GLI2 activation ©.
Via activation, the Hh pathway potentiates transcription of negative regulators such as PTCH1
to maintain activation within an optimal range .

Localized at the ciliary tip, the kinesin 4 family motor protein KIF7 acts as both a negative
and positive regulator of Hh signaling (Figure 2). KIF7 limits MT growth, increases the frequency

of MT catastrophe, and controls ciliary architecture to create a single cilium tip compartment
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<Figure 1: The cilium. The cilium is a microtubule (MT) based structure that extends from the basal
body, which is docked at the plasma membrane via transition fibers (TFs) 2. The transition zone (TZ) is
the intervening compartment between the basal body and the cilium proper. It is characterized by Y-links
which anchor the MT to the ciliary membrane. The TZ acts to regulate the ingress and egress of proteins to
the cilium. The ciliary pocket is an endocytic vesicle trafficking membrane domain contiguous with the cell
membrane and found at the base of the cilium 4. The ciliary membrane is enriched with ion channels and
receptors concordant with the role of cilia in transducing signaling cascades. Motile and primary cilia differ
in their core distribution of axonemal microtubules. The microtubules of the primary ciliary axoneme are
typically structured in a 9+0 fashion and motile cilia have a core of 9 + 2 microtubule doublet structure
with nine radially arranged microtubule doublets centering around a pair of singlets known as the central
pair. Motile cilia utilize ATPase dependent dynein motors to generate sliding motions between the MT in
order to beat. MT are tubular, cytoskeletal components consisting of /B tubulin heterodimers organized
in a plus to minus end fashion to form protofilaments. These protofilaments associate laterally to form
a hollow tubular structure which have the capacity for dynamic changes in length and architecture. The
radial doublets are formed from a complete A tubule, made up of 13 protofilaments, and an incomplete
B tubule, made up of 10 protofilaments. The basal body and ciliary microtubules undergo a variety of
highly conserved post-translational modifications, including acetylation and glutamylation, that function
in a variety of processes including signal transduction 5%, ciliary stability 32 and length regulation *’
Intraflagellar transport (IFT) involves the bidirectional movement of various proteins along microtubules
via protein complexes termed IFT particles or trains. IFT-A mediates retrograde transport via dynein
motors and IFT-B mediates anterograde transport via kinesin motor proteins. IFT functions in organizing
effector proteins for signal transduction, ciliary assemble, disassembly and maintenance. In instances
where activated G-protein coupled receptor (GPCR) cannot exit the cilium via IFT, ectocytosis at the ciliary
tip attenuates signaling via the release of activated GCPR in extracellular vesicles called ectosomes .

for proper SUFU-GLI regulation 2. Mutations in KIF7 disrupt Hh signaling via the impaired GLI3
processing and subsequent dysregulation of GLI target genes %, resulting in fetal hydrolethalus
and acrocallosal syndromes in humans ?°, and agenesis of the corpus callosum in mice “°,
suggesting an important role in neuronal tract formation.

Extensive research over the past decades has shown that Hh signaling is essential for
regulating the development, patterning, and positioning of neural cell types in the central

nervous system (CNS) during both early and late stages of embryogenesis 2596465,

1.3. Neurulation

During embryogenesis, following specification of the germ layers, neural fate is induced in
the ectoderm by the underlying notochord, giving rise to the neural plate, a uniform sheet
of neuroepithelium #. Neurulation, the first step in human brain development, subsequently
follows and results in the folding of the neural plate into the neural tube (NT). The vertebrate
neural tube is formed via the progressive adhesion and tissue fusion of opposing neural folds
along the rostral caudal edge of the body axis. The opposing neural folds are comprised of
neuroepithelium beneath non-neural, surface ectoderm. Both the neuroepithelium and
surface ectoderm play an essential role in NT closure %¢, The surface ectoderm, made up of
a single cell layer is the source of several signaling molecules such as bone morphogenic

proteins (BMPs) ¢ that regulate bending of the NT in the lower spinal region and mediate
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General introduction

contact between the neural folds at the mid-hindbrain and spinal region ¢’. The neural tube
is a hollow structure that gives rise to the entirety of the central nervous system, the anterior
portion of which expands and gives rise to the telencephalon .

NT patterning and specification occurs via progressive subdivisions along the
dorsoventral and rostro caudal axes governed by multiple signaling cascades associated
with the primary cilium *°. The apically located, primary cilia of the neuroepithelium extend
into the luminal space of the NT and coordinates responses to patterning factors associated
with various signaling pathways including Hedgehog (Hh), Wingless-related integration site
(Wnt), and mechanistic target of rapamycin (mTOR). The notochord induces the formation of
the floor plate and specifies neural subpopulations via secretion of Hh ligand. Specification
depends on ligand concentration and the duration of exposure time. Due to their proximity
to the notochord, the ventral cells at the midline are exposed to the highest concentration of
Hh and specified as the floor plate and p3 domain, which gives rise to V3 interneurons. The
floor plate is a key organizing center in the morphogenesis of the neural tube as it provides
positional cues that instruct neural fate, axonal guidance and connectivity. Adjacent to the
floor plate and p3 domain, the formation of the pMN, p2, p1, and p0 domains which give
rise to motor neurons and dorsal V2, V1, and VO interneurons respectively, are specified
by intermediate and lower levels of Hh (Figure 3). Hh also serves to inhibit dorsal cell type
specification and identity *°. The Hh gradient serves to both activate and repress GLI family
transcription. In the neural tube, GLI2 acts as the primary activator and GLI3 as the major
repressor of transcriptional activity. The ciliary compartment is essential for the formation
of the GLI activator and repressor forms and thereby acts to maintain the balance between
these two opposing patterning factors. Genetic studies in mice have demonstrated that the
knockout of ciliary I1ft88 and Kif3a, which results in the absence of cilia, gives rise to patterning
defects due to altered Gli3 processing #2437,

The NT is made up of pseudostratified neuroepithelial cells (NECs). NECs display
apicobasal polarity and extend bipolar processes to span the epithelium, their apical and basal
endfeet attaching to the ventricular surface and pial laminin respectively 7274, NECs proliferate
at the luminal surface of the neural tube. NECs divide symmetrically, with their cleavage plane
perpendicular to the ventricular surface, to form the cortical progenitor pool that gives rise
to all subsequent neurons and later glial cells 7°. During proliferation, NECs retract their basal
processes and both daughter cells regrow a new process following cytokinesis 6. The proper
establishment of this initial apicobasal polarity in NECs is essential for the development of
distinctive stratification and proper organization of the cerebral cortex. Stage specific

disruption of Arl13b, encoding a membrane associated ciliary specific GTPase, in the early
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neuroepithelium of the developing mouse embryo results in abnormal patterning of the

telencephalon due to the inversion of apicobasal polarity of radial progenitors 7.

1.4. Neurogenesis

At the onset of neurogenesis, NECs give rise to radial glial cells (RGCs). Polarized RGCs have
a pear-shaped soma that localizes within the ventricular zone, where they are anchored by a
short apical process to the ventricular surface and a long basal process that extends to the pial
surface transversing the cerebral wall. With the appearance of apical radial glial cells (aRGCs),
also called ventricular RGCs (VRGCs), the neural progenitor pool switches from symmetrical
autoreplicative division to asymmetrical neurogenic cell division (Figure 4) 7>. RGCs are capable
of self-renewal via symmetrical division however they primarily undergo neurogenic cell
division giving rise to a neuron (direct neurogenesis) or an intermediate progenitors (IPCs)
(indirect neurogenesis) and a RGC to sustain the progenitor pool 7787,

During this time the primary cilium functions to regulate the proliferation and
differentiation of RGs ®. Temporal regulation of symmetrical to asymmetrical cell division is
essential for balancing neuron production with progenitor maintenance. The orientation of
the mitotic spindle is predictive of whether a cell division will be symmetrical or asymmetrical
(reviewed in #), this difference as a function of orientation is hypothesized to result from
differences in the distribution of cell fate determinants to the resulting daughter cells during
cell division. Knockdown of Bubrl, Ift80, Kif7, and Tmem216 in embryonic mice was shown
to result in decreased aRGCs and basal IPCs proliferation suggesting that these ciliopathy-
associated genes contribute to the modulation of progenitor cell proliferation and thereby
affect cortical formation 8. aRGCs undergo an overall increase in cell cycle length, due to an
extended G1 phase, just prior to neuronal differentiation. The length of the G1 phase is a
determining factor in proliferative division versus neurogenic differentiation and manipulation
of nearly all G1 regulators have been shown to affect neurogenesis in some way . During
early corticogenesis a shortened G1 phase results in an increase in autoreplicative self-renewal
leading to an expansion of the progenitor population at the expense of differentiation. Ciliary
instability or factors that favor ciliary reabsorption can result in a shortened G1 phases.
Ablation of ciliary structure via the disruption of IFT88 in neural progenitors, results in
the expansion of progenitor cells and a decrease in neuron production #. In Kif3a murine
mutants, the increased proliferation observed in the RGC population results from defects in
GLI3 processing. As an intact cilium is required for the conversion of full length GLI3 into its
repressor form, therefore in the absence of the ciliary compartment there is an expansion of

neural progenitor cells. Reciprocally, an arrest in G1 induces cell cycle exit and differentiation.
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Delayed ciliary disassembly results in a stall in the G1 to S phase transition causing premature

differentiation of neural progenitor cells and microcephaly.
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Figure 3: Cilia orchestrate neural tube development. Primary cilia are located at the apical side of the
neuroepithelial layer lining the neural tube. They project into the luminal space and coordinates responses
to patterning factors such as hedgehog, Wnt, and BMP signaling molecules. The notochord (N) induces the
formation of the floor plate (FP) and specifies neural subpopulations via a of Hh gradient. The ectoderm
and neural tube roof plate (RP) secrete BMP and Wnt ligands, which directly oppose the ventrally secreted
Shh from the notochord and floor plate (FP). The opposing gradient of BMP and Shh establishes the
dorsal-ventral axis and specifies neuron populations along the axis of the neural tube.
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Chapter 1

Centrosomal proteins are essential regulators of ciliary length and resorption. Disruption
of centrosomal-P4.1-associated protein (CPAP), a negative regulator of ciliary length, leads
to delayed cell cycle re-entry and premature differentiation of human iPSC derived NPCs .
RGC specific deletion of Cenpj, encoding another centrosomal protein involved in centriolar
biogenesis and ciliary disassembly, results in incomplete cell division, attenuated proliferation,
apoptosis, and microcephaly #°.

The brain forms around the cerebral spinal fluid filled ventricular cavity. Ventricular
morphogenesis is governed in part by mTOR signaling via the cilium. The cilium determines
the size of the apical domain of neuroprogenitor cells via mTORC1 signaling. In RGC mutations
without a cilium due to conditional ablation of Ift88 or Kif3a in proliferating radial glial cells, the
orientation of the mitotic spindle is disrupted and results in an increase in basal progenitor cells,
an enlarged apical endfeet of RGCs, and enlarged ventricles (ventriculomegaly) #. Hypermorphic
somatic mutations in MTOR gene result in focal malformations due to autophagy dysregulation
in ciliogenesis and Wnt signaling resulting in migration and cortical lamination defects %2,

An analysis of cilia positioning in the embryonic mouse brain illustrated the presence
of a basolateral cilium on basal progenitor cells in the telencephalon upon apical detachment
and differentiating cells in the hindbrain . During asymmetrical cell division in the ventricular
zone, the cilium is not completely disassembled and the cilium remnant is inherited by the
neural progenitor cell %, the differentiating cell retracts its apical process anchoring it to the
neuroepithelium and reestablishes a cilium on their basolateral membrane. This relocalization
of the cilium likely results in coordinated exposure to differing extrinsic environmental cues
then their more primitive sister cell #. This change results in cell fate and delamination.
Alternatively, delamination can occur via abscission of the apical endfoot. Prior to abscission
the centrosome dissociated from the apical primary cilium resulting in the retention of the
centrosome and the shedding of the apical / ciliary membrane °. This results in the loss of
apical polarity, cell cycle exit, and differentiation °*.

Delamination of neural progenitor cells from the apical adherens junction belt of the
neuroepithelium is a hallmark of cortical development and is essential for proper tissue
architecture. Neuronal delamination is the process by which new born neurons detached
from the neuroepithelium and migrate out of the proliferative zone, along the RG scaffold
and differentiate. Delamination requires the disassembly of adheren junctions, acto-myosin
mediated abscission, and intact centrosomal architecture ®2. The sequential generation of
discrete neuronal subtypes and directed migration to specific cortical laminae functions in the
assembly of the neocortex. After the formation of the preplate, the cortical plate is formed
in a temporal inside out fashion. New born neurons utilize the processes from aRG cells as

scaffolding for radial migration and proper neuronal placements within the developing cortex.
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1.5. Neuronal migration

Cilia play an indispensable role in neuronal differentiation and migration and thereby guide
cortical formation and function. Proper neuronal migration and localization organizes the six
layered cortex to ensure the emergence of discrete cellular identities and functional neuronal
connectivity . There are two major types of cortical neurons: glutamatergic excitatory
projection (pyramidal) neurons and GABAergic inhibitory interneurons, and these arise from
distinctive progenitor populations within the telencephalon which migrate to their respective
destinations within the developing neocortex %. Radial migration is the process by which
newly born projection neurons migrate via their apicobasal processes to their target locations.
Waves of migrating neurons build up the cortex in an inside out fashion, with the neurons that
are generated first forming the deepest cortical layers followed by later born neurons forming
the more superficial layers. The earliest arriving neurons generate the transient preplate (PP),
followed by emerging neurons that form the cortical plate (CP). The CP divides the PP into
the layer 1 marginal zone (MZ) and the subplate (SP), which is located directly below layer 6
(Figure 4).

Inhibitory neurons arise from the medial and caudal ganglionic eminences and the
preoptic area within the ventral telencephalon and move in an orthogonal fashion relative to
the radial glial scaffold through the cortex **°*%, Cilia play an indispensable role in the migration
and localization of post-mitotic interneurons . Similar to projection neurons, interneurons
pattern in an inside-out fashion. The origin of interneurons is predictive of their destination, as
interneurons are a heterogenous group of cells with differing molecular identities. The guidance
cues that dictate interneuronal migration require an intact cilium **. Conditional ablation of
Arl13b from post-mitotic projection neurons and interneurons during cortical development
resulted in the abrogation of interneuron migration, whereas radially migration neurons
were unaffected in their terminal localization **. Arl13b mutant interneurons are unable to
respond appropriately to guidance cues from the dorsal cortex, because in the absence of
ARL13B, the localization and enrichment of ciliary signaling receptors is attenuated, resulting
in an increased cAMP and Erk signaling **. Post-mitotic stage specific Arl13b disruption did
not affect post-migratory differentiation in interneurons, however conditional disruption of
Arl13b in medial ganglionic eminence (MGE) Parvalbumin and somatostatin positive striatal
interneurons resulted in perturbed interneuronal circuit development, altered interneuronal
morphology, reduced axonal length, axonal branching, and dendritic complexity as well as a

disbalance in inhibitory / excitatory connectivity ** (Table 2).
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1.6. Axonal tract formation and connectivity

Developmental defects associated with axonal tract formation, such as agenesis of the corpus
callosum and disrupted decussation of the superior cerebellar peduncle and pyramidal tract,
are often associated with ciliopathies. Neuronal architecture is shaped and functionally
supported by a highly organized microtubule cytoskeleton that forms the axon and dendrites.
During axonogenesis, developing axons navigate guidance cues presented via specialized
populations of cells that partition the distance transversed by the growing axon. These
intermediate targets coordinate the movement of axons by providing attractive and repulsive
guidance molecules. The floor plate of the neural tube is a critical intermediate during
development and essential for the extension of the commissural axon across the ventral
midline. Appropriate axon growth relies on the axonal growth cone, located at the tip of the
axon, which is enriched with signaling receptors, ensuring the developing axon innervates its
intended target location. Axonal arborization and presynaptic differentiation occurs once the
axon has reached its intended location.

Primary cilia and growth cones are environmental sensing organelles enriched in
similar signaling receptors, allowing them to curate responses to extrinsic cues that result
in cytoskeletal rearrangement and orientation. Mature CNS neurons have a cilium on their
perikaryal surface that are enriched in signal transduction machinery, such as neurotransmitter
receptors, that act to modulate neurons non-synaptically *. Cilia have been show to regulate
the location and length of the axonal initial segment (AIS) °. Changes in ciliary morphology
result in aberrant localization of ankyrinG and Navl.2, and subsequently lead to changes in
action potential dynamics and spike firing, suggesting that cilia influence neuronal excitability
%, Cilia regulate axonal tract formation, growth, and connectivity of glutamatergic pyramidal
neurons. Conditional disruption of the JBST-associated genes Inpp5e and Arl13b in post-
mitotic pyramidal cells and deep cerebellar nuclei within the developing mouse embryo,
result in misorientation and defasciculation of axonal tracts due to hyperactivated PI3K/AKT
signaling °. Similar to the congenital brain malformations observed in JTBS, the cerebrospinal
tract was deformed and showed disrupted decussation in both Arl13b and Inpp5e deficient
neurons. Corpus callosum defects were apparent including disorganized, less dense, and
poorly fasciculated callosal axons which resulted in a wider CC tract due to a downregulation
of the adhesion protein PCD17. Decussation defects were also present in the pontine nuclei,
transverse pontine tegmental axons were additionally misoriented. Arl13b and Inpp5e
deficient deep cerebellar nuclei neurons displayed less axonal branching and reduced dendrite
outgrowth. Interestingly recent work has demonstrated that ARL13B function in Hedgehog-

mediated axonal guidance is independent of it its ciliary localization. Specifically ciliary-
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localization-deficient ARL13B, with a non-JBTS associated point mutation (V358A) that disrupt
the ciliary targeting sequence resulting in cytosolic sequestration, is sufficient to rescue Hh
signaling defects associated with ARL13B disruptions such as axonal guidance issues ° and
abnormal neural patterning *.

In the adult hippocampus, hippocampal NPCs give rise to dentate granule cells (DGCs)
throughout life. This process is thought to be essential for learning and memory (reviewed
in %). Newborn DGCs migrate to their final destination and integrate into existing neural
circuitry within the within the granule cell layer. Primary cilia are essential in orchestrating the
morphological and physiological maturation of DGCs in the dentate gyrus, and are required for
proper synaptogenesis. Cilia are absent during initial stages of DGCs migration to the granule
cell layer, however upon reaching their destination, synaptic formation and integration co-
occurs with ciliary assembly in DGCs. Kumamoto et al. ® found that expression of a dominant
negative form of Kif3a in these cells abolished cilia, resulting in blunted dendritic arborization
and drastically attenuated glutamatergic innervation from the entorhinal projections. These

results were concordant with shRNA-mediated knockdown of Ift88 1%,

1.7. The cerebellum

Primary cilia are essential for progenitor cell proliferation during cerebellar development 16:101.102
and Purkinje cell (PC) maintenance throughout adulthood 3%, Locomotor specialization and
sensorimotor control are regulated by the cerebellum, and research over the last decade has
also implicated that it plays a role in cognition, emotion, and autonomic function (reviewed
in 105),

During human cerebellar neurogenesis, PCs are born around the 7th gestation week
and the cerebellum continues to form until postnatal month 11. This protracted period of
development results in an increased vulnerability to cerebellar dysfunction during critical
periods of development and circuitry formation. To date, five neuronal subtypes have been
described to inhabit the cerebellar cortex, the most abundant among them being granule
cell (GCs). In contrast to most other neuronal subtypes that originate along the ventricular
surface, GCs are formed in the external germinal layer (EGL), located along the dorsal surface
of the cortex during cerebellar formation 6, GC precursors undergo extensive proliferation
in the EGL during the first 2 to 3 weeks after birth. Upon cell cycle exit, they extend axons
to the molecular layer where they eventually synapse on the dendrites of PCs, and migrate
through the PC layer to the internal granule layer. The mature cerebellar cortex is made up of
3 layers: a ganglion or PC layer (made up of PC bodies) sandwiched between the molecular
layer (consisting of inhibitory interneurons including stellate and basket cells) and the internal

granular layer (populated by Golgi cells and GCs) %7,
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Interestingly, the primary cilium has been shown to play an essential role in
medulloblastoma (MB) propagation, a severe pediatric brain tumor characterized by
overactivation of the Hh signaling pathway that originates in GC progenitor cells during
their proliferative period in the EGL. Previous work suggests that the role of the cilium in
tumorigenesis is cell context-specific and depends heavily on the driving transformational
event as it pertains to SHH activation 8, For example, constitutively active SMO (SMOM2),
but not constitutively active GLI2, culminates in MB. MB formation requires an intact cilium
in this context as genetic ablation of essential ciliary genes in SMOM2 mouse models of MB
suppress tumor formation . Ablation of Arl13b leads to decreased levels of the active form
of GLI1, without compromising the downstream repressive form, GLI3, resulting in MB tumor
suppression %,

PCs, GC, molecular layer interneurons and Bergmann glia (BG) are ciliated in the
developing and mature cerebellum, however the role of cilia in adult cerebellar homeostasis
is just beginning to be defined °. In the earliest postnatal stages of development, PCs secrete
SHH which is essential for GC progenitor pool proliferation *** and maturation of Bergmann glia
11 Genetic ablation of the Hh signaling results in decreased GC progenitor proliferation and
premature differentiation of Bergmann glia and PCs 2. GC proliferation is mediated by cilium-
transduced SHH signaling, as loss of Ift88 or Kif3a results in cerebellar hypoplasia due to a lack
of GC expansion 2, GC are glutamatergic cells that function to regulate the cerebellar output
by controlling the activity of the inhibitory PCs.

Tau Tubulin Kinase 2 (TTBK2) is an essential regulator of ciliogenesis via its role in
mediating the removal of CP110 from the mother centriole, thereby allowing axonemal
extension and ciliary formation 1%. Mutations in TTBK2are causative of spinocerebellar ataxia
11 (SCA11), a hereditary form of cerebellar ataxia '** that results from progressive loss of
PCs. Ttbk2 null mutations lead to attenuated SHH signaling and a loss of cilia. Ttbk27- mouse
embryos display holoprosencephaly due to a lack of SHH associated patterning in the neural
tube. Rescue experiments in the Ttbk2 null mice performed with SCA11 associated truncating
mutants of TTBK2 demonstrate that the mutated protein localizes to the basal body but fails
to allow for the initiation of ciliogenesis . Adult-specific Ttbk2 knock out leads degenerative
cerebellar phenotypes via the loss of input to PC from climbing fibers and parallel fibers and
eventually loss of PC. Specifically, loss of Ttbk2 leads to both an absence of cilia and altered
intracellular Ca?* levels in PCs, as well as loss of VGLUT2+ synapses on PC dendrites. The central
role of the cilium was further validated as Ift88 knock out mice displayed an almost identical
phenotype to the one observed with Ttbk2 knockout in terms of their cerebellar phenotype ®.
These data suggest that both TTBK2 and cilia are essential for PC maintenance and function,

and provide a novel ciliary link to neurodegeneration.
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2. DEVELOPMENTAL ABNORMALITIES OF THE CENTRAL
NERVOUS SYSTEM AS A CORE FEATURE OF CILIOPATHIES

Ciliopathies are a genetically heterogeneous group of disorders that manifest in phenotypically
similar diseases. As cilia are found in a wide variety of cell types, ciliopathies affect a variety of
tissues and organ systems where ciliary function is critical. Their overlapping set of symptoms
include (but is not restricted to) cognitive impairment, renal disease, blindness, deafness,
obesity, polydactyly, skeletal abnormalities, Dandy Walker malformation, and hepatic disease
14 A large subset of ciliopathy-associated genes have been linked to neurological defects
such as intellectual disability and anatomical abnormalities 2? suggesting that impaired ciliary
function hinders brain development and function. Pathological manifestation of ciliopathies
can be attributed to both structural and functional defects in cilia and their associated basal
body. Ciliopathies provide an invaluable model to dissect intrinsic mechanisms of ciliary
biology. Examination of these mostly monogenic conditions has led to the identification of
many of the associated genes, and has produced a wealth of information about the functional
role of cilia in neural development.

While CNS associated phenotypes are observed in more than 50% of ciliopathies
2 considerable variation of symptomatic manifestation and severity exists within and
among syndromes. The core features associated with neuronal ciliopathies are structural
brain abnormalities including cerebellar vermis hypoplasia, Dandy-Walker malformation,
hydrocephalus, hypoplasia, and agenesis of the corpus callosum, and posterior encephalocoele
formation **. Additional CNS functional phenotypes without a clear structural correlation also
exist including intellectual disability and behavioral phenotypes for many ciliopathies.

Why specific neurological abnormalities such as agenesis of the corpus callosum or
hydrocephalus are associated with some ciliopathies and not others remains to be elucidated.
Specifically, why the frequency and severity of these CNS symptoms differs between individuals
given the same diagnosis is a question of great interest that can likely be answered with further

evaluation.

3. AIM AND OUTLINE OF THIS THESIS

The aim of this thesis was to investigate ciliopathies that arise due to disruptions in ciliary genes
and/or their temporal-spatial protein networks with a specific focus on neurodevelopmental
abnormalities. In Chapter 1, | provide a general introduction on the role of cilia and ciliary
signal transduction during neuro- and cortico- genesis, followed by a brief discourse on
neuronal abnormalities and associated mechanisms of disease observed in these so termed

‘neuronal ciliopathies’.
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The first part of this thesis describes the use of functional studies to identify disease
associated genes. In Chapter 2, variants in armadillo repeat containing 9 (ARMC9) were
characterized and found to be causative of JBTS. Zebrafish studies in genetically-edited armc9
mutant zebrafish demonstrated ciliopathy phenotypes including curved body shape, retinal
dystrophy, coloboma, and a decrease in ciliary number. On the basis of subcellular localization
and interactome studies, many ciliopathy genes can be classified into functional networks.
In turn, many disease-causing genes demonstrate genetic and/or direct interactions,
suggesting resulting defects arise due to disruptions in a shared cellular mechanism. In
Chapter 3, ARMC9 was further characterize in a JBTS associated functional module that was
found to include CEP104, CCDC66, CSPP1, and the tubulin binding protein TOGARAML. As a
result of this interactome analysis, variants in TOGARAM1 were identified in patients with
JBTS. Additionally, this study demonstrates that both aberrant hedgehog signaling and post-
translational modifications of microtubules contribute to the underlying pathology of JBTS.

The second part of this thesis addresses the assessment of a previously undefined
ciliopathy-like syndrome presenting with severe neuroanatomical defects and intellectual
disability resulting from loss-of-function mutations in USP9X in Chapter 4 and a method to
model and functionally assess neuronal abnormalities observed in LOF USP9X iPSC derived
neuroepithelium in Chapter 5. In this study, 3D modeling of subcellular structures including
mitochondria in Mitochondrial Encephalopathy, Lactic acidosis, and Stroke-like episodes
(MELAS) and cilia in USP9X-affected individuals are evaluated in neurons utilizing high
resolution microscopy and subsequent segmentation and volumetric reconstruction analysis.
I include a general discussion of disease modeling and the research studies performed in this

thesis in Chapter 6.
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Table 2: Mouse models of brain development and stage specific necessities for specific ciliopathy genes

Driver Gene Stage of  Cell type Cilia Effect
disrupted  ablation
Foxgl Cre Arl13b E9 Neuroepithelium intact, impaired inversion of
signaling apicobasal polarity 7
Nestin Cre Arl13b E10.5 radial glia intact, impaired no inversion of
(expansion phase) signaling apicobasal polarity 7
hGFAP Cre Arl13b E13.5 radial glia intact, impaired no inversion of
(differentiation signaling apicobasal polarity ”°
phase)
Nex Cre Arl13b E13.5 Post mitotic intact, impaired no migration defect 7
pyramidal neurons signaling
DIx5/6 Cre Arl13b E12.5 Post mitotic intact, impaired migration defect,
interneurons signaling no morphological /
differentiation defect
17
Nkx2.1 Cre Arl13b E10.5 MGE, POA intact, impaired morphological
(interneurons) signaling abnormalities,
disrupted
connectivity,
disbalance in I/E
network
Nex Cre Arl13b E13.5 Post mitotic intact, impaired axonal tract defects &
pyramidal neurons signaling
Nex Cre Inpp5e E13.5 Post mitotic intact, impaired axonal tract defects
pyramidal neurons signaling
Foxgl Cre Ift88 E9 Neuroepithelium  ablated patterning defects,
altered Gli3
processing
Foxgl Cre Kif3a E9 Neuroepithelium  ablated patterning defects,
altered GIi3
processing #
Nestin Cre Ift88 E10.5 radial glia ablated increase in
(expansion phase) mTORC1 signaling,
misorientation of
the mitotic spindle,
increased BP
proliferation, enlarged
apical endfeet of RG,
enlarged ventricles *
Nestin Cre Kif3a E10.5 radial glia ablated increase in

(expansion phase)

mTORC1 signaling,
misorientation of

the mitotic spindle,
increased BP
proliferation, enlarged
apical endfeet of RG,
enlarged ventricles &
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Chapter 2

ABSTRACT

Joubert syndrome (JS) is a recessive, neurodevelopmental disorder characterized by
hypotonia, ataxia, abnormal eye movements and variable cognitive impairment. It is defined
by a distinctive brain malformation recognized as the “molar tooth sign” on axial MRI.
Subsets of affected individuals have malformations such as coloboma, polydactyly, and
encephalocele, as well as progressive retinal dystrophy, fibrocystic kidney disease and liver
fibrosis. More than 35 genes have been associated with JS, but the genetic cause remains
unknown in a subset of families. All of the gene products localize in and around the primary
cilium, making JS a canonical ciliopathy. Ciliopathies are unified by their overlapping clinical
features and underlying mechanisms involving ciliary dysfunction. In this work, we identify
biallelic rare, predicted-deleterious ARMC9 variants (stop-gain, missense, splice-site, and
single exon deletion) in 11 individuals with JS from 8 families, accounting for approximately
1% of the disorder. The associated phenotypes range from isolated neurological involvement,
to JS with retinal dystrophy, additional brain abnormalities (e.g. heterotopia, Dandy-Walker
malformation), pituitary insufficiency, and/or synpolydactyly. We show that ARMC9 localizes
to the basal body of the cilium and is upregulated during ciliogenesis. Typical ciliopathy
phenotypes (curved body shape, retinal dystrophy, coloboma, and decreased cilia) in a
CRISPR/Cas9-engineered zebrafish mutant model provide additional support for ARMC9 as
a ciliopathy associated gene. Identifying ARMC9 mutations as a cause of JS takes us one step
closer to a full genetic understanding of this important disorder and enables future functional

work to define the central biological mechanisms underlying JS and other ciliopathies.
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INTRODUCTION

Joubert syndrome (JS OMIM: P213330) is a recessive neurodevelopmental disorder
characterized by motor and cognitive impairments and a distinctive hindbrain malformation
giving the appearance of the “molar tooth sign” (MTS) on axial MRI. In addition to the obligate
neurological features, subsets of individuals with JS have progressive retinal dystrophy,
fibrocystic kidney disease and liver fibrosis, as well as malformations such as chorioretinal
coloboma and polydactyly. Despite this distinctive clinical presentation, mutations in more
than 35 genes cause JS, highlighting its marked genetic heterogeneity.*?* All of the genes to
date encode proteins that function in or around the primary cilium, rendering JS a canonical
ciliopathy; ciliopathies are disorders grouped by their overlapping clinical features and
molecular disease mechanisms involving cilium dysfunction.?*?’ The primary cilium is a nearly
ubiquitous microtubule-based organelle sheathed in a specialized membrane that projects
from the cellular surface and functions like an antenna, detecting light, mechanical, and
chemical cues, as well as regulating key signaling pathways such as Hedgehog %-* and PDGF. 3>
3 Significant advances have been made in recent years on the complex genetics underlying JS,
and multiple cellular and developmental defects have been associated with loss of function for
JS-associated genes in model systems. 1% 22313745 Degpite this remarkable progress identifying
candidate mechanisms, the common cellular dysfunction across genetic causes of JS is elusive.
Therefore it is essential to identify the complete set of genetic defects that underlie JS to
pinpoint the unifying molecular mechanism. In this work, we present evidence for mutations
in armadillo repeat containing 9 (ARMC9) as a cause of JS, based on human genetic, protein

localization, and zebrafish model data.

RESULTS

Exome sequencing reveals ARMC9 mutations as a cause for JS

To identify novel genetic causes of JS, we performed whole exome sequencing on a cohort of 53
individuals (51 families) with a clinical diagnosis of JS enrolled in the University of Washington
(UW) Joubert Syndrome Research Program. Inclusion criteria comprised the presence of
clinical findings of JS (developmental delays, hypotonia, ataxia, and/or oculomotor apraxia),
diagnostic brain imaging findings, and lack of mutations in 28 JS-associated genes (NPHP1,
AHI1, CEP290, RPGRIP1L, TMEM67, CC2D2A, ARL13B, INPP5E, OFD1, TMEM216, CEP41,
TMEM237, TCTN2, KIF7, TCTN1, TMEM138, MKS1, C50RF42, TMEM231, TCTN3, CSPP1,
PDE6D, IFT172, ZNF423, TTC21B, B9D1, B9D2, and C2CD3) based on targeted sequencing.*®

47 Variants from the exome sequencing data that were rare (minor allele frequency <1% in the
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Figure 1. ARMC9 mutations cause JS: (A) The ARMC9 gene encodes a protein with an N-terminal LisH
domain (green square), a coiled coil domain (yellow polygon), and a series of armadillo repeats (blue oval).
Patient mutations are indicated by red arrows. (B-D) Confirmation of ARMC9 exon 14 deletion in UW116-
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in the two control lines. Sequencing genomic DNA amplified by primers flanking exon 14 reveals a 2516bp
deletion with a 22bp insertion (D).
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exome variant server [EVS] database) and predicted to be deleterious (stop-gain, frameshift,
canonical splice variants and variants with CADD score >15) were retained for further analysis.

We identified pairs of siblings in two families that shared two rare, predicted-deleterious
variants (RDVs) in ARMC9 (NM_025139.4): UW132-3 and -4 carry c¢.205G>A, p.Gly69Arg and
¢.1336C>T, Argd46Cys, while UW335-3 and -4 carry c.259C>T, p.Arg87* and c.1027C>A,
p.Arg343Ser (Table 1 and Figure 1).

We then performed targeted sequencing of ARMC9 using the Molecular Inversion
Probe (MIPs) capture method followed by next generation sequencing on samples from 534
individuals in 456 families with and without known causes. Three additional individuals in
three families have ARMC9 RDVs: UW348-3 has a homozygous ¢.51+5G>T, predicted splice
variant, UW349-3 has two RDVs (predicted splice ¢.1474+1G>C and missense c.1027C>T,
p.Arg343Cys), while UW116-3 has a single heterozygous ¢.1027C>T, p.Arg343Cys. Based on
decreased sequence coverage for two consecutive MIPs covering exon 14 in UW116-3, we
suspected a deletion in UW116-3. We performed comparative genomic hybridization using a
custom array targeting the JS genes,® %% and identified a 2.5kb deletion encompassing exon
14 in UW116-3 (Figure 1B-D). Exon 14 is 124 basepairs long, so its loss is predicted to result
in a frameshift and truncation of the protein, or nonsense mediated decay of the transcript.

In parallel, exome sequencing in two other cohorts identified biallelic RDVs in ARMC9:
three individuals (SA1-3, SA2-3 and -4) from two families in a cohort of 47 Saudi Arabian
families®® affected by JS had homozygous ARMC9 missense RDVs (¢.1027C>T, p.Arg343Cys and
€.1559C>T, p.Pro520Leu), and a single individual with JS (LR09-023) from a mixed cohort of
100 individuals with Dandy-Walker malformation and cerebellar hypoplasia had compound
heterozygous ARMC9 RDVs (c.1474G>A, p.Gly492Arg and c.1027C>T, p.Arg343Cys). In total,
we identified 10 different ARMC9 RDVs (1 stop-gain, 2 splice, 6 missense, and 1 single exon
deletion) in 11 individuals from 8 families. All variants were validated by Sanger sequencing,
and for seven individuals from five families their segregation with the disease was confirmed
in parents and siblings; segregation was not performed in the remaining four families
because DNA was not available from parents (Table 1). c.1027C>T, p.Arg343Cys appears to
be a recurrent mutation rather than a founder variant, since it is present in families of diverse
ethnicities, and a second variant (c.1027C>A, p.Arg343Ser) affects the same position. ARMC9
is predicted to have a Lissencephaly type-1-like homology (LisH) motif, a coiled-coil domain,
and armadillo repeats (Figure 1A). Two of the missense RDVs are in the armadillo repeats,

while the other four missense RDVs are not located in known domains.
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ARMC9-related JS is indistinguishable from JS due to other genetic
causes

All of the affected individuals have typical features of JS including hypotonia and developmental
disability, most severely affecting motor and speech function (Table 1). Ages range from 2
to 33 years. Most of the individuals have isolated neurodevelopmental issues, including two
with seizures (UW132-3 and UW116-3). Two individuals (UW132-4 and SA2-3) have postaxial
polydactyly, while SA2-3 also has syndactyly. Two individuals (UW348-3 and SA2-3) also have
retinal dystrophy, but none have kidney or liver involvement. UW349-3 has a more complex
presentation with hypopituitarism, bilateral optic nerve hypoplasia, bifid uvula, and an

abnormal brainstem (see below).

W132-38 4 /—- UW349-3 § |

Figure 2. Brain imaging findings in individuals with ARMC9-related Joubert syndrome. (A-C) MTS (A),
inferior cerebellar dysplasia (white arrows in B), and superior cerebellar dysplasia (white arrow in C) in
SA2-3. (D-E) MTS (D), posterior fossa cyst (asterisks in D-E), and ventriculomegaly (plus signs in E) in LR0O9-
023. Note the single periventricular nodular heterotopia (black arrowhead in D). (F) Vermis hypoplasia
and elevated roof of the 4" ventricle in SA2-3 (white arrow). (G) Cerebellar vermis hypoplasia and
atrophy in UW132-3 (white arrow). (H) Kinked brainstem and cervicomedullary heterotopia in UW349-3
(white arrowhead). (1) Enlarged posterior fossa fluid collection (white asterisk) and rotated vermis (white
arrowhead) in LR09-032. (A-E) are axial T2-weighted images; (F-1) are sagittal T1-weighted images.

Based on direct review of the brain MRlIs, all of the affected individuals have the “molar
tooth sign,” as well as dysplasia of the superior cerebellar folia (Figure 2A-B, F and Table S2).
Three individuals (UW335-4, LR09-023, and SA2-3) have cerebellar hemisphere dysplasia, seen
in up to 1/3 of individuals with JS (Figure 2C).” In addition to the MTS, LR09-023 has a large
posterior fossa with a rotated cerebellar vermis consistent with Dandy-Walker malformation,

(Figure 2D-E, 1). LR09-023 also has a single periventricular heterotopia (Figure 2D), as do
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UW116-3 and UW335-4. The two oldest individuals (UW132-3 and -4) have an atrophic
appearance to their cerebellum, more severely affecting the vermis than the hemispheres
(Figure 2G). UW349-3 has a kinked brainstem and cervicomedullary junction heterotopia
(Figure 2H) seen in a small subset of individuals with JS,*7* and UW349-3 and SA2-3 have an
absent posterior pituitary bright spot, but only UW349-3 has known pituitary insufficiency.

ARMC9I localizes to the basal bodies of primary cilia

JS-associated proteins have been shown to localize in and around primary cilia;* 4 7274
therefore, we used a commercially available ARMC9 antibody to evaluate endogenous ARMC9
localization in ciliated hTERT-RPE1 cells. ARMC9 localized to the ciliary basal body (Figure 3A,
white arrowhead), basal to but not overlapping with the transition zone marker RPGRIP1L,
as well as to the daughter centriole (Figure 3A, white arrow) marked by acetylated a-tubulin
antibody (Figure 3A). ARMC9 co-localizes with B-tubulin at the basal body (Figure 3B, white
arrow), as marked by RPGRIP1L, and at the daughter centriole (Figure 3B, white arrowhead).

ARMC9 expression is upregulated in ciliated cells

Based on data from model systems and humans, many genes involved in cilium function
are upregulated in ciliated cells.”>”® We evaluated ARMC9 expression by quantitative PCR in
control human fibroblasts with and without serum in the medium. In the presence of serum,
fibroblasts actively divide and few have cilia, but in response to serum starvation, 80-90% drop
out of the cell cycle and make cilia, similar to other published results.®® ARMC9 expression
was 2.0- to 2.7-fold higher in serum-starved cells than cells grown with serum (Figure 3C). For
comparison, expression of another JS-associated gene, ARL13B, was 2.4-fold higher in serum-

starved cells.
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Figure 3. ARMC9 localization and ARMC9 expression in ciliated and proliferating cells (A) ARMC9
(green) localizes at the basal body (white arrow) and at the daughter centriole (white arrowhead) of the
primary cilium in serum-starved hTERT RPE1 cells. The ciliary marker anti-RPGRIP1L (white), marks the
ciliary transition zone and anti-acetylated @-tubulin (red) marks the ciliary axoneme. (B) ARMC9 (green)
co-localizes with with B-tubulin (red) at the ciliary basal body in serum-starved hTERT RPE1 cells. Anti-
RPGRIP1L marks distal to the basal body (white) and DAPI (blue) stains the nuclei. (C) ARMC9 expression
in control human fibroblasts grown with serum (proliferating cells) and without serum (ciliated cells),
assessed using qPCR with GAPDH as a reference gene. ARL13B is used a positive control for a gene
upregulated in ciliated cells.
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Zebrafish armc9 mutants display typical ciliopathy phenotypes

To investigate the function of ARMC9 in vivo, we turned to the zebrafish model. Zebrafish
have a single ARMC9 orthologue that has 58% identity and 72% similarity with the human
protein. Based on database predictions and manual curation, both the LisH domain and the
armadillo-fold domain are conserved in zebrafish at similar positions to the human protein
(amino acids 7-39 and 375-600 respectively) (Figure S1). In adult zebrafish, armc9 is expressed
in multiple CNS regions based on in situ hybridization, including the cerebellum (Figure S1), all
periventricular regions (Figure 4A) and all layers of the retina (Figure 4B). To explore whether
loss of armc9 function results in ciliopathy phenotypes, we engineered frameshift mutations in
zebrafish using CRISPR/Cas9 (Figure S2). Co-injecting pairs of small guide RNAs targeting either
exon 4 or exons 14-15 (the latter corresponding to the middle of the armadillo-fold domain),
we generated mutations with very high efficiency (91% of sequenced clones from individual
FO larvae carried indels, the majority of which were out-of-frame; Figure S2). Of approximately
140 surviving FO fish raised, 10 developed a curved body axis around six weeks of age (Figure
4C-D), including both exon 4 and exon 14-15 targeted animals. The body curvature phenotype
correlated well with the presence of indels affecting the targeted exons; genotyping of 49 FO
fish by gel electrophoresis demonstrated various armc9 indels in 11 fish, only one of which did
not have a curved body shape. Moreover, such body curvature was never observed in hundreds
of raised FO fish injected with sgRNA targeting non-ciliary genes (20 different sgRNAs). A recent
study suggested body curvature in zebrafish caused by deficient ependymal cilia-generated
cerebrospinal fluid (CSF) flow.®* Indeed, using SEM we observed a substantial reduction of
cilia numbers on the ventricular surface of adult zebrafish harboring armc9 mutations (Figure
4E-F). In addition, a subset of FO fish with body curvature also displayed a retinal coloboma
and had shortened photoreceptor outer segments, typical phenotypes observed with ciliary
dysfunction (Figure 4G-J and Figure S2).3® Taken together, these results confirm that armc9
loss-of-function in zebrafish causes typical ciliopathy phenotypes and strongly support a role

for armc9 in ciliary function.
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<Figure 4: armc9 loss-of-function in zebrafish leads to typical ciliopathy phenotypes (A-B) Expression
of armc9 in zebrafish adult brain (A) and retina (B) by in situ hybridization. Note the expression along
ventricular surfaces in (A) and in all retinal layers, including the photoreceptor (PR) and the inner nuclear
layer (INL) in (B-B’). (C-D) Adult zebrafish harboring armc9 mutations display a curved body shape (D)
compared to wild-type controls (C). (E-F) Scanning electron microscopy image of the ventricular surface
demonstrates bundles of cilia in wild-type (E) but substantial reduction of cilia numbers in FO armc9
fish (F). (G-H) Histological sections through adult zebrafish eyes of wild-type (G) and FO armc9 mutants
(H) showing a coloboma (arrow). (I-J) Higher magnification images show the different retinal layers in
wild-type fish (I) including the PRs and their long outer segments (OS, bracket) which represent highly
specialized ciliary compartments. (J) Note the shortened OS in FO armc9 mutants (bracket). Scale bars
are 200 um in (A-B), 50 um in (B’), 5 mm in (C-D), 3 um in (E-F), 250 um in (G-H) and 50 pm in (I-J). v
ventricle, PGZ periventricular grey zone of optic tectum, Hv ventral zone of periventricular hypothalamus,
PR photoreceptors, INL inner nuclear layer.

DISCUSSION

Mutations in more than 35 genes have been identified in individuals with JS, explaining the
genetic cause in 62% to 97% of cases, depending on the study.?” %% 82 |n addition to these
known causes, we now identify ARMC9 mutations as an additional cause of JS accounting for
almost 1% of families in our cohort of >500. Substantial functional evidence supports ARMC9

as a ciliopathy-associated gene.

ARMC9 localizes to the basal body

We provide evidence that ARMC9 localizes to the ciliary basal body, similar to other JS-
associated proteins (Figure 3A-B). The basal body originates from the mother centriole
that docks at the cell membrane during interphase to nucleate the ciliary axoneme. The
daughter centriole remains tethered to the basal body by an interconnecting fiber, and both
structures often appear as juxtaposed puncta on immunofluorescence images. Basal bodies
are composed of nine short triplet microtubules arranged in a circle, and two of the three
microtubules in each basal body triplet extend as axonemal microtubules. Several other JS-
associated proteins, OFD1, KIAA0586, and C2CD3, also localize to the basal body.*® 4 7274
8 Strikingly, ARMC9 and OFD1 both have an N-terminal LisH motif that is known to bind to
microtubules (Figure 1A).”% 88 Two published proteomic studies in murine inner medullary
collecting duct (IMCD3) cells also provide support for ARMC9 as a cilium-associated protein:
1) ARMC9 was detected a total of 31 fmesacross ciliary fractions via MudPIT mass spectrometry of
isolated cilia;® 2) Proximity labeling using a promiscuous biotinylating enzyme conjugated to
the transition zone protein NPHP3 detected ARMC9-specific peptides (6 spectral counts), thus

providing direct evidence for their adjacency.®”
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ARMC9 is present in ciliated organisms and upregulated in ciliated cells

The use of comparative genomics to compile genes exclusively present in ciliated organisms
versus non-ciliated organisms is a common technique in identifying ciliary genes.®® 8 ARMC9
homologs are present in ciliated eukaryotes from humans to unicellular flagellates such as
Trochaic trifallax, but absent in plants, fungi, bacteria, viruses, and Archaea.®® Expression of the
ARMCIC. eleganshomolog, F59G1.4, is restricted to sensory neurons, the only ciliated cells in
this organism.®**3 Ciliary gene induction was first linked to ciliogenesis in classical experiments
in unicellular flagellates, notably Chlamydomonas, a model system particularly well-suited to
study ciliary biology. These experiments demonstrated that new protein synthesis was required
for full cilia regeneration via use of protein synthesis inhibitors or enucleating cells.” 7® Later
experiments show that ciliary genes are widely induced during ciliogenesis and maintained at
high levels in ciliated cells.”””® Ciliary genes are similarly upregulated in higher organisms.3®
99 Similar to other ciliary genes, we demonstrate that ARMC9 expression is upregulated in

human ciliated fibroblasts, as compared to cycling cells (Figure 3C).

Zebrafish harboring armc9 mutations display typical ciliopathy
phenotypes

In a vertebrate model, zebrafish harboring CRISPR-engineered armc9 ™ %" display phenotypes
similar to those seen with loss-of-function for zebrafish orthologs of other ciliopathy-
associated genes (Figure 4).3%°% The retinal dystrophy and/or curved body axis are also seen
in loss-of-function models for the cc2d2a, ahil, and ift genes.?® %1% Furthermore, we show
a strong reduction of cilia in the brain ventricles of zebrafish harboring armc9 mutations,
suggesting the gene product may participate in early stages of ciliogenesis or be required for
ciliary maintenance. The mosaic state of the animals analyzed in this work does not allow for
discrimination between these two possibilities. Indeed, the presence of residual cilia on some
ventricular cells may be explained by lack of armc9 mutations in those cells, or incomplete
penetrance of the phenotype. Future analysis of stable lines will help address these
possibilities. The identical phenotypes observed in multiple animals generated using guides
targeting different armc9 regions, combined with the lack of these phenotypes with CRISPR/
Cas9-generated deletions in 20 different non-ciliary genes, strongly supports the specificity of
the observed phenotypes and argues against non-specific or off-target effects of CRISPR/Cas9.

In conclusion, we demonstrate that mutations in ARMC9 cause JS and show that ARMC9
localizes to the basal body. Given the LisH domain, ARMC9 likely binds microtubules there, but

the details of its function remain to be elucidated. Delineating all of the genes involved in JS
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will enable future work to determine how proteins that localize to the basal body, transition
zone, cilium proper, and cilium tip all contribute to the molecular mechanism(s) underlying JS.
Understanding the molecular mechanisms of JS will lead to more specific treatments in the

future and further our understanding of basic ciliary biology in health and disease.
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Chapter 2

MATERIALS AND METHODS

Subject ascertainment and phenotypic data

Informed consent was obtained for all participants were enrolled under approved human
subjects research protocols at the University of Washington (UW), Seattle Children’s Hospital,
or King Faisal Specialist Hospital and Research Centre (KFSHRC). All participants have clinical
findings of JS (intellectual impairment, hypotonia, ataxia and/or oculomotor apraxia) and
diagnostic or supportive brain imaging findings (MTS or cerebellar vermis hypoplasia). Clinical
data were obtained by direct examination of participants, review of medical records and

structured questionnaires.

Variant identification

Samples from individuals affected by JS were previously screened using a Molecular Inversion
Probes (MIPs) targeted capture?® for AHI1 [OMIM: 608894], ARL13B [OMIM: 608922], BOD1
[OMIM: 614144], B9D2 [OMIM: 611951], C2CD3 [OMIM: 615944], CSORF42 [OMIM: 614571],
CC2D2A [OMIM: 612013], CEP290 [OMIM: 61042], CEP41 [OMIM: 610523], CSPP1 [OMIM:
611654], IFT172 [OMIM: 607386], INPPSE [OMIM: 613037], KIF7 [OMIM: 611254], MKS1
[OMIM: 609883], NPHP1 [OMIM: 607100], OFD1 [OMIM: 300170], RPGRIP1L [OMIM: 610937],
TCTN1 [OMIM: 609863], TCTN2 [OMIM: 613846], TCTN3 [OMIM: 613847], TMEM138 [OMIM:
614459], TMEM216 [OMIM: 613277], TMEM231 [OMIM: 614949], TMEM237 [OMIM:
614423], TMEM67 [OMIM: 609884], TTC21B [OMIM: 612014] and ZNF423 [OMIM: 604557]."
247 In samples without causal variants, exome sequencing was performed as previously
described “® using Roche Nimblegen SeqCap EZ Human Exome Library v2.0 capture probes
(36.5 Mb of coding exons) and paired-end 50 base pair reads on an Illumina HiSeq sequencer.
In accordance with the Genome Analysis ToolKit’s (GATK) best practices, we mapped sequence
reads to the human reference genome (hgl9) using the Burrows-Wheeler Aligner (v.0.6.2),
removed duplicate reads (PicardMarkDuplicates v1.70), and performed indel realignment
(GATK IndelRealigner v.1.6) and base-quality recalibration (GATK TableRecalibration v1.6). We
called variants using the GATK UnifiedGenotyper and flagged with VariantFiltration to mark
potential false positives that did not pass the following filters: Heterozygous Allele Balance
(ABHet) > 0.75, Quality by Depth > 5.0, Quality (QUAL) _ 50.0, Homopolymer Run (Hrun) < 4.0,
and low depth (<6x). We used SeattleSeq for variant annotation and the Combined Annotation
Dependent Depletion (CADD) score to determine deleteriousness of identified missense
variants.* Based on CADD score data for causal variants in other JS-associated genes, we used

a CADD score cutoff of 15 to define deleterious variants.?”
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LR09-023 was ascertained as part of a larger study of genetic causes for Dandy-Walker
malformation (DWM). Exome sequencing of this individual and his parents was performed
by Beckman Coulter genomics as follows: genomic DNA isolated from peripheral blood was
captured using the Agilent SureSelect V5 enrichment kit and sequenced on an Illumina HiSeq
2000 as 150-bp paired-end runs. Reads were aligned with BWA; variants were called with GATK
and freebayes. Variants called by both GATK and freebayes were annotated using Gemini,*°
including data sets from the ExAc Exome,** NHLBI 6500 Exome,*? and 1000 Genomes projects
for variant frequencies, and amino-acid-change functional predictions from CADD scores.*
Variants were filtered for de novo, recessive (compound heterozygous or homozygous), or
X-linked inheritance, <0.001 frequency in public databases, predicted to be deleterious by
CADD >10, and expressed in human fetal (BrainSpan®3) or adult (GTex**) cerebellum.

For the two families in the Saudi Arabian cohort, DNA from the affected individuals,
as well as their unaffected siblings and parents, were genotyped using the Axiom SNP Chip
platform to determine the candidate autozygome.*° The previously described “Mendeliome”
targeted sequencing assay was then performed on DNA from affected members to search for
likely causal variants in the known JS genes followed by whole exome sequencing in samples
without causal variants.>” WES was performed using TruSeq Exome Enrichment kit (lllumina)
following the manufacturer’s protocol. Samples were prepared as an lllumina sequencing
library, and in the second step, the sequencing libraries were enriched for the desired target
using the lllumina Exome Enrichment protocol. The captured libraries were sequenced using
an lllumina HiSeq 2000 Sequencer. The reads were mapped against UCSC hg19 by BWA. SNPs
and Indels were detected by SAMTOOLS. Homozygous rare, predicted-deleterious, coding/
splicing variants within the autozygome of the affected individual were considered as likely
causal. We defined rare variants as those with frequency of <0.1% in publicly available variant
databases (1000 Genomes, Exome Variant Server and gnomAD), as well as a database of
2,379 in-house ethnically-matched exomes, and deleterious if predicted to be pathogenic by
PolyPhen, SIFT and CADD (score >15).

Array CGH

To assess copy number variation, we performed array comparative genomic hybridization using
a custom 8x60K oligonucleotide array (Agilent Technologies, Santa Clara, CA)®® targeting AHI1,
ARL13B,ARMC9, B9D1,B9D2,C2CD3, C50rf42,CBY1 [OMIM: 607757],CC2D2A, CEP104 [OMIM:
616690], CEP120 [OMIM: 613446], CEP290, CEP41 [OMIM: 610523], CEP83 [OMIM:615847],
CSPP1, DDX59 [OMIM: 615464], EXOC8 [OMIM: 615283], HYLS1 [OMIM:610693], IFT172,

59




Chapter 2

INPP5E, KCTD10 [OMIM: 613421], KIAAO556 [OMIM: 616650], KIAA0O586 [OMIM: 610178],
KIAA0753 [OMIM: 617112], KIF7, MKS1, NPHP1, NPHP3 [OMIM: 608002], NPHP4 [OMIM:
607215], OFD1, PDE6D, PIBF1 [OMIM: 607532], POC1B [OMIM: 614784], RPGRIP1L, TBC1D32
[OMIM: 615867], TCTN1, TCTN2, TCTN3, TMEM107 [OMIM:616183], TMEM138, TMEM17
[OMIM: 614950], TMEM216, TMEM218, TMEM231, TMEM237, TMEM67, TTC21B, ZNF423.
Probe spacing was a median of 11bp in the exons, and a median of 315bp throughout the
intronic regions and 100kb on either side of each gene: Data were generated on an Agilent
Technologies DNA Microarray Scanner with Surescan High-Resolution Technology using Agilent
Scan Control software, and were processed and analyzed using Agilent Feature Extraction and

Agilent Cytogenomics software.

RNA isolation and quantitative PCR

We cultured human fibroblasts from healthy controls in DMEM + 10 % fetal bovine serum
(FBS) and 1% penicillin/streptomycin under standard conditions.*** To induce ciliogenesis,
we cultured in DMEM without FBS once the cells reached ~70% confluency. After treatment
with 0.05% trypsin, cycling cells and serum-starved cells were harvested and RNA extracted
using the Aurum Total RNA Mini Kit (Bio-rad, Hercules, CA). We generated cDNA from 20(g
of total RNA using the iScript Reverse Transcription Supermix for RT-gPCR (Biorad, Hercules,
CA). The expression of ARL13B and ARMC9 mRNAs was determined using qPCR. Each cDNA
sample was amplified using Power SYBR Green PCR Master Mix (Applied Biosystems, Thermo
Fisher Scientific) on the C1000 Thermal Cycler CFX (Bio-rad, Hercules, CA). After an initial
denaturation of 10 minutes at 95°C, each cycle (x39) consisted of denaturation at 95°C for 15
seconds and anneal/extend at 60°C for one minute with a plate read. The primers for ARL13B
and ARMCO are listed in Table S1. GAPDH was used as an endogenous control to normalize

each sample. The experiment was performed in triplicate.

Cell lines, antibodies and microscopy

Human telomerase-immortalized retinal pigment epithelium (hTERT-RPE1) cells were grown
in DMEM (PAA) supplemented with F12 in a 1:1 ratio with 10% fetal bovine serum and 1%
penicillin/streptomycin. Cells were plated on glass cover slips for immunofluorescence
imaging. Twenty-four hours after plating, cells were serum starved for 48 h in 0.2% FBS
medium to induce cell cycle arrest and ciliogenesis. Cells were rinsed once with 1 x PBS at
room temperature and then fixed in 2% paraformaldehyde for 20 min and permeabilized with

1% Triton-X for 5 min. Cells were blocked in freshly prepared 2% bovine serum albumin for 45
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minutes and then incubated with the following antibodies for 1 hour: rabbit anti-ARMC9 (Atlas
Antibodies, HPA019041; 1:200), guinea pig anti-RPGRIP1L (SNC040, 1:300), a monoclonal anti-
acetylated tubulin (clone 6-11-B1, Sigma-Aldrich, T6793; 1:1000), and a mouse monoclonal
anti-B-tubulin (Sigma T5326, 1:500). Anti-ARMC9 recognizes an epitope at the N-terminal
portion of the protein. Cells were stained with secondary antibodies for 45 min. The following
secondary antibodies were used (all from Life Technologies/Thermo Fisher Scientific, Bleiswijk,
The Netherlands; all diluted 1:500 in 2% BSA): anti-guinea pig 1gG Alexa Fluor 647, anti-rabbit
1gG Alexa Fluor 488, and anti-mouse 1gG Alexa Fluor 568. DAPI (4’,6-diamidino-2-phenylindole)
stained the nucleus. Confocal imaging was done with the Zeiss LSM 880 Laser scanning

microscope equipped with Airyscan technology.

Antibody validation with siRNA knock down

Reverse transfections on hTERT-RPE1 cells were performed with pre-designed Silencer Select
siRNA to ARMC9 (Ambion from Life Technologies), as well as a positive control to knock down
GAPDH (Ambion from Life Technologies) and a scrambled non-targeting negative control
(Ambion from Life Technologies). Lyophilised siRNAs were re-constituted with RNase-free
water (Thermo Scientific) to a final working concentration of 50 nM. Lipofectamine RNAiMax
(LifeTechnologies) and Opti-MEM (LifeTechnologies) were used for siRNA transfection and
done in accordance with the manufacturer’s protocol. Cells were harvested and lysed with
RIPA lysis buffer supplemented with Complete Protease Inhibitor Cocktail Tablets (Roche)
72 hours post transfection and western blotting was performed. Primary antibodies mouse
monoclonal GAPDH (Thermo Scientific) and rabbit polyclonal ARMC9 (Human Protein Atlas
Sigma Aldrich) were used at 1:1000 and 1:500 dilutions respectively and incubated overnight
at 4 degrees. Secondary antibodies goat anti-rabbit IRDye800 (LI-COR Biosciences) and goat
anti-mouse IRDye680 (LI-COR Biosciences) were used at a dilution of 1:10,000 and incubated
with blots for 1 hour at room temperature. Imaging was done with the Odyssey CLx imaging
system (LI-COR Biosciences). Protein quantification was performed using Image Studio Lite

software (LI-COR Biosciences).

Zebrafish in situs, CRISPR, mutation assay, histology

Zebrafish were maintained at 28°C with a 14 h/10 h light/dark cycle as previously described.®?
All zebrafish protocols were in compliance with internationally recognized guidelines for
the use of zebrafish in biomedical research, and the experiments were approved by local

authorities (Veterindramt Zirich TV4206).
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In situ hybridization was performed following standard protocols with a probe spanning
over 800 bp atthe 3’ end of armc9 generated using the primers 5’-AGCTCAACTCAGCGACCATC-3’
and 3’-TGCTGTTACAGGAAGCTGGA-5. sgRNAs for CRISPR/Cas9 mutagenesis were
designed using the CHOPCHOP website: 3’-GGGATTGGGCACAAATGGCA-5' and
3’-GGAACAGCTCCTGAAAGGAC-5" for exon 4 and 5-GGTCAAAGAGCTGAATGACT-3’ and
3’-GGAGCTCCGTCAGGACTTTC-5’ for exon 14/15. Pairs of sgRNAs for each target site were
mixed with Cas9 protein (gift from Darren Gilmour) and injected into 1-cell stage embryos
obtained through natural matings. Individual larvae were lysed for assessment of mutagenesis
efficiency. Amplification of the target regions for genotyping was performed using primer
pairs 5-CAGCCAAACCACTGAGTTCC-3‘ and 3‘-TGACCCTGTAGTGTGTGCGTA-5‘ for exon 4 and
5’-CACGCCTTGCACCACACT-3’ and 3‘-CACTCCCCTGTTTGAGCAAT-5‘ for exons 14/15. The PCR
products were analyzed on gel electrophoresis, bands were cut out and subcloned before
sequencing. The remaining FO fish were raised. Brains of four FO fish with curved bodies
were dissected out at five months of age, halved and fixed in 2.5% Glutaraldehyde in 0.1M
Cacodylate buffer and prepared for scanning electron microscopy (SEM) following standard
protocols. SEM was performed on a ZEISS Supra VP 50 microscope. Cryosections were
performed following standard protocols and IHC was performed as previously described,”
62 ysing the zprl antibody.%® Vybrant® DiO (ThermoFisherScientific) and DAPI were used for
counterstaining. Images were acquired on a Leica HCS LSI confocal microscope. Histological
sections using Technovit were performed as previously described.®? Images were acquired on

an Olympus BX61 microscope.
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SUPPLEMENTAL DATA

A i ex14 exis

Figure S1: zebrafish armc9 gene structure and expression

(A) Schematic representation of the zebrafish armc9 gene (with exonic/intronic structure) and protein
below, showing the predicted LisH domain (green, N-terminal) and the armadillo-type-fold (ATF) domain
(blue). (B-K) In situ hybridization on brain cryosections from adult zebrafish (B-F transverse sections, G-K
sagittal sections). (B) Note staining along the ventricles marked with the arrows. (C-E) Higher magnification
views of the boxed areas in (B). (C) Ventral zone of periventricular hypothalamus Hy, (D) periventricular
grey zone of optic tectum PGZ, (E) lateral division of valvula cerebelli Val and torus longitudinalis TL. (F)
Absence of staining with the control sense probe. (G) Sagittal section through the brain and eye, showing
signal in the cerebellum (boxed area H), the hypothalamus (boxed area 1) and the optic tectum (boxed area
J). CCe corpus cerebelli, LCa lobus caudalis cerebelli, H periventricular hypothalamus, PGZ periventricular
grey zone of optic tectum, TL torus longitudinalis. (K) Absence of staining with the control sense probe.
Scale bars: 200um (B,F,G,K), 50um (C-E), 100 um (H-J).
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<«Fig S2: CRISPR/Cas9 armc9 mutants

(A) Representative gel showing PCR amplification around the CRISPR target sites on finclips from adult
FO animals with body curvature. Note the presence of bands in addition to the WT-sized band in the
curved fish. The PCR product from animal #2 was cloned and sequenced, revealing that 9 of 9 selected
clones had small out-of-frame indels, indicating that this animal had a very high rate of mutations in
armc9 despite a wild-type-sized band on the gel. (B-C) Scanning electron microscopy (SEM) overview
images of dissected and halved brains from FO armc9 animals with body curvature. The arrow points to
the ventricular surfaces shown in (D-E). (D-E) Close up SEM images of the ventricular surface showing
bundles of cilia in wild-type animals (D). In contrast, armc9 FO mutant animals display a paucity of cilia (E).
(F-I’) Immunohistochemistry on cryosections through whole eyes of wild-type (F) and an FO armc9 mutant
(G-I') stained with the zprl antibody marking red-green cone cell bodies (red in F-1) and DiO highlighting
photoreceptor (PR) outer segments (OS) (green in H-1). Note the thinner retinal layers and the coloboma
(arrows in G and boxed area in H). (I-1”’) represent the boxed area in (H). Note the discontinuity of the
retinal layers and the presence of a second leaflet of retina folding back, with presence of PRs and OSs in
a mirror image on either side of this aberrant second retinal layer (arrows). Scale bars are 100um in (B-C),
3um in (D-E), 100pum in (F-H), 50um in (I’-I").
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Fig S3: ARMC9 antibody validation

(A) Western blot analysis of hTERT-RPE cells transfected with non-targeting control siRNA and siARMC9.
Cell lysates were probed with antibodies to ARMC9 and GAPDH as loading control. (B) Quantification of
western blot signal in (A) quantified via densitometry normalized to GAPDH
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Table S1. Oligonucleotide primers for q°PCR

Target Gene
ARL13B Exons 2/3

ARMC9 Exons 21/22
ARMC9 Exons 3/4
ARMC9 Exons 2/3

GAPDH Exons 2/6

74

Primer ID
Forward:
Reverse:
Forward:
Reverse:
Forward:
Reverse:
Forward:
Reverse:
Forward:

Sequence (5'-3")
AATGCTGGTAAAACCGCAAC
TTCCCCGAATTCTTATTCCA
GGAGTGACCACCAGGGAATG
GGCCACACGAAGAGAACAGA
GAGACCGGACAAAGAGGAGC
CTCTGTGGTCTGGCTCAAGG
TTCCATCCGAGATGGGGACT
GCTCCTCTTTGTCCGGTCTC
AGGTGAAGGTCGGAGTCAAC
TTCACACCCATGACGAACAT



Mutations in ARMC9, which encodes a basal body protein, cause Joubert syndrome in humans and ciliopathy phenotypes in zebrafish

‘sIeak=IA ‘soA=A

‘umouxun=xun ‘eidolosaloH JejNPON JenaLIuBALIBd=HNAd “BUAD0IDINAIOd=DINd ‘WU8Said=d ‘ON=N ‘SYIUOW=0W ‘Ua7=" ‘Je||3qaI82=(0 uasqy=Vy

HNAd resodway
wnsojed 7 916uis ‘pingy HNAd ping
sndioo 0-0118J YIM BSSo) | walsurelq | HNAJ [endinoo rendiooo 0-01131 9IS
PRIl Joueisod able| paxuy 7 9|buis 7 91buis -ajelapowl
a19ojeydad
N N A a|qissod A N N N N N Jun wnuBew uswelo4
eldojosslay
N N N ajqissod A N N N Hun N N Ale|npawooinIed
N N N N N N N N N A A Aydone g2
N A N A N A N N N N N eise|dsAp alaydsiway go
A A A A A A A A A A A eise|dsAp o Jouadns
d d v d v d d d d d d 10ds ybuq Areynid
N N N A N A N A N N N eldojossieH
N N N N N N N N N N N ONd
N N piw N N N N piw piw N N ApeBawonousA
wnsojed
N N N N N N N N N N N sndiod ay Jo sisaualby
A A A A A A A A A A A ubis yroo] rejon
Ky Kz ow yT owT ow / ow 9T owg owg ow QT 1A 8T 1A 62 14N 1 8by
-evs €-evs € 1vS €20-60471 €-6vEMN -GEEMN €-5eEMn €-9TTMN €-8rEMN 7-¢€TMN €-2ETMN #MN

BWOIpUAS LBgNOC pale|aI-eDNEY UM s[enpiAipul ul sbuipuly buibew urelg ‘zs a|qel

75






CHAPTER

Dysfunction of the ciliary ARMC9/
TOGARAM1 protein module causes
Joubert syndrome

Brooke L. Latour (1)*, Julie C. Van De Weghe (2)*, Tamara D.S. Rusterholz (3,4)*, Stef J.F.
Letteboer (1), Arianna Gomez (2), Ranad Shaheen (5), Matthias Gesemann (4), Arezou
Karamzade (6), Mostafa Asadollahi (6), Miguel Barroso-Gil (7), Manali Chitre (8), Megan
E. Grout (2), Jeroen van Reeuwijk (1), Sylvia E.C. van Beersum (1), Caitlin V. Miller(2),
Jennifer C. Dempsey (2), Heba Morsy (9), University of Washington Center for Mendelian
Genomics (10), Michael J. Bamshad (2,10,11), Genomics England Research Consortium
(12), Deborah A. Nickerson (10,11), Stephan C.F. Neuhauss (4), Karsten Boldt (13), Marius
Ueffing (13), Mohammad Keramatipour (6), John A. Sayer (7), Fowzan S. Alkuraya (5,14),
Ruxandra Bachmann-Gagescu (3,4)*, Ronald Roepman (1)* & Dan Doherty (2,15)*

*These authors contributed equally to this work.

1. Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud
University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands

2. Department of Pediatrics, University of Washington, Seattle, WA, 98195 USA

3. Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland

4. Department of Molecular Life Sciences, University of Zurich, 8057 Ziirich, Switzerland

5. Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
6. Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical
Sciences, Tehran 14179 13151, Iran

7. Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle
University, Newcastle Upon Tyne, UK

8. Department of Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust,
Cambridge, UK.

9. Department of Human Genetics, Medical Research Institute, Alexandria University,
Alexandria, Egypt

10. University of Washington Center for Mendelian Genomics, Seattle, WA 98195, USA

11. Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA

12. Genomics England, London, ECIM 6BQ, United Kingdom

13. Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen,
72074 Tuebingen, Germany

14. Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh
11533, Saudi Arabia

15. Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101 USA

Published J Clin Invest. 2020;130(8):4423-4439. https://doi.org/10.1172/JCI131656




Chapter 3

ABSTRACT

Joubert syndrome (JBTS) is a recessive neurodevelopmental ciliopathy, characterized by a
pathognomonic hindbrain malformation. All known JBTS-genes encode proteins involved in
the structure or function of primary cilia, ubiquitous antenna-like organelles essential for
cellular signal transduction. Here, we used the recently identified JBTS-associated protein
ARMCY in tandem-affinity purification and yeast two-hybrid screens to identify a ciliary
module whose dysfunction underlies JBTS. In addition to known JBTS-associated proteins
CEP104 and CSPP1, we identified CCDC66 and TOGARAM1 as ARMC9 interaction partners. We
found that TOGARAM 1 variants cause JBTS and disrupt TOGARAM1 interaction with ARMC9.
Using a combination of protein interaction analyses and characterization of patient-derived
fibroblasts, CRISPR/Cas9-engineered zebrafish and hTERT-RPE1 cells, we demonstrated that
dysfunction of ARMC9 or TOGARAM1 result in short cilia with decreased axonemal acetylation
and polyglutamylation, but relatively intact transition zone function. Aberrant serum-induced
ciliary resorption and cold-induced depolymerization in ARMC9 and TOGARAM1 patient cell

lines suggest a role for this new JBTS-associated protein module in ciliary stability.
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Dysfunction of the ciliary ARMC9/TOGARAM1 protein module causes Joubert syndrome

INTRODUCTION

Ciliopathies are a heterogeneous class of disorders that arise from defects in the structure or
function of the primary cilium (1, 2), a highly specialized microtubule-based sensory organelle
that protrudes from the surface of most eukaryotic cell types (3). Joubert syndrome (JBTS) is a
recessive, genetically heterogeneous, neurodevelopmental ciliopathy, defined by a distinctive
brain malformation, recognizable as the “molar tooth sign” (MTS) (4) in axial magnetic
resonance images through the midbrain-hindbrain junction. Affected individuals have
hypotonia, ataxia, abnormal eye movements, and cognitive impairment. Additional features
can occur, including retinal dystrophy, fibrocystic kidney disease, liver fibrosis, polydactyly, and
coloboma (5). To date, variants in more than 35 genes have been causally linked to JBTS, but
the genetic diagnosis cannot be identified in all patients, and the disease mechanisms remain
unclear (6-8).

All JBTS-associated proteins identified thus far function in and around the primary cilium,
but their dysfunction can affect a wide variety of cellular processes, including cilium formation,
resorption, tubulin post-translational modifications, membrane phosphatidylinositol
composition, ciliary signaling pathways, actin cytoskeleton dynamics, and DNA damage
response signaling (9—14). Many JBTS proteins act together in complexes that localize to
specific subdomains of the ciliary compartment. Disruption of the composition, architecture,
or function of these ciliary subdomains causes disease (6).

The core of the cilium is composed of nine microtubule doublets forming the ciliary
axoneme, which is anchored to the cell by the basal body, a modified centriole. The axonemal
microtubules undergo a range of post-translational modifications including polyglutamylation
and acetylation which are important for the structure and function of the cilium (15-17). The
ciliary membrane has a distinct protein and lipid distribution that differs from the contiguous
plasma membrane. This unique composition is achieved in part by the transition zone (TZ) that
connects the axoneme to the membrane and acts as a partition. Approximately half of the
known JBTS proteins, including RPGRIP1L (JBTS7) (18, 19) and CC2D2A (JBTS9) (20), assemble
into multi-protein complexes at the ciliary TZ where they organize the molecular gate that
regulates ciliary protein entry and exit (21); TZ dysfunction is thought to play a key role in JBTS
(22). Another subset of JBTS-associated proteins, including ARL13B (JBTS8) (23) and INPP5SE
(JBTS1) (10), associate with the ciliary membrane distal to the TZ. These proteins are thought
to regulate signaling pathways such as Hedgehog (Hh) by modulating ciliary protein and lipid
composition (24, 25). Different JBTS-associated proteins have been found to function at the
basal body or distal segment/tip (6). CSPP1 (JBTS 21) (26, 27) and CEP104 (JBTS25) (28) are

mainly detected at the centrosomes and ciliary basal bodies; however, their exact molecular
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function, and how defects in these proteins lead to JBTS, are less well understood. CEP104
localizes to the ciliary tip during ciliogenesis, where it is required for structural integrity in the
motile cilia of Chlamydomonas and Tetrahymena (29, 30). Pathogenic variants in the gene
encoding the ciliary tip kinesin KIF7 (JBTS12) also cause JBTS, and KIF7 dysfunction has been
linked to defects in tubulin acetylation and Hh signaling (31).

Recently, we identified biallelic pathogenic ARMC9 (armadillo repeat motif containing 9)
variants in individuals with JBTS (JBTS30). ARMC9 localizes to centrioles (32) and the proximal
portion of the cilium (33) in mammalian cilia. ARMC9 transcript levels are upregulated
with induction of ciliogenesis, and armc9 dysfunction in zebrafish yields typical ciliopathy
phenotypes (32). ARMC9 has not been identified as a component of the ciliary JBTS-associated
protein complexes mentioned above, so in this work, we used ARMC9 as bait in protein
interaction screens. These screens identified a microtubule-associated ciliary protein module
containing multiple other JBTS-associated proteins (CEP104, CSPP1, RPGRIP1L, and CEP290)
and two other ciliary proteins (TOGARAM1 and CCDC66) not previously implicated in JBTS.
Strikingly, we identified biallelic pathogenic TOGARAM1 variants as the cause of JBTS in five
families. To decipher the function of the ARMC9-TOGARAML1 protein module and assess its role
in the pathology of JBTS, we mapped the interaction domains and evaluated cellular defects
in cultured human cells and zebrafish mutants. We find that these proteins, previously shown
to associate with microtubules (29, 34-36), are required for appropriate post-translational

modification of ciliary microtubules and cilium stability.

RESULTS

Identification of a novel protein module implicated in JBTS

We performed protein interaction screens to define the ARMC9-associated interactome.
To identify direct binding partners, we employed full-length ARMC9 and four fragments
(Figure 1A) as bait in a GAL4-based yeast two-hybrid (Y2H) interaction trap screen of two
validated prey retinal cDNA libraries that were generated via random or oligo-dT primers
(37). Using full-length ARMC9 as a bait, we identified four proteins previously implicated
in ciliary function as binary interactors, including ARMC9 itself (suggesting a propensity to
multimerize), TOGARAML1 (29, 34), CCDC66 (36, 38), and the JBTS-associated protein CSPP1
(39). Validation of these interactions and evaluation of the interacting domains was performed
by Y2H co-expression. This assay indicated that the potential self-binding propensity of ARMC9
is mediated by fragment 2 containing the N-terminal 350 amino acid stretch containing the
lissencephaly type-1-like homology motif (LisH) and coiled-coil domains, while TOGARAM1
and CSPP1 associated with fragment 4 (150-665 aa) containing the coiled-coil domain and the
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Figure 1 ARMC9 associates with TOGARAML1 in a ciliary module. (A) Schematic of full-length ARMC9 and
fragments used as baits in Y2H bovine and human retinal cDNA library screens. Domains indicated are the
predicted Lissencephaly type-1-like homology motif (LisH, dark green), coiled-coil domain (CC, light green)
and the armadillo repeats-containing domain (armadillo, purple). (B) Direct interaction analysis grid using
full length prey constructs. Selection of strains co-expressing bait and prey constructs was performed
on quadruple knockout SD medium (SD-LWHA). The top row displays yeast colony growth when using
fragment 1 of TOGARAM1 as prey. (C) B-Galactosidase activity assay confirming the interactions. (D)
Schematic of full-length TOGARAM1 and fragments used in Y2H bovine and human retinal cDNA screens.
(E) TOGARAML1 screen results validated in a Y2H directed interaction analysis on triple (SD-LWH) and
quadruple (SD-LWHA) knockout media. (F) Flag co-IP of 3xFlag-ARMC9, 3xFlag-TOGARAM1, 3xFlag-
CCDC66, 3xFlag-CSPP1, and 3xFlag-CEP104 with 3xHA-ARMC9. 3xFlag-mRFP served as a negative control.
Western blot analysis post Flag-tag purification indicates the presence of 3xHA-ARMC9 confirming the
interactions. 3xFlag-mRFP shows no interaction with 3xHA-ARMC9. (G) ARMC9 interacts with TOGARAM1
as confirmed by TAP, dashed lines, and Y2H screens, solid lines. Validation was subsequently performed
using co-IP, dotted lines. (H) Silver stain gel of C-terminally and N-terminally SF-TAP tagged ARMC9 (left,
large arrow, 80 kDa) and N-terminally SF-TAP tagged TOGARAM1 (right, large arrow, 200 kDa) post protein
purification. The small arrows indicate the expected protein bands of two TOGARAM1 isoforms (195.6 kDa
and 189.4 kDa) in the ARMC9 TAP purification, and two endogenous ARMC9 isoforms (91.8 kDa and 75.7
kDa) in the TOGARAM1 TAP purification.
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armadillo repeats domain (Figure 1B, C). We also used full-length TOGARAM1 and three
fragments (Figure 1D) in parallel screens which confirmed the direct interaction between
TOGARAM1 and ARMC9 (Figure 1E), and yielded an additional candidate interactor, the JBTS-
associated transition zone protein RPGRIP1L (JBTS7) (Figure 1E). The interaction with ARMC9
was mapped to the N-terminal portion of TOGARAM1 (fragment 1) containing the TOG1 and
TOG2 domains, while RPGRIP1L bound to the linker region (fragment 2) between the TOG2
and TOG3 domain (Figure 1E).

To identify ARMC9-associated protein complexes, we expressed strep — FLAG epitope-
tagged ARMC9 in HEK293T cells, followed by tandem affinity purification (TAP) and subsequent
mass spectrometry. This identified 106 candidate ARMC9 interactors, including TOGARAM1
and the JBTS-associated protein CEP290 (Figure 1G, H; Supplemental table 1). Subsequent TAP
experiments using tagged TOGARAM1, CCDC66, and CSPP1 confirmed the presence of ARMC9
in the TOGARAM1 and CCDC66 complexes, and extended the network to include several
other ciliary proteins (Supplemental tables 2-4). For TOGARAM1, these additional candidate
interactors included ciliary proteins ARMC9, CEP104, IFT74, IFT172, PLK1, and PRPF31,
(Supplemental table 2), for CCDC66, they included ARMC9 and DYNLL1 (Supplemental table
3), and for CSPP1, they included RPGRIP1L and CEP290 (Supplemental table 4).

To further validate the ARMCY interactors identified in TAP and Y2H experiments
and evaluate their propensity to interact, we performed reciprocal co-IPs of all binary
permutations of the module components ARMC9, TOGARAM1, CEP104, CCDC66, and CSPP1
(Figure 1F, Supplemental Figure 1A-l). The results confirmed the interaction of ARMC9 with
TOGARAM1, CCDC66, CEP104, and CSPP1 (Figure 1G). Additionally, we performed PalmMyr-
CFP mislocalization assays to further confirm the interaction of TOGARAM1 and ARMC9.
The PalmMyr-CFP assay utilizes a PalmMyr tag which provides sites for palmitoylation and
myristoylation. The palmitoylation and myristoylation forces the tagged protein to (mis)
localize to the cell membrane (40). This mislocalization can be evaluated by fluorescence
microscopy of CFP signal. We transfected PalmMyr-CFP tagged ARMC9 and mRFP-tagged
TOGARAM1 into human telomerase reverse transcriptase retina pigmented epithelium
(hTERT-RPE1) cells, alone and in combination, to assess the interaction between ARMC9 and
TOGARAML1. Cells transfected with PalmMyr-CFP-ARMC9 alone showed diffuse localization
across the cell membrane (Supplemental Figure 1B), while mRFP-TOGARAML1 alone localized
to microtubule-like structures (Supplemental Figure 1C). Co-expression yielded complete co-
localization along these structures despite the PalmMyr tag on ARMC9 (Supplemental Figure
1D), thereby indicating a direct interaction of the two proteins and a likely strong microtubule

binding affinity of TOGARAM1.
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TOGARAM!1 variants cause JBTS in humans

Next, we investigated whether our interactome dataset could be used to identify new JBTS-
associated genes. We cross-referenced the ARMC9-interactome data with DNA sequence data
from our cohort of >600 families affected by JBTS (41). We first evaluated exome sequence
data for 53 individuals in 51 families without variants in known JBTS genes. We identified
biallelic, missense TOGARAM1 variants in a fetus with cerebellar vermis hypoplasia and
polydactyly (UW351-3 in Figure 2A and Table 1). These variants (c.1124T>C; p.Leu375Pro
and ¢.3931C>T; p.Arg1311Cys) are rare in gnomAD v2.1 (42) and predicted to be deleterious
by combined annotation dependent depletion (CADD) (43) (Table 1). To identify additional
families, we sequenced all of the known JBTS genes using small-molecule molecular inversion
probe capture (44) in 534 additional individuals from the same cohort and identified another
individual (UW360-3 in Table 1 and Figure 2A) with the molar tooth sign (Figure 2B) and a
nonsense variant (c.1084C>T; p.GIn362*) on one allele and low read depth indicating a possible
multi-exon deletion event on the other allele. We confirmed a 12 kb deletion using a custom
comparative genomic hybridization array, and fibroblast cDNA sequencing revealed deletion
of exons 4-7 (Figure 2C). Genomic DNA sequencing of the proband and parents revealed that
the 12,191 base pair deletion was inherited from the father (Figure 2C). In parallel, exome
sequencing in several other cohorts of individuals with ciliopathy and neurodevelopmental
conditions identified three other individuals with TOGARAM1-related JBTS (Table 1 and
Figure 2A, B): 13DG1578 (consanguineous) with a homozygous rare, predicted-deleterious
missense variant (c.1102C>T; p.Arg368Trp), WGL-1914 (consanguineous) with a rare,
homozygous stop-gain variant (c.3248C>A; p.Ser1083*), and JAS-L50 (non-consanguineous)
with rare, compound heterozygous missense and stop-gain variants (c.1112C>A; p.Ala371Asp
and ¢.5023C>T; p.Argl675*). Most variants identified in this work cluster around the TOG
(tumor overexpressed gene) domains in the protein (Figure 2D). TOGARAML1 is also known
as FAM179B and KIAA0423, with homologs CHE-12 in C.elegans and Crescerinl in mouse.
Segregation analysis for all affected families confirmed a recessive inheritance pattern (Figure

2A and Supplemental Figure 3).
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Figure 2 TOGARAML1 variants cause JBTS. (A) Pedigrees and segregation of TOGARAM1 variants. (B)
Brain imaging features in individuals with TOGARAM1-related JBTS. Molar tooth sign (arrowheads in
left column, axial T2-weighted images), and elevated roof of the 4th ventricle (arrows in right column,
sagittal T1-weighted (top two) and T2-weighted (bottom) images). Much of the cerebellar tissue on the
sagittal images (right column) is hemisphere based on axial and coronal views (not shown). (C) Multi-exon
deletion in UW360. Primers flanking the predicted deletion amplify a 1064 base pair product in father
(F) and affected son (S) due to a 12,191 base pair deletion, but not mother (M) because the predicted
product is too large. Sanger sequencing of the breakpoint in gDNA (upper) and cDNA (lower) from the
affected child, confirming deletion of exons 4-7. Coding genomic schematic of Homo sapiens TOG array
regulator of axonemal microtubules 1, TOGARAML1. Transcript variant 1 is shown (NM_001308120, variant
2 NM_015091.2, not shown). (D) Protein schematic of TOGARAM1 with JBTS associated variants indicated,
TOG domains 1-4 are shown with HEAT repeats indicated in gradient blue.
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The five affected individuals had features consistent with JBTS, including classic brain imaging
findings (absent cerebellar vermis and thick, horizontally oriented superior cerebellar
peduncles, giving the appearance of the molar tooth sign) in the four children (Figure 2B),
and cerebellar vermis hypoplasia in the fetus (UW351-3). This fetus also had bilateral postaxial
foot polydactyly and abnormal craniofacial features at autopsy including broad nasal bridge
and posteriorly rotated ears. The four living children have typical hypotonia, ataxia, cognitive
delays and behavioral features associated with JBTS, while WGL-1914 and JAS-L50 had kidney
involvement and WGL-1914 also had liver involvement. Uncommonly seen in individuals with
JBTS, widely spaced nipples, male genital abnormalities (undescended testicles and possible
micropenis in UW360-3, and small scrotum and testicle in 13DG1578), and somewhat similar

dysmorphic features were noted in several of these individuals (Table 1).

JBTS-associated TOGARAM1 missense variants in the TOG2 domain
disrupt the ARMC9-TOGARAML interaction

TOGARAM1 is a member of the highly conserved FAM179 protein family and is found across
ciliated eukaryotes including Chlamydomonas reinhardtii, Tetrahymena thermophila, and
Caenorhabditis elegans. TOGARAM1 has four conserved TOG domains that display similarity to
the tubulin binding domains in ch-TOG and CLASP family proteins (34). Arg368Trp, Ala371Asp,
and Leu375Pro, lie within the highly conserved TOG2 domain (Figure 2D, Supplemental
Figure 2A) which has been found to promote microtubule polymerization in vitro (34). The
TOG2 domain conforms to the canonical TOG domain architecture found in other TOG array
containing proteins such as CLASP and Stu2 (Supplemental Figure 2A), therefore disruption
of this domain is predicted to disturb microtubule binding (45). Using in silico analysis of the
effects of point mutations, we found that Arg368Trp, Ala371Asp, and Leu375Pro, variants
were predicted to be deleterious to protein structure (45). Residue 368 is highly conserved,
modeling the wild-type and mutant TOG domains using HOPE (45) predicts that the larger
and neutral tryptophan disrupts the normal hydrogen bonds with the aspartic acid residues
at positions 361 and 405 (Supplemental Figure 2B, C). Position 371 is highly conserved, and
due to the difference in size and hydrophobicity, aspartic acid at this position is predicted to
disrupt the structure and function of the HEAT4 domain. Position 375 is located in a predicted
a-helix, and is highly conserved; proline at this position is predicted to disrupt this a-helix as it
introduces a bend in the polypeptide chain (Supplemental Figure 2D, E), likely affecting protein
folding or interaction with other domains (45).

To assess the effects of JBTS-associated missense variants, we modeled two of the TOG2

domain variants (Arg368Trp, Leu375Pro) and the single TOG3 domain variant (Arg1311Cys) by
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Figure 3 Overexpression of TOGARAML1 affects ciliary length and TOG2 domain variants reduce ARMC9
interaction. (A) Untransfected control hTERT-RPE1 cells, the cilium is shown with transition zone marker
RPGRIP1L (white) and ciliary membrane marker ARL13B (green). (B-E) Transient mRFP-TOGARAM1
overexpression (red) in hTERT-RPE1 cells shown with transition zone marker RPGRIP1L (white) and ciliary
membrane marker ARL13B (green): (B) mRFP-TOGARAM1-wild-type, (C) mRFP-TOGARAM1-Arg368Trp,
(D) mRFP-TOGARAM1-Leu375Pro, and (E) mRFP-TOGARAM1-Arg1311Cys. Images are representative of
>30 cilia assessed per condition over three experiments. Scale bars are 5um. (F) Quantification of cilium
lengths with overexpression of wild-type and variant forms of mRFP-TOGARAML1. (untransfected n=39,
wild-type n=36, Arg368Trp n=32, Leu375Pro n=35, Arg1311Cys n=36). Box plot horizontal bars represent
the median +/- 95Cl. Significance was tested by one-way ANOVA and Tukey’s multiple comparison test.
No significant differences were found between cells overexpressing mRFP-TOGARAM1, mRFP-Arg368Trp,
and mRFP-Leu375Pro. p=0.0004 for untransfected versus Arg1311Cys (G) Co-immunoprecipitation of HA-
tagged ARMC9 and Myc-tagged TOGARAM1: Wild-type and Myc-tagged TOGARAM1-Arg1311Cys interact
with ARMC9, while TOGARAM1 variants Arg368Trp and Leu375Pro do not. (H) Y2H direct interaction
analysis assay with ARMC9 and TOGARAM1: Wild-type and TOGARAM1-Arg1311Cys interact with ARMC9
while the TOGARAM1 variants Arg368Trp and Leu375Pro do not. P-value symbols: ns p>0.05, ***p<0.001,
**%%n<0.0001.
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expressing wild-type and mutant mRFP-tagged TOGARAM1 in control (Figure 3A-E) and
genetically edited TOGARAM1 mutant hTERT-RPE lines (Supplemental Figure 4A, B). The
genetically edited TOGARAM1 mutant hTERT-RPE line, TOGARAM1 mut 1, has a biallelic
deletion of the ATG site of TOGARAM1 (Supplemental Figure 5A, B). Overexpressed wild-
type TOGARAML1 localized along the ciliary axoneme and was associated with markedly
longer cilia compared to untransfected wild-type cells (Figure 3A, B) and TOGARAM1 mut
1 cells (Supplemental Figure 4A,B). Exogenous TOGARAM1 harboring these three variants
individually also localized to the cilium, but overexpression of TOG2-domain variants
Arg368Trp and Leu375Pro resulted in longer cilia while overexpression of the TOG3-domain
variant Arg1311Cys resulted in shorter cilia compared to untransfected cells (Figure 3A-E,
quantification in Figure 3F). These data suggest that disruption of the TOG3 domain may have
a dominant negative effect on the microtubule polymerization capacity of TOGARAM1 and
disruption of the TOG3 domain has a different effect on TOGARAML1 localization and ciliary
extension as compared to TOG2 domain variants.

We nextinvestigated the effects of the TOGARAM1 variants on the interaction with ARMC9
using co-IP, binary yeast two-hybrid (Y2H) interaction analysis, and PalmMyr colocalization
assays. We found that the variants in the TOG2 domain (Arg368Trp and Leu375Pro) abolished
co-IP of HA-ARMC9 with Myc-TOGARAM1, while the Arg1311Cys variant in the TOG3 domain
does not influence the interaction in these assays (Figure 3G). Y2H analysis confirmed these
binary interactions (Figure 3H). In PalmMyr assays, the individually-expressed wild-type
and mutant mRFP-tagged TOGARAM1 proteins localized along the length of cilia and along
cytoplasmic microtubules (Supplemental Figure 4D). Co-expression of PalmMyr-CFP tagged
ARMC9 with wild-type or Arg1311Cys mRFP-TOGARAM1 resulted in a pattern consistent with
co-localization to cytoplasmic microtubules (Supplemental Figure 4E), indicating protein-
protein interaction. In contrast, co-expression with the TOG2 variants resulted in PalmMyr-CFP
tagged ARMC9 remaining localized to the plasma membrane, suggesting a lack of interaction
with the TOGARAM1 mutants affecting the TOG2 domain (Supplemental Figure 4E). Taken
together, these data indicate that variants in the TOG2 domain abrogate the ARMCY-
TOGARAM1 interaction.

togaram1 mutations cause ciliopathy phenotypes in zebrafish

To further investigate the function of TOGARAM1 and the association between TOGARAM1
dysfunction and JBTS, we turned to zebrafish, an established model organism for ciliopathies.

Indeed, zebrafish display a variety of ciliated cell types similar to humans, and pathogenic
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variants in human ciliopathy genes result in typical ciliopathy phenotypes in zebrafish. Ciliated
cells typically assessed in the zebrafish model include epithelial cells in pronephric (kidney)
ducts, olfactory neurons in nose pits or neuronal progenitors on larval brain ventricular
surfaces.

We identified a single zebrafish togaraml ortholog displaying a highly conserved
C-terminal region encompassing two TOG domains (similar to human TOG3 and 4) and a single
N-terminal TOG domain corresponding to mammalian TOG2 domain (Supplemental Figure 6A).
The three TOG domains are well-conserved between zebrafish and its corresponding human
counterparts (50-58% amino acid identity and 72-77% similarity). As for the linker region
between TOG domains, while it is more poorly conserved, it is enriched in serines and lysines
(125 of 589 residues are Ser or Lys), similar to the proportion found in the human protein (165
of 657 residues are Ser or Lys); this is a common feature of TOG-domain containing proteins
(46). Gene synteny analysis confirmed that the identified zebrafish sequence represents the
ortholog of human TOGARAM1 (Supplemental Figure 6B). Importantly, on the paralogous
chromosomal fragment generated by the teleost-specific whole genome duplication, no
second togaram1 paralog could be identified. Moreover, synteny analysis also revealed that
the zebrafish genome lacks a TOGARAM?2 ortholog (Supplemental Figure 6C), leaving zebrafish
with just one togaram ortholog. These findings support the utility of zebrafish as a model for
TOGARAM1-associated human disease.

We next generated zebrafish mutants using CRISPR/Cas9. Two different pairs of sgRNAs
targeting different regions of the gene (Supplemental Figure 6D) led to similar phenotypes in
injected FO larvae. 39% developed a curved body shape and 9% developed kidney cysts, both
typical zebrafish ciliopathy-associated phenotypes (Supplemental Figure 6E). Single larvae
genotyping revealed a very high mutation efficiency (94% of sequenced clones from 7 larvae
had small insertions-deletions, the majority of which were frameshift mutations). Mutant FO
fish displayed a striking scoliosis phenotype as juveniles (Supplemental Figure 6E), reminiscent
of other ciliopathy mutants including armc9 CRISPR-FO fish (32). Taken together, these results
confirm that loss of togaram1 causes ciliopathy phenotypes in zebrafish and supports a role

for togaram1 in ciliary function.
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Control

togaram1 -/- ‘

A1

Figure 4 armc9 and togaram1 mutant zebrafish display ciliopathy associated phenotypes. (A-C) Larval
phenotype demonstrating kidney cysts in armc9-/- (B) and kidney cysts and slightly curved body shape
in togaram1-/- (C). Black boxes in (A-C) show magnification of glomerulus region in inset. Dashed lines
highlight kidney cysts in (B, C). (D-F) Adult scoliosis phenotype in both mutants (E, F) compared to wild-
type (D). (G-1) Immunofluorescence of the pronephric duct in 3 day post fertilization (dpf) larvae showing
fewer cilia. White arrowheads in (I) point to the short remaining cilia in the togaraml mutant. (J-L)
Immunofluorescence of midbrain ventricles shows shortened cilia in 3 dpf armc9 and togaram1 mutant
zebrafish larvae (K, L). (M-O) Immunofluorescence of 3 dpf zebrafish nose pits: decreased cilia number in
both mutants (N, O) compared to wildtype (M). (P-R) Scanning electron microscopy of 5 dpf zebrafish nose
pits confirming reduced cilia numbers in armc9-/- (Q) and togaram1-/- (R). Controls are wildtype, +/+ or
+/- siblings of -/-. Scale bars are 500um in (A-C), 5mm in (D-F) and 10um in (G-R).
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armc9 and togaram1 mutant zebrafish display similar phenotypes

To further evaluate the link between TOGARAM1 and ARMCY, we compared zebrafish mutants
in the two genes. Following up on our previous work (32), we raised several stable (>F2)
zebrafish lines harboring frameshift insertion and deletion alleles of armc9 (Supplemental
Figure 6F). Since homozygous mutants from all generated alleles have comparable phenotypes,
we focused on the armc9%% allele for follow up experiments (Supplemental Figure 6F). This
allele harbors a 110bp insertion in exon 14 that leads to exon skipping, causing a frameshift that
inserts a stop codon at position 73 of exon 15. armc9-/- larvae have a straight body shape and
an incompletely penetrant pronephric cyst phenotype affecting 44% of homozygous mutants
(Figure 4A-B). In comparison, togaram15%° o #0510 mytant F2 larvae harboring frameshift
mutations leading to stop codons in exons 21/22 have a slightly curved body shape and display
a similar rate of kidney cysts compared to armc9-/- mutants (Figure 4C). Pronephric cysts and
body curvature do not necessarily correlate with each other in togaram1 mutants, as each
phenotype can be found in isolation or in combination, but overall, 85 % of togaram1-/- larvae
have at least one ciliopathy phenotype. Neither mutant displayed heart laterality defects that
are seen in some zebrafish ciliopathy models. In addition to frameshift mutations in exon
21/22, we also identified a 21 bp in-frame deletion leading to loss of 7 amino acids in the TOG4
domain, of which 6 are highly conserved (togaram1>%, Supplemental Figure 7). Homozygous
in-frame mutant larvae are indistinguishable from the frameshift mutants, suggesting that the
TOG4 domain may be critical for Togaram1 function.

In addition to the pronephric cysts, both armc9-/- and togaram1-/- fish develop scoliosis
as juveniles compared to wild-type (Figure 4D-F), as previously described in other zebrafish
ciliary mutants (47, 48). Given that pronephric cysts and curved bodies are typical ciliopathy
phenotypes, we next analyzed the cilia in both mutants using immunofluorescence with
anti-Arl13b and anti-acetylated a-tubulin antibodies. Compared to wild-type, larvae of both
mutants have reduced numbers of shortened pronephric, ventricular, and nose pit cilia (Figure
4G-0), the latter being confirmed by scanning electron microscopy (Figure 4P-R). The reduced
and shortened cilia in both mutants support a role for Armc9 and Togaram1 in zebrafish cilium

formation and/or stability.
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Figure 5 ARMC9 and TOGARAM1 dysfunction results in short cilia. (A) Immunoblot of endogenous
ARMC9 in control and patient fibroblasts indicating trace amounts of ARMC9 isoforms 1 and 2 (92 and
75.5 kDa). Loading control is B-actin. (B) ARMC9 schematic indicating JBTS-associated patient variants
(green letters represent variants found in patients as indicated in (A)). (C) Ciliary length in control and
ARMCY patient fibroblasts (control n=1395, UW132-4 n=699, UW132-3 n=437, UW116-3 n=656,
and UW349-3 n=353). Significance was assessed by one-way ANOVA with Dunnett’s multiple testing
correction. (D) Ciliation percentage in ARMC9 fibroblast lines (control n=1723, UW132-4 n=898, UW132-3
n=584, UW116-3 n=764, and UW349-3 n=425). Results were not significant using the Kruskal-Wallis test.
(E) Ciliary length in control and TOGARAM1 patient fibroblasts (yellow panel). p=0.0003 using unpaired
Student’s t-test. hTERT-RPE1 cilia length in wild-type and TOGARAM1 mut lines (purple panel) based on
ARL13B staining. >100 cilia were pooled from 2 experiments (control n=137, TOGARAM1 mutant line 1
n=111, and TOGARAM1 mutant line 2 n=178). p<0.0001 per one-way ANOVA with Dunnett’s multiple
testing correction. (F) Ciliation percentage in TOGARAM1 patient fibroblasts (yellow panel: control n= 466
and UW360-3 n= 429 over 3 experiments), results were not significant using the Mann-Whitney test.
Ciliation percentage in engineered TOGARAM1-mutant hTERT-RPE1 cells (purple panel: control n=330,
TOGARAM1 mutant line 1 n=363, and TOGARAM1 mutant line 2 n=357 over 3 experiments) Results were
not significant using the Kruskal-Wallis test. Open circles represent individual experiments in (D) and (F).
Box and whiskers in (C) and (E) represent the median, the 95 Cl is indicated by the notches. All ciliary length
measurements were based on ARL13B staining. P-value symbols: ns p>0.05, **p<0.01, ****p<0.0001.

JBTS-associated ARMC9 and TOGARAM1 variants result in decreased
ciliary length

To gain insight into the ciliary defects associated with JBTS in humans, we evaluated four
fibroblast lines from patients with ARMC9-associated JBTS. Western blot analysis of total
protein lysates revealed that all four cell lines express trace levels of the two major ARMC9
isoforms at 92kDa and 75.5kDa seen in control fibroblasts (32) (Figure 5A, B). To evaluate for
ciliary phenotypes, we serum starved control and affected cells, and then stained with anti-

acetylated a-tubulin and anti-ARL13B antibodies. All four patient lines displayed significantly
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shorter mean ciliary length (2.3-3.3um, standard deviation (SD) 0.7-1.4, n = 349-1395 cilia),
versus controls (3.6Um, SD 1.4, n =1395 cilia) (Figure 5C). Ciliation rates 48 hours after serum
starvation were similar in the patient lines (75-86%) compared to controls (80%), suggesting
that ARMC9 does not play an integral role in ciliogenesis (Figure 5D).

Mean ciliary length was also shorter the one available patient cell line from UW360-3
with TOGARAM1-related JBTS (2.6jum, SD 0.8, n = 154 cilia) versus control (3.0pm, SD of 1.0, n
=179 cilia) (Figure 5E). This line had a slightly lower ciliation rate than control (85% versus 91%
respectively) (Figure 5F). To generate additional data about the effects of loss of TOGARAM1
function on cilia in human cells, we turned to CRISPR/Cas9 genome-edited TOGARAM1 hTERT-
RPE1 mutant cells. gRNAs targeting the translation start site of exon 1 resulted in two different
lines harboring a disruption in the ATG site of both alleles of TOGARAM1 (Supplemental Figure
5). These lines make significantly shorter cilia (mut line 1: 1.5um, SD 0.6, n= 111 cilia; mut line
2:1.2jum, SD 0.5, n = 178 cilia) versus the isogenic control (2.3pm, SD 0.8, n = 137 cilia) (Figure
5E). Ciliation levels in the TOGARAM1 engineered lines (81% in mutant 1 and 69% in mutant
2) did not differ significantly from the isogenic control (67%) (Figure 5F). Taken together these
results suggest that disruptions in TOGARAM1 and ARMC9 lead to shorter ciliary length but do

not affect overall ciliation rates.

Transition zone integrity with ARMC9 and TOGARAM1 dysfunction

Given the well-described role of transition zone (TZ) dysfunction in JBTS (22), we evaluated
whether the integrity of this compartment is affected by loss of TOGARAM1 or ARMC9
function. Since TZ dysfunction often results in loss of ciliary ARL13B, which secondarily causes
loss of ciliary INPP5SE (12, 49), we performed quantitative immunofluorescence (qlF) on
control, ARMC9, and TOGARAM1 patient cell lines. Our data revealed mildly lower levels of
ARL13B in three of four ARMC9 patient fibroblast lines and normal levels in the TOGARAM1
patient fibroblast line (Figure 6A; Supplemental Figure 8A, C). Importantly, the mildly lower
ARL13B levels observed in three of four ARMC9 lines were not associated with lower ciliary
INPPSE (Figure 6B; Supplemental Figure 8B), indicating that the lower ARL13B levels were
still sufficient to properly localize INPP5E. Western blot analysis also revealed similar levels of
ARL13B and INPP5E in patient fibroblast lysates compared to control cells (Figure 6C, D).

In zebrafish, Arl13b levels were not lower in either mutant (and even slightly increased
in the armc9-/- fish) (Figure 6A, E, F). Together, these results are strikingly different from the
marked ciliary ARL13B and INPP5E reduction observed in TZ mutants (12, 49). To evaluate
the composition of the TZ directly, we performed immunostaining for canonical TZ proteins

RPGRIP1L in human cell lines (Figure 6G, H) and Cc2d2a in zebrafish (Figure 6F). Both proteins

92



Dysfunction of the ciliary ARMC9/TOGARAM1 protein module causes Joubert syndrome

localized normally to the TZ of the respective cilia. Taken together, these findings suggest that

the TZ is generally intact, despite dysfunction of the ARMC9-TOGARAM1 complex.
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Figure 6 ARMC9 or TOGARAM1 dysfunction does not grossly affect the transition zone. (A) Normalized
relative fluorescence intensity of ARL13B signal in human fibroblast cilia (yellow panel, pooled from 3
experiments, control: grey n=1089, ARMC9: green n=582, and TOGARAM1: blue n=126) and 3dpf
zebrafish hindbrain cilia (pink panel: pooled data from 4 experiments, 10 cilia measured per larva, each
data point represents one larva, grey: armc9 control n=42, green: armc9 -/- n=41, grey: togaram1 control
n=45, blue: togaram1 -/- n=40). Bars represent the mean. Controls are wildtype, +/+ or +/- siblings of
-/-. Statistical significance was assessed using a Student’s t-test for both fibroblast (Bonferroni adjusted
p<0.025) and zebrafish experiments (p <0.05). P-value symbols: **p<0.01, ****p<0.0001. (B) Normalized
relative fluorescence intensity of INPP5E signal in human fibroblast cilia (pooled data from 3 experiments:
control: grey n=620, ARMC9: green n=248, TOGARAM1: blue n=62). See Supplemental Figure 7 for ARL13B
and INPP5E signal intensity across all ARMC9 fibroblast lines. Results were not significant (ns) using
unpaired Student’s t-test. (C-D) Western blot analysis of ARL13B (C) and INPP5E (D) in ARMC9 UW132-
4 patient fibroblasts. GIANTIN and B-actin serve as loading controls respectively. (E) Representative
immunofluorescence signal for Arl13b (red) and polyglutamylated (green) in 3dpf zebrafish hindbrain cilia
quantified in (A). Scale bars are 10um. (F) Single hindbrain cilia stained with Arl13b (red) and Cc2d2a
(green) in 3dpf control, armc9-/- and togaram1-/- zebrafish. Scale bars are 1um. (G) Representative
immunofluorescence signal for RPGRIP1L (white) and ARL13B (red) in cilia from control and two
TOGARAM1-mutant hTERT-RPE1 lines. Scale bars are 2um. (H) Representative immunofluorescence for
RPGRIP1L (green) and ARL13B (red) in ARMC9 and TOGARAML1 patient fibroblasts. Percentage of cilia with
robust RPGRIP1L puncta are indicated. Scale bars are 2um.
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TOGARAM1 dysfunction results in attenuated SMO translocation

Recent work has reported Hedgehog (Hh) signaling defects in cell lines with dysfunction of the
JBTS genes CEP104, CSPP1, and Armc9 (33, 39). Therefore, we tested whether TOGARAM1
dysfunction leads to attenuated ciliary SMO accumulation in response to Hh stimulation in
the engineered TOGARAM1-mutant hTERT-RPE1 cells described above (Supplemental Figure
5). We starved the cells for 24 hours to promote ciliation and then exposed them to 100 nM
Smoothened agonist (SAG) for an additional 24 hours before fixation and glF (Supplemental
Figure 9A). Upon pathway stimulation, the control and two TOGARAM1-mutant lines exhibited
a significant induction of SMO translocation into the cilium as compared to their respective
DMSO treatment condition; however, the ciliary enrichment of SMO was markedly lower in
the two mutant lines compared to control cells (Supplemental Figure 9B-D). Overall, SMO
intensity levels in both TOGARAM1-mutant lines were less than 50% of the control line, and

mutant lines did not differ significantly in their response when compared to each other.

ARMC9 and TOGARAM1 dysfunction affects tubulin post-
translational modifications in patient fibroblasts and zebrafish
mutants

During our experiments evaluating ciliary ARL13B and INPP5E, we noted that the acetylated
a-tubulin and polyglutamylated tubulin signals appeared substantially less intense in patient
cell lines versus controls (Figure 7A, B). Using qlF, mean acetylated tubulin levels were ~50%
of control levels in the ARMC9 lines and ~70% of controls in the TOGARAML1 line (Figure 7E, F
and Supplemental Figure 10A, B). Mean polyglutamylated signal levels were ~35% and ~45%
of control levels in ARMC9 and TOGARAML1 lines respectively (Figure 7B, F and Supplemental
Figure 10). Western blots of whole cell lysates also demonstrated substantially lower levels
of both acetylated and polyglutamylated tubulin in ARMC9 fibroblast lines compared to
controls (Figure 7A, B). In the zebrafish armc9 and togaram1 mutant lines, we observed similar
reductions of ciliary acetylated and polyglutamylated tubulin in the remaining ventricular cilia
(Figure 7C-F). Together, these results indicate that loss of either ARMC9 or TOGARAM1 results
in decreased post-translational modifications of axonemal tubulin across multiple model

systems.
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Figure 7 ARMC9 and TOGARAM1 mutant cilia display reduced tubulin posttranslational modifications
in both patient fibroblasts and zebrafish ventricular cells. (A-B) Immunofluorescence and immunoblots
of (A) acetylated and (B) polyglutamylated tubulin in ARMC9 patient fibroblasts versus control. In the
immunoblots, GIANTIN and B-actin are used as loading controls. (C-D) Representative immunofluorescence
of 3dpf zebrafish hindbrain cilia marked with Arl13b (red) and acetylated (green in (C)) or polyglutamylated
(greenin (D)) tubulin. Scale bars are 10um. Note that acetylated tubulin also marks axons in the developing
brain, visible at the edges of the image in (C). (E) Normalized relative fluorescence intensity for acetylated
tubulin signal in human fibroblast cilia (yellow panel: control n=1106, ARMC9 n=532, and TOGARAM1
n=131) and zebrafish hindbrain cilia (pink panel: pooled data from 2 experiments, 10 cilia measured
per larva, each data point represents one larva, grey: armc9 control n=20, green: armc9 -/- n=21, grey:
togaraml control n=20, blue: togaram1l -/- n=20). (F) Normalized relative fluorescence intensity for
polyglutamylated tubulin assessed in human fibroblast cilia (yellow panel: pooled from 3 experiments,
control n=602, ARMC9 n=298, and TOGARAM1 n=58) and zebrafish hindbrain cilia (pink panel: pooled data
from 2 experiments, 10 cilia measured per larva, grey: armc9 control n=22, green: armc9 -/- n=20, grey:
togaram1 control n=25, blue: togaram1 -/- n=20). Zebrafish controls are wt, +/+ or +/- siblings of -/-. In (E
and F), data points >4 and <-2 are not displayed, but were included in the statistical analysis. For complete
graph of all data points and a graphical summary of all ARMC9 lines, see Supplemental Figure 8 (A, B) and
(C, D) respectively. Statistical significance (adjusted p<0.025) was assessed using a Bonferroni-corrected
Student’s t-test for both fibroblast and zebrafish experiments. P-value symbols: **p<0.01, ****p<0.0001.
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Figure 8 JBTS patient fibroblasts exhibit abnormal axonemal stability. (A) Cold-induced depolymerization
assay schematic and ciliation percentages of treated cells normalized to non-treated controls. Statistical
significance was assessed via Bonferroni-corrected Kruskal-Wallis test with p=0.0003, p=0.02 respectively.
Open circles represent individual experiments. (B) Relative ciliation rates 2, 4, 6, and 8 hours after serum
readdition in human fibroblasts previously serum starved for 48 hours. At t=0, 2, 4, 6, 8 HR respectively,
the following number of cells were assessed: Control 1: 455, 413, 350, 346, 395; Control 2: 595, 431, 351,
368, 279; ARMC9 UW132-4: 218, 193, 229, 195, 189; TOGARAM1 UW360-3: 496, 622, 513, 558, 492.
Ciliation percentages were normalized to 100% at the time of serum readdition, percentages represent
the amount of remaining cilia compared to time zero. Error bars represent 95% confidence intervals. See

88 2HR 4HR 6HR 8HR

“Statistics and reproducibility” section for details of statistical testing for cilia stability assays.
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ARMC9 and TOGARAM1 dysfunction is associated with abnormal
ciliary resorption

Post-translational modifications of microtubules such as acetylation and polyglutamylation
are enriched in the ciliary compartment and play roles in ciliogenesis, axoneme stability, and
cilium disassembly (17). To investigate the consequence of reduced ciliary microtubule post-
translational modifications on axonemal stability, we evaluated cilia of control and ARMC9
patient cells for sensitivity to cold-induced microtubule depolymerization (50, 51). In control
cells, a 10-minute treatment at 4°C was not associated with reduced numbers of cilia, while
cold-treated ARMC9 patient cells had 20-30% fewer cilia than untreated cells (Figure 8A).
TOGARAM1 patient cell cilia were also more susceptible to cold-induced depolymerization,
with 15% fewer cilia after treatment compared to untreated cells (Figure 8A).

As a second measure of cilium stability, we evaluated the rate of cilium resorption after
serum re-addition to serum-starved cells. Serum provides growth factors that quickly initiate
ciliary resorption, so that cells can re-enter the cell cycle. In controls, the ciliation rate was
~85% of baseline 4 hours after serum re-addition. In contrast, the ciliation rate was 70% of
baseline in ARMC9 patient fibroblasts only 2 hours after serum re-addition, and by 8 hours,
it was down to 50%, compared to 75% in controls (Figure 8B). To determine whether the
faster resorption was due to an overactive deacetylating enzyme in the ARMC9 cell lines, we
repeated these experiments with and without the histone deacetylase 6 (HDAC6) inhibitor
tubacin. Tubacin treatment did not rescue the faster resorption in ARMC9 cell lines to control
levels (Supplemental Figure 11A-C). Intriguingly, the ciliation rate of the one TOGARAM1
patient fibroblast line available remained 90% of baseline even 8 hours after serum re-
addition, substantially higher than controls (Figure 8B). To determine if this abnormal ciliary
stability caused defects in cell cycle progression, we used a flow-cytometry based approach to
quantify cell cycle reentry (Supplemental Figure 12A-B). ARMC9 and TOGARAML1 patient cell
lines reentered the cell cycle closely with similar timing to control cells. These data suggest

that the ARMC9-TOGARAM1 complex plays a role in regulation of axonemal stability.
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Figure 9 Graphical Summary: Disruptions of the ARMC9-TOGARAM1 module affect ciliary length,
axonemal PTMs, and stability. (A) TOGARAML1 interacts with ARMC9 through its TOG2 domain. (B) Effects
of TOGARAM1 overexpression (wild-type and with JBTS-associated variants) on ciliary length in TOGARAM1
mutant hTERT-RPE1 cells and consequences of JBTS-associated variants on the interaction with ARMC9.
(C) Consequences of mutations in ARMC9 or TOGARAML1 on ciliary length and axonemal post-translational
microtubule modifications (PTM) in patient fibroblast lines (black arrows) or zebrafish mutants (white
arrows). Transition zone (TZ) integrity despite ARMC9 or TOGARAM1 dysfunction is indicated with a green
checkmark. Consequences of TOGARAM1 and ARMC9 mutations on ciliary stability in response to cold or
serum readdition in patient fibroblasts are indicated with black arrows. Yellow boxes represent pathogenic
variants. Bold crosses indicate presumed loss-of-function mutations. del=deletion, fx=frameshift, LoF=loss
of function, WT=wild-type, ZF=zebrafish. RPE1 mut=hTERT-RPE1 TOGARAM1 mutant lines. Protein
domains: LisH=Lis-homology, CC=coiled-coil, ARM=armadillo, TOG=tumour overexpression gene.

DISCUSSION

In this study, we identified a new JBTS-associated protein module that can be distinguished
physically and functionally from the previously described JBTS protein complex at the ciliary
transition zone of primary cilia (52). Several components of this new module localize at the
ciliary basal body (32) and at the proximal end of the ciliary axoneme (33, 53). Pathogenic
variants in the genes encoding two directly interacting members of the module, ARMC9 and

TOGARAM1, cause defects in cilium length, Hh signaling (SMO translocation), microtubule
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post-translational modifications (acetylation and polyglutamylation), and ciliary stability in
patient-derived fibroblasts, zebrafish mutants, and genetically edited hTERT-RPE1 cell lines

(Summary Figure 9).

The ARMC9-TOGARAM1 complex in JBTS

Knowledge of the components and associations of the ciliary molecular machinery has been
instrumental for relating ciliopathy genetic defects, associated pathomechanisms, and the
wide spectrum of overlapping ciliopathy phenotypes. Several affinity and proximity proteomics
approaches have been used to determine the topology of ciliary protein-protein interaction
networks and generate molecular blueprints of the ciliary machinery, e.g. the entire ciliary
organelle (54), of the human centrosome-cilium interface (53), or specific ciliopathy-associated
protein modules (55, 56). The majority of the previously identified JBTS-associated proteins
participate in specific sub-modules of complex ciliary protein networks that vary in sub-ciliary
localization, concentrating at the transition zone to organize and regulate the ciliary gate (12, 57).

Using a combination of affinity proteomics (TAP) and Y2H protein interaction screens,
we found that the newly JBTS-associated protein ARMC interacts with known JBTS-associated
proteins CSPP1 and CEP290, confirming the importance of this complex to JBTS. We also
identified two ciliary microtubule-associated proteins, TOGARAM1 and CCDC66, not previously
associated with JBTS. A subsequent TAP screen using TOGARAML1 as bait pulled out ARMC9,
further validating their interaction, and also identified another JBTS-associated protein, CEP104
(JBTS25). By Y2H screening we determined the direct interaction of TOGARAM1 with another
JBTS-associated protein, RPGRIP1L (JBTS7), while a TAP experiment using CSPP1 as a bait again
identified CEP290 as a complex member, and confirmed its previously identified interaction
with RPGRIP1L (58). Our results are in agreement with the BiolD proximity interactome of
CEP104 that contained most of our module components, except for ARMC9 and RPGRIP1L (53).
Co-IP and yeast two-hybrid analysis validated the core module, ARMC9, TOGARAM1, CCDC66,
and CEP104 consisting of proteins important for cilium function and ciliopathy disease. For
instance, CCDC66 was previously found to interact with CEP290 (36) and null mutations cause
retinal degeneration in dogs (59) and mice (60). CEP104 localizes both to the daughter centriole
as well as to the apical tip of a growing cilium (30) and, similar to TOGARAM]1, interacts with
tubulin through its TOG domain (61). Moreover, CEP104 has been shown to interact with NEK1
(61), which is associated with the ciliopathy “short-rib polydactyly syndrome Majewski type”
(62), and with the JBTS-associated protein CSPP1 (39). This interaction, that we confirmed in

our co-IP experiments, is required for the formation of Hedgehog signaling-competent cilia, as

99




Chapter 3

mutations in CSPP1 and CEP104 significantly decreased ciliary SMO translocation (39), similar
to what we observed with RPE1 TOGARAM1 mutant lines. Following the “guilt by association”
paradigm, we next found biallelic TOGARAM1 variants in multiple individuals with JBTS,
reiterating the relevance of the complex to JBTS, and moving us closer to identifying all genetic
causes of this disorder. We did not find CCDC66 variants in >600 families affected by JBTS,

indicating that variants in this gene are, at most, a very rare cause of JBTS.

Role of the ARMC9-TOGARAM1 complex in ciliary length and
stability

The structure of TOG domains is highly conserved for microtubule binding, where the
intra-HEAT loop in the discontinuous TOG domain binds tubulin (63—-66). TOG domains are
thought to regulate microtubule growth and dynamics (67). The TOG domains in TOGARAM1
have differential microtubule binding capacity and likely function in concert to coordinate
microtubule polymerization (34). For example, the C-terminal TOG domains TOG3 and TOG4
promote microtubule lattice binding (34). Interestingly, we found that cilia are shorter in
cells with ARMC9 or TOGARAM1 dysfunction. In contrast, we demonstrate that TOGARAM1
overexpression results in long cilia, and this effect requires an intact TOG3 domain, but not
an intact TOG2 domain which is required for TOGARAM1 interaction with ARMC9. In fact, the
TOG3 domain Arg1311Cys variant does not interfere with the ARMC9 interaction, but over-
expression of this mutant protein results in severely shortened cilia. Since both long and short
cilia have been identified in fibroblasts from patients with different genetic causes of JBTS, no
simple correlation between cilium length and JBTS disease mechanism can be made (31, 32,
68, 69).

Recent work in Tetrahymena indicates that TOGARAM1 and ARMC9 orthologs may have
opposite effects on B-tubule length (29). In mammalian cells, we found that dysfunction of
either gene leads to shorter cilia, decreased post-translational modifications, and sensitivity
to cold-induced ciliary microtubule depolymerization, suggesting reduced ciliary stability.
Intriguingly, TOGARAM1 and ARMC9 dysfunction seem to have opposite effects on the kinetics
of cilium resorption after serum re-addition in patient fibroblasts. This result suggests that
different mechanisms may underlie ciliary resorption in the setting of serum re-addition versus
cold-induced depolymerization. The latter may represent an acute stressor directly correlated
with cilium stability, while the former is a regulated mechanism required for cell cycle reentry,
for which TOGARAM1 and ARMC9 may indeed play opposing roles as suggested by the work
in Tetrahymena (29).

100



Dysfunction of the ciliary ARMC9/TOGARAM1 protein module causes Joubert syndrome

Post-translational modifications of ciliary microtubules

ARMC9 and TOGARAM1 dysfunction also leads to significantly decreased axonemal post-
translational modifications (PTMs, polyglutamylation and acetylation) in patient fibroblasts and
zebrafish, supporting the relevance of altered PTMs in JBTS. Tubulin PTMs are indispensable
for proper microtubule function, affecting their mechanical properties, stability, and binding
of microtubule-associated proteins (MAPs) to influence protein trafficking and signaling (17).

Polyglutamylation decorates the surface of axonemal microtubules. This reversible
modification ranges from 1-17 glutamyl residues in vivo (70), and plays a role in intraflagellar
transport activity and MAP binding (71-74). Decreased ciliary polyglutamylation interferes
with kinesin2-mediated anterograde transport, also on the B-tubule, and subsequently
negatively impacts Hedgehog signaling (72, 73). Some MAPs are sensitive to the amount of
glutamylation. For example, spastin has optimal microtubule-severing activity in vitro with
moderate polyglutamylation, while both hypo- and hyper-glutamylation suppresses severing
activity (75). In the context of JBTS, decreased axonemal polyglutamylation was reported in
fibroblasts from patients with CEP41-related JBTS (11). More recent work found decreased
axonemal glutamylation with ARL13B, FIP5 and TTLL5 knockdown in immortalized cells,
associated with impacts on polycystin localization and Hh signaling (71).

While most PTMs are added to the C-terminus of tubulin on the microtubular surface,
acetylation uniquely occurs on the luminal surface of a-tubulin. Ciliary resorption requires
removal of this modification by HDAC6 (76). It has been long observed that the hyperstabilized
ciliary microtubules are acetylated, but until recently it was not known if the modification
confers stability or if long-lived stable microtubules accumulate this modification. Recent
work using cryo-EM confirmed that acetylation causes a stabilizing conformational change
(77). This is in line with our findings of decreased axonemal microtubule acetylation and
stability with ARMC9 and TOGARAM1 dysfunction, as well as previously published findings
with Kif7 and Armc9 dysfunction (33, 68). In particular, Armc9 null NIH3T3 cells had short
cilia and decreased acetylation and glutamylation. The more rapid ciliary resorption with
ARMC9 dysfunction is unlikely due to excessive deacetylation since cilia were not stabilized
by HDACG inhibition. Interestingly, Kif7 mutant mouse embryonic fibroblasts (MEFs) exhibited
reduced glutamylation, making it the only other JBTS model with decreases in both of these
PTMs (31, 68). Fibroblasts from patients with INPP5E-related JBTS also display decreased
cilium stability (78). Notably, these models of KIF7- and INPP5E-related ciliary dysfunction
disrupt Hh signaling, likely due to GLI/SUFU mislocalization and aberrant phosphatidylinositol
composition respectively, while emerging evidence indicates that reduced polyglutamlyation
may indirectly alter translocation of Hh pathway components by perturbing anterograde

intraflagellar transport (71, 72).
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The observed reduction of PTMs with ARMC9 and TOGARAM1 dysfunction could
therefore affect ciliary function through loss of stability and/or direct disruption of signaling
pathways. In fact, Armc9 and Togaram1 (FAM179B) were identified as positive regulators of
the Hh pathway in a genome-wide screen for Hh signaling components (33). That study also
demonstrated that over-expressed ARMC9 translocates from the ciliary base to the tip upon
Hh pathway stimulation (33). In Tetrahymena, orthologs of ARMC9 and TOGARAM1 are seen at
both the base and tip, with tip enrichment during cilia regeneration (29). Taken together, these
results suggest a dynamic localization of the complex members, and likely changes in protein
complex composition at each locale. Further work will be required to determine the details of

dynamic ARMC9-TOGARAM1 localization during ciliogenesis, resorption, and signaling.

CONCLUSIONS

The biological mechanisms underlying JBTS remain incompletely understood. This work brings
us one step closer to the complete catalog of JBTS genetic causes, and highlights the role of a
new JBTS-associated protein complex including ARMC9 and TOGARAM1. Approximately half
of JBTS-associated genes are implicated in transition zone function which is required for ciliary
ARL13B and INPP5E localization. In contrast, the ARMC9-TOGARAM1 complex is not required
for INPP5E localization, and instead, appears to regulate the post-translational modification of
ciliary microtubules, ciliary length and ciliary stability. Future work will need to reconcile how
the diverse array of cellular defects associated with loss of function for the JBTS genes relate

to this important human disorder.
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MATERIALS AND METHODS

Adetailed description of cell culturing conditions, cloning, immunofluorescence and microscopy,
cell cycle assay, zebrafish experiments, Palm-Myr assay, tandem affinity purification, yeast
two-hybrid interaction analysis, coimmunoprecipitation, statistical analysis, microtubule cold
assay, cilia stability assay, subject ascertainment and phenotypic data, variant identification,

and array CGH can be found in the supplemental material and methods file.

WEB RESOURCES

http://chopchop.cbu.uib.no

http://gnomad.broadinstitute.or.

https://www.ensembl.org/index.html

http://www.cmbi.umcn.nl/hope/

https://huygens.science.uva.nl/PlotsOfData/ (79)

http://www.phylogeny.fr/

http://syntenydb.uoregon.edu/synteny_db/
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SUPPLEMENTAL MATERIALS AND METHODS
Patient Fibroblast Culture

Patient fibroblasts were cultured at 37°C, 5% CO, in DMEM (Gibco, 11995-065) supplemented
with 10% FBS, 1% penicillin/streptomycin. Fibroblasts are seeded at 5x1075 and allowed to
reach 70-80% confluency prior to passages. For experiments, cells are serum starved in DMEM
only for 48 hours to induce ciliogenesis. All cell lines used were within 1 passage number of

each other and <10 total passages. All cell lines were routinely tested for mycoplasma.

CRISPR/Cas9 generation of TOGARAM1 mut hTERT-RPE1 cell lines

hTERT-RPE1 were maintained in culture according to ATCC specifications. Cells were plated
in 1 well of a 6 well plate. At ~70-80% confluency, cells were co-transfected with the Cas9
backbone px459v2 containing gRNAs to TOGARAM1. Transfections were performed with
lipofectamine 2000 (Thermo Fisher). Sequencing primers for genotyping targeted the
5’UTR CTGAAGCTGTTCTTTTGCCTCT (forward) and exon 1 CTACCTCCTTCCACAAGCACTC
(reverse). Both TOGARAM1 mut clone 1 and 2 have compound heterozygous mutations
which result in large deletions including the ATG site and a portion of exon 1. TOGARAM1
mut line 1: NM_001308120.2:c.[2_269del;270dup]; [2_269inv]. TOGARAM1 mut line 2:
NM_001308120.2:c.[-33_314del]; [2_269inv; 269 270insTC] (Supplemental Figure 5 A,
B). Cloning was performed as previously described (1). gRNAs to the 5’UTR and ATG site,
5’-CACCTGACAACCCTGCATGG-3’ and exon 1, 5’-TCTGGAGGCGGTTTGTCAGG-3’, were designed
utilizing the web-based tool CHOPCHOP. pSpCas9(BB)-2A-Puro (PX459) V2.0 from Feng Zhang
(Addgene plasmid # 62988) was purchased from Addgene.

hTERT-RPE1 Immunofluorescence and microscopy

Human telomerase-immortalized retinal pigment epithelium (hTERT-RPE1) cells were cultured
according to ATCC specifications. For immunofluorescence imaging, cells were plated on glass
coverslips. At 24 hr after plating, cells were serum starved for 48 hr in 0.2% FBS medium
to induce cell cycle arrest and ciliogenesis. Transfections were performed where indicated
at 48 hours post plating using lipofectamine 2000 (Thermo Fisher) in accordance with the
manufacturer’s protocol. 72 hours after plating, cells were rinsed once with 1X PBS, fixed
with 2% paraformaldehyde for 20 min and permeabilized with 1% Triton-X for 5 min. All steps
were performed at room temperature. Cells were blocked in freshly prepared 2% BSA for 45

min and then incubated with the following antibodies for 1 hr: rabbit polyclonal anti-ARL13B
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(Proteintech, cat. no. 17711-1-AP; 1:500), guinea pig polyclonal anti-RPGRIP1L (in house;
SNC040, 1:300), monoclonal anti-acetylated tubulin antibody (clone 6-11-B1, Sigma-Aldrich,
cat. no. T6793; 1:1,000), monoclonal anti-GT335 (a kind gift from Carsten Janke; 1:2000),
rabbit polyclonal anti-SMO (Abcam, cat. no. ab38686; 1:200), and mouse monoclonal anti-
ARL13B (NeuroMab, cat. no. 75-287; 1:500). Cells were stained with secondary antibodies
for 45 min. The following secondary antibodies were used (all from Life Technologies/Thermo
Fisher Scientific; all diluted 1:500 in 2% BSA): anti-guinea pig 1gG Alexa Fluor 647, anti-rabbit
1gG Alexa Fluor 488, and anti-mouse IgG Alexa Fluor 568. Fluoromount-G mounting solution
with DAPI (ThermoFisher) was used to mount the coverslips to slides. Non-confocal imaging
was performed with the Zeiss Axio Imager Z2 Microscope. Confocal imaging was done with the

Zeiss LSM 880 Laser scanning microscope equipped with Airyscan technology.

Fixation and staining for patient fibroblast immunofluorescence

Patient fibroblasts were grown on coverslips (Neuvitro, GG-12-1.5.pdl, 0.3mg/mL Poly-
D-lysine coating, 1.5mm thickness), serum-starved for 48 hours, then fixed in ice cold 2%
paraformaldehyde in PBS for 20 minutes. After a PBS wash, cells were permeablized with 1%
Trition-X in PBS or ice-cold Methanol for 5 minutes. Cells were blocked in 2% BSA in PBS for
1 hour at room temperature, then incubated with the following antibodies (in 2% BSA/PBS)
for 1.5 hours at room temperature: mouse anti-polyglutamylated tubulin, GT335, (Adipogen,
AG- 20B-0020-C100, 1:2000), mouse anti-acetylated tubulin (clone 6-11-B1, Sigma-Aldrich,
T6793; 1:1,000), mouse anti-ARL13B (UC Davis NeuroMab 75-287 clone N295B/66, 1:2000),
goat anti-y-tubulin (Santa Cruz, SC-7396 1:200), rabbit anti-ARL13B (Proteintech, 17711-1-AP,
1:200), or rabbit anti-INPP5E (Proteintech, 17797-1-AP, 1:100). Cells were washed thrice with
PBS and stained with secondary antibodies (in 2% BSA/PBS) for 1 hour at room temperature
(all Invitrogen at 1:2000, anti-goat-647, A21447, anti-rabbit-488, A11008). After three PBS
washes, coverslips were mounted on slides using Fluoromount-G with DAPI (Invitrogen, 00-
4959-52) and sealed with nail polish.

Patient Fibroblast Microscopy & Immunofluorescence Quantification

Wide-field fluorescent images were acquired on an 3i imaging workstation (3i, Denver, CO)
with Axio inverted microscope with Definite Focus (Zeiss). For each experiment, optimal
exposures were determined for each fluorophore to ensure that we used the full dynamic
range of our CoolSnap HQ2 camera (Photometrics, Inc., Tuscon, AZ) without saturating any

pixels. Dark field correction was applied to each channel to remove artifacts generated from
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the camera and electronics due to non-uniformities in illumination. Z-stack images with 0.3
Um steps were acquired at >10 distinct locations on each slide with a 40x objection using
identical scope settings for all slides in an experiment. Sum projected images were analyzed
in FIJI (NIH). A reference ciliary mask was drawn atop the reference signal for each cilium by
standardized methods. A skeleton measurement of this mask extracted ciliary length data.
The average fluorescence intensity was measured within the cilium mask in the channel of
interest. To correct for antibody background, the background from a region directly adjacent

to each cilium was measured and subtracted.

Patient Fibroblast Cell Cycle Reentry Analysis

Near confluent cells were serum starved for 48 hours, then serum was added back for 0, 4,
8, 16, or 24 hours. Cells were tryspinzed, concentrated, then triturated in 10mg/mL DAPI and
0.1% nonident P-40 solution with a 25 gauge needle to release intact nuclei. Nuclear DNA
content was measured with a 405 nm laser on a LSRII (BD Bioscience) flow cytometer, then

data was analyzed in FCS Express 6 (De Novo Software) (2).

Zebrafish experiments: Phylogeny and Synteny Analysis,
CRISPR gene editing, Scanning electron microscopy and
Immunofluorescence

Phylogeny and Synteny analyses were performed as previously described (3), using the
Phylogeny.fr platform (http://www.phylogeny.fr/) and the synteny database (http://syntenydb.
uoregon.edu/ synteny_db/). Briefly, for Phylogeny, length of input sequences varied between
256 (xenopus truncated version) and 516 amino acids, and after curation 487 amino acids
were used for further analysis. For Synteny analysis, parameters were adjusted to sliding
window sizes between 25 and 100, and several genes in the vicinity of TOGARAMs were
used for additional syntenic comparison. Zebrafish (Danio rerio) were maintained at 28 °C
with a 14 h/10 h light/dark cycle as previously described (4). All zebrafish protocols were in
compliance with internationally recognized guidelines for the use of zebrafish in biomedical
research, and the experiments were approved by local authorities (Veterindramt Zirich
TV150). Generation and genotyping of the armc9 mutant zebrafish was previously described
(5). sgRNAs for togaraml1 CRISPR/Cas9 mutagenesis were designed with the website
CHOPCHOP: 3’-GGGGTCTCCTCTGCTGGGCC-5" and 5'-GGACGAGATGCTGGACCGAG-3' for
exon 6/7 and 3’-GGCTGCCGATGACCAGAGCT-5" and 5’-GGTGAATCTGCGCGCTCTGG-3’ for exon
21/22 in togaram1. sgRNAs were mixed with Cas9 protein (gift from Darren Gilmour, M0646M

NEB, or B25641 invitrogen) and co-injected into 1-cell stage embryos using a microinjector
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(Eppendorf). Amplification of the target regions for genotyping was performed using primer
pairs 5’-AGACGCTCCTCAACTCCAGA-3’ and 5’-GCCGTGTAGACGAGTGTGTT-3’ for exon 21/22 in
togaram1. The PCR products were analyzed with gel electrophoresis and subcloned before
sequencing. Experiments were performed using the armc9*°% (WIK background) and the
togaram1°% or togaram1?°1° (Ti background) mutants from generation F2+ (Supplemental
Figure 6F). Zebrafish larvae were fixed in 2.5 % Glutaraldehyde in 0.1 M Cacodylate buffer
and prepared for scanning electron microscopy (SEM) following standard protocols. SEM was
performed on a ZEISS Supra VP 50 microscope. Whole-mount immunohistochemistry was
performed on zebrafish larvae fixed in 4% paraformaldehyde or 80% MeOH in DMSO according
to standard protocols. The following primary antibodies were used: acetylated tubulin (1:400,
Sigma 7451), GT335 (1:400, Enzo Life Sciences A20631002), arl13b (1:100, gift from Z.Sun (6)),
cc2d2a (7). Images were taken with a Leica HCS LSI confocal microscope. Acetylated tubulin
and glutamylated tubulin mean fluorescence intensity was quantified using FlJI: fluorescence
intensity of 10 cilia from each larvae were measured and averaged, so that each datapoint in
graphs Fig 6A, 7E and 7F represents one individual larva. The background was subtracted from

each measurement.

Cloning of constructs

All expression constructs were generated using Gateway Technology (Life Technologies) and
according to manufacturer’s instructions. The constructs generated encoded TOGARAM1 (and
JBTS associated variants), ARMC9 (NM_025139.2),, pENTR223-CCDC66 (NM_001141947.3),
CEP104 (NM_014704.4) and CSPP1 (NM_024790.6) in the following destination vectors: 3xHA,
3xFlag, TAP, myc, mRFP, GAL4-BD, and PalmMyr-CFP. The entry clone of human TOGARAM1
(NM_001308120.2) was synthesized and purchased from VectorBuilder. Constructs encoding
TOGARAM1 and variants were generated by site directed mutagenesis PCR. All entry clone

sequences were verified using Sanger sequencing.

PalmMyr Assay

hTERT-RPE1 cells were plated on glass slides, 24 hours later when cells reached approximately
80% confluency they were transfected using lipofectamine 2000 (ThermoFisher) with either
mRFP-tagged TOGARAM1 / TOGARAM1 variants or PalmMyr-CFP-tagged ARMC9 or both.
24 hours post transfection, cells were starved for an additional 24 hours, fixed with 2% PFA
at room temperature and prepared for analysis. Imaging was performed with the Zeiss Axio

Imager Z2 Microscope.
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Tandem affinity purification and mass spectrometry

HEK293Tcells were grown in DMEM (PAA) supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin. Cells were seeded and expanded for 16 — 24 hours, then transfected
with the corresponding SF-TAP-tagged DNA constructs using PEl reagent (Polysciences)
according to the manufacturer’s protocol. 48 hours later, cells were harvested in lysis buffer
containing 0.5% Nonidet-P40 (NP-40), protease inhibitor cocktail (Roche), and phosphatase
inhibitor cocktails Il and IIl (Sigma-Aldrich) in TBS (30mM Tris-HCI, pH 7.4 and 150mM NaCl)
for 20 min at 4°C. Cell debris and nuclei were removed by centrifugation at 10,000g for 10 min.
For SF-TAP analysis, the cleared supernatant was incubated for 1 hour at 4°C with Strep-Tactin
superflow (IBA). Subsequently, the resin was washed three times in wash buffer (TBS containing
0.1% NP-40 and phosphatase inhibitor cocktails Il and I, Sigma-Aldrich). Protein baits were
eluted with Strep-elution buffer (2mM desthiobiotin in TBS). For the second purification step,
the eluates were transferred to anti-Flag M2 agarose beads (Sigma-Aldrich) and incubated for
1 hour at 4°C. The beads were washed three times with wash buffer and proteins were eluted
with FLAG peptide (200 mg/ml, Sigma-Aldrich) in TBS. After purification, the protein samples
were precipitated with chloroform and methanol and subjected to in-solution tryptic cleavage.

Mass spectrometry and subsequent analysis were performed as previously described (8).

Yeast two-hybrid interaction analysis

The GAL4-based yeast two-hybrid system was used to screen for binary protein—protein
interactions. Yeast two-hybrid constructs were generated according to manufacturer’s
instructions using Gateway cloning technology (Thermo Fisher Scientific) by LR recombination
of GAL4-BD Gateway destination vectors with sequence verified Gateway entry vectors
containing the cDNAs of selected bait proteins ARMC9, TOGARAM1, and CCDC66. Fragments
thereof were generated by Gateway adapted PCR and subsequent cloning. Constructs encoding
full-length or fragments of bait proteins fused to a DNA binding domain (GAL4-BD) were used
as baits to screen human oligo-dT primed and bovine random hexamer primed retinal cDNA
libraries, prey proteins are fused to a GAL4 activation domain (GAL4-AD). The yeast strain
PJ96-4A, which carries the HIS3 (histidine), ADE2 (adenine), MEL1 (a-galactosidase) and LacZ
(B-galactosidase) reporter genes, was used as a host. Interactions were analyzed by assessment
of reporter gene (HIS3 and ADE2) activation via growth on selective media and [3-galactosidase
colorimetric filter lift assays (LacZ reporter gene). cDNA inserts of clones containing putative

interaction partners were confirmed by Sanger sequencing.
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Coimmunoprecipitation assay

HEK293T cells were plated in 6 well plates and transfected using Effectene Transfection Reagent
(Qiagen) according to the manufacturer’s protocol. Cells were subsequently incubated at 37°C
for 24 hours and then lysed in 200 L per well of ice cold IP lysis buffer and collected for
centrifugation. Lysates were centrifuged at 4 °C for 10 minutes at 11,000 rpm, supernatant was
subsequently collected and incubated in new Eppendorf tubes with HA affinity matrix beads
(Roche). Lysates were nutated for 2 hours at 4°C. The beads were spun down for 30 seconds
at 4000 rpm. Beads were washed 3 times in 1 ml of ice cold IP lysis buffer, then all liquid was
removed from the beads using a syringe with 0.5 mm needle. 50 L of NuPAGE loading dye plus
100 mM DTT was added to the samples and they were heated at 95°C for 10 minutes. Western
blotting was performed using the standard protocol for the NuPAGE system and visualized
on the Odyssey. c-myc (Roche, 11667149001; 1:500), HA (Sigma; H9658; 1:1000), and Flag
(Sigma; F3165-0.2MG; 1:1000) primary antibodies were used. The secondary antibody used
was goat anti-Mouse IRDye800 (Licor biosciences; 926-32210; 1:20,000).

Western blotting

Trypsinized and concentrated cells were lysed with NP-40 cell lysis buffer (ThermoFisher,
FNNO0021). Cellular proteins were denatured using Laemmli sample buffer supplemented with
2-Mercaptoethanol (both BioRad, #1610747, #1610710) and heated at 95°C for 10 minutes.
Cellular proteins were separated by SDS-PAGE and transferred to a PVDF membrane (Millipore
IPVH00010) using standard protocols. The following primary antibodies were used: mouse
anti-acetylated tubulin (clone 6-11-B1, Sigma-Aldrich, T6793; 1:1,000), mouse-anti beta-
actin (Sigma, A5441, 1:5000), rabbit anti-ARL13B (Proteintech, 17711-1-AP, 1:1000), rabbit
anti-INPP5E (Proteintech, 17797-1-AP, 1:1000), rabbit anti-Giantin (Abcam, ab24586, 1:5000)
or rabbit anti-ARMC9 (Atlas Antibodies cat# HPA019041, RRID: AB_1233489; 1:2000). Anti-
ARMCSI recognizes an epitope at the N-terminal portion of the protein. Western blots were
developed using anti-mouse or anti-rabbit secondary antibodies conjugated to horseradish
peroxidase (anti-rabbit-HRP, Novex A16029 1:2000, anti-mouse-HRP, Invitrogen G21040
1:2000) and chemiluminescent substrate (BioRad Clarity Max 1705062). A ChemiDoc MP

imaging system with ImageLab software was used for imaging (both BioRad).

Statistics and reproducibility

Statistical analyses were performed in Excel and Graphpad / Prism 6. Graphical data presented

as percentages include 95% confidence intervals, but otherwise represent standard deviations.
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Quantitative immunofluorescence statistics were calculated with Student’s t-test with unequal
variances. Fluorescence intensity measurements from multiple experiments were combined
for statistical analysis. Experiments were independently performed thrice. In cilia stability
assays, linear regression of ciliary loss over time yielded the slope, and we used Student’s t-test
with unequal variances for singular comparisons and a one-way ANOVA to assess significance
for multiple samples. N values are stated in the figures and either represent cilia or cells (as
indicated in each Figure). P values are stated in the figure legends, and symbols indicate the
following P values: ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P <0.0001,
*dxEk* P <0.00001.

Microtubule cold depolymerization assay

For microtubule cold depolymerization assays, cells were grown until near-confluent
on coverslips in 24-well plates, serum starved for 48 hours, then placed at either room
temperature or 4°C for 10 minutes. Cells were then fixed as described and processed for

immunofluorescence to determine ciliation percentage.

Cilia stability assay

For cilia stability assays, cells were grown until near-confluent on coverslips in 24-well plates,
serum starved for 48 hours, then media was replaced with DMEM 10% FBS at hourly time points
for 4-8 hours (9). Cells were then fixed as described and processed for immunofluorescence
to determine ciliation percentage. In a subset of these experiments, we blocked histone
deacetylase 6 (HDACS6) activity, with a specific inhibitor, tubacin (Sigma, SML0065). Cells were
either treated with 1 UM tubacin in DMSO or in DMSO only as a vehicle control.

Subject Ascertainment and Phenotypic Data

The UW351 and UW360 families were enrolled under approved human subjects research
protocols at the University of Washington (UW). The 13DG1578 family was enrolled King Faisal
Specialist Hospital and Research Centre KFSHRC RACH 2070023, 2080006 and 2121053. The
JAS-L50 family was enrolled in the 100,000 Genomes Project. All participants in the 100KGP
have provided written consent to provide access to their anonymised clinical and genomic
data for research purposes. The 100KGP research and clinical project model and its informed
consent process has been approved by the National Research Ethics Service Research Ethics

Committee for East of England — Cambridge South Research Ethics Committee. The WGL-191
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family consented under a human subjects research protocol approved by the Ethics Committee
at Tehran University of Medical Sciences.

All participants or their legal guardians provided written informed consent. All
participants have clinical findings of JBTS (intellectual impairment, hypotonia, ataxia, and/or
oculomotor apraxia) and diagnostic or supportive brain imaging findings (MTS or cerebellar
vermis hypoplasia). Clinical data were obtained by direct examination of participants, review

of medical records, and structured questionnaires.

Variant Identification

To identify the UW351 and UW360 families, samples from individuals affected by JBTS were
previously screened using a molecular inversion probes (MIPs) targeted capture (10). See
Supplemental Table 4 for the target gene list (11-35). In samples without causal variants,
exome sequencing was performed as previously described (36) using Roche Nimblegen
SeqCap EZ Human Exome Library v2.0 capture probes (36.5 Mb of coding exons) and paired-
end 50 base pair reads on an lllumina HiSeq sequencer. In accordance with the Genome
Analysis ToolKit’s (GATK) best practices, we mapped sequence reads to the human reference
genome (hgl9) using the Burrows-Wheeler Aligner (v.0.7.8), removed duplicate reads
(PicardMarkDuplicates v.1.113), and performed indel realignment (GATK IndelRealigner v.3.1)
and base-quality recalibration (GATK TableRecalibration v.3.1). We called variants using the
GATK UnifiedGenotyper and flagged with VariantFiltration to mark potential false positives that
did not pass the following filters: Heterozygous Allele Balance (ABHet) > 0.75, Quality by Depth
> 5.0, Quality (QUAL) > 50.0, Homopolymer Run (Hrun) < 4.0, and low depth (< 8x). We used
SeattleSeq for variant annotation and the Combined Annotation Dependent Depletion (CADD)
score to determine deleteriousness of identified missense variants (37). Based on CADD score
data for causal variants in other JBTS-associated genes, we used a CADD score cutoff of 15 to
define deleterious variants (26). In Supplemental Figure 3E, we used the Integrated Genome
Viewer for visualization of next-generation sequencing data (38).

For family 13DG1578, DNA from the affected individual, unaffected siblings, and parents
were genotyped using the Axiom SNP Chip platform to determine the candidate autozygome
(39, 40). WES was performed using TruSeq Exome Enrichment kit (lllumina) following the
manufacturer’s protocol. Samples were prepared asan lllumina sequencing library, and then the
sequencing libraries were enriched for the desired target using the Illumina Exome Enrichment
protocol. The captured libraries were sequenced using an lllumina HiSeq 2000 Sequencer. The

reads were mapped against UCSC hg19 by BWA. SNPs and indels were detected by SAMTOOLS.
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Homozygous rare, predicted-deleterious, and coding/splicing variants within the autozygome
of the affected individual were considered as likely causal. We defined rare variants as those
with frequency of <0.1% in publicly available variant databases (1000 Genomes, Exome Variant
Server, and gnomAD) as well as a database of 2,379 in-house ethnically matched exomes, and
defined deleterious if predicted to be pathogenic by PolyPhen, SIFT, and CADD (score > 15).

For family JAS-L50, whole genome sequencing was performed by Genomics England via
the 100,000 Genomes Project using the lllumina TruSeq DNA PCR-Free sample preparation
kit (lllumina, Inc.) and an lllumina HiSeq 2500 sequencer, generating a mean depth of 45x
10 (range from 34x to 72x) and greater than 15x for at least 95% of the reference human
genome. WGS reads were aligned to the Genome Reference Consortium human genome build
37 (GRCh37) using Isaac Genome Alignment Software (version 01.14; lllumina, Inc.). Sequence
data was analysed using bcftools scripts designed to search vcf.gz files and individual BAM files
were viewed using IGV.

For family WGL-1914, genomic DNA was extracted from whole blood. Human whole
exome enrichment was performed using Twist Human Core Exome Plus Kit and the library was
sequenced on an lllumina NovaSeq platform. Data analysis was performed using a standard
clinical pipeline, and the homozygous TOGARAM1 variant was the only likely pathogenic
variant identified that was consistent with the phenotype. The variant was validated by Sanger

sequencing and confirmed heterozygous in parents.

Array CGH

To assess copy-number variation, we performed array comparative genomic hybridization
using a custom 8x60K oligonucleotide array (Agilent Technologies) (41). For gene list see
supplemental table 5. Probe spacing was a median of 11 bp in the exons, and a median of
315 bp throughout the intronic regions and 100 kb on either side of each gene. Data were
generated on an Agilent Technologies DNA Microarray Scanner with Surescan High-Resolution
Technology using Agilent Scan Control software and were processed and analyzed using
Agilent Feature Extraction and Agilent Cytogenomics software. To determine the effect of the
deletion in UW360-3, we extracted RNA (BioRad, Aurum Total RNA kit, 7326820) from the
associated cell line and converted it to cDNA (Biorad, iScript Reverse Transcription Supermix,
1708840) for downstream Sanger sequencing. To determine segregation of this deletion in
family UW360 and to determine the precise breakpoints, we amplified the deletion-flanking

region from genomic DNA and Sanger sequenced.
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Dysfunction of the ciliary ARMC9/TOGARAM1 protein module causes Joubert syndrome

<Supplemental Figure 1 Validation of ARMC9 interactome. (A-l) Reciprocal co-IPs of 3xFlag-ARMC9,
3xFlag-TOGARAM1, 3xFlag-CCDC66, 3xFlag-CSPP1, and 3xFlag-CEP104 with 3xHA-ARMCY, 3xHA-
TOGARAM1, 3xHA-CCDC66, 3xHA-CSPP1, and 3xHA-CEP104. 3xFlag-mRFP was used as a negative control
in each experiment. Pairs of Flag and HA tagged constructs were co-transfected into HEK293T cells,
which were then lysed and subjected to pull down with either Flag or HA beads. Western blots of the
pulldowns were probed with Flag and HA antibodies to visualize the interaction partners. The experiments
were performed in triplicate. The reciprocal experiment of (G), the Flag co-IP, is shown in Figure 1F. (J-K)
Single transfections of PalmMyr-CFP-ARMC9 (green in (J)) and mRFP-TOGARAML1 (red in (K)) shows the
localization of each tagged proteins in the absence of the other. (L) Co-expression of mRFP-TOGARAM1
and PalmMyr-CFP-ARMC9 shows localization consistent with a subset of cytoplasmic microtubules. Scale
bar indicates 20 pum.
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<Supplemental Figure 2 In silico modeling of the TOG2 variants. (A-B) Ribbon model (two views) of
the wild-type TOGARAM1 TOG2 domain generated using HOPE. Alpha-helices are blue, beta-strand is
red, turns are green, 3/10 helix is yellow, and random coil is cyan. (B) view is the inversion of wild-type
TOGARAM1 TOG2 domain structure of as compared to (A) view (C) p. Arg368Trp missense variant in the
TOG2 domain in ribbon-presentation generated using HOPE. (D) Close up of the side chain with wild-type
arginine (green) and variant tryptophan (red). (E) p. Ala371Asp missense variant in the TOG2 domain. (F)
Close up of the side chain with wild-type alanine (green) and variant aspartic acid (red). (G) p.Leu375Pro
missense variant modeled in the TOG2 domain. (H) Close up of the side chain of both wild-type leucine
(green) and variant proline (red). For (C, E, F) the TOG2 is shown in grey, the side chain of the mutated
residue is shown in magenta. A magenta arrow indicates the location of the variant.
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del14q21.2:
9.45472062-45484253
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Supplemental Figure 3 Segregation and Sanger confirmation of TOGARAM1 variants. (A) In UW351,
Leu375Pro is inherited from father and Arg1311Cys is inherited from mother. (B) In UW360, GIn362* is
inherited from mother and a multi-exon deletion is inherited from father. See Figure 2C for validation and
paternal segregation of the deletion. (C) In 13DG1578, both parents are heterozygous for Arg368Trp and
the proband is homozygous at this position. (D) In WGL-1914, both parents are heterozygous for Ser1083*
and the proband is homozygous at this position. (E) In JAS-L50, Ala371Asp is inherited from the mother
and the father was not available. Visualization of the next-generation sequencing data for the proband
in the Integrated Genome Viewer confirms that the proband carries both pathogenic variants. Grey bars
indicate individual reads with pathogenic variants in green and red; nucleotides at the bottom are the
reference allele. Variants are indicated with arrows on the electropherograms.
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Supplemental Figure 4 Impact of TOGARAM1 variants on localization, transition zone, and ARMC9
interaction. (A-B) Wild-type and variant mRFP-tagged TOGARAM proteins co-localize with polyglutamylated
(A) and acetylated tubulin (B) in transfected hTERT-RPE1 TOGARAM1 mutant cells. GT335 antibody (green
in (A)) marks the glutamylated portion of the ciliary axoneme and acetylated alpha-tubulin antibody
(green in (B)) marks the entire ciliary axoneme. All images are representative of 3 independent imaging
experiments. Scale bars are 2um. (C) Images of cilia from control and engineered TOGARAM1 mutant
hTERT-RPE1 cell lines marked with ARL13B antibody (green, ciliary membrane) and RPGRIP1L antibody
(white, transition zone). Scale bars are 2um. (D) PalmMyr assay with PalmMyr-CFP-ARMC9 and mRFP-
TOGARAML1 expressed in control hTERT-RPE1 cells. Single transfections of mRFP-TOGARAM1 wild-type
and variants show characteristic localization in the absence of PalmMyr-CFP-ARMC9 (mRFP (red), ARL13B
(white), RPGRIP1L (yellow), and DAPI (blue)). Scale bar is 10um. (E) Co-expression of mRFP-TOGARAM1
and PalmMyr-CFP-ARMC9 (mRFP (red), ARL13B (white), CFP (green), and DAPI (blue)). Wild-type and
Arg1311Cys TOGARAML1 colocalize with PalmMyr-CFP-ARMCS, indicating an interaction, while Arg368Trp
and Leu375Pro show little to no specific colocalization. Scale bar is 20um.
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52 TOGARAM1

NM_001308120.2
20 exons

1773 aa

94-312aa 352-506 aa 1255-1478 aa 1536-1773 aa
B hTERT-RPE1 mut lines
NM 001308120.2 allele 1 allele 2
TOGARAM1 mut 1 c.[2_269del;270dup] c.[2_269inv]
= R c.[-33_314del] c.[2_269inv; 269_270insTC]

Supplemental Figure 5 CRISPR/Cas9 edited TOGARAM1 hTERT-RPE1 mutant lines. (A) Schematic
representation of the TOG array aligned with the genomic region encoding TOGARAM1. The target sites
of gRNA 1 and gRNA 2 are indicated by arrows in exon 1. They are predicted to cut at cDNA position 2 and
269 respectively. This portion of exon 1 encodes the region of the protein immediately before the TOG1
domain. (B) TOGARAM1 mutant 1 harbors a 267 base pair deletion with a single base pair duplication in
one allele and a 267 base pair inversion in the other allele, both occurring in exon 1: NM_015091.2:c.
[2_269del;270dup]; [2_269inv]. TOGARAM1 mutant line 2 harbors a 347 base pair deletion in one allele
and a 267 base pair inversion with 2 base pair insertion in the other allele, both occurring in exon 1:
NM_015091.2:c.[-33_314del]; [2_269inv; 269_270insTC].
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Supplemental Figure 6 Togaraml phylogeny, synteny and zebrafish FO phenotypes. (A) Phylogenetic
analysis of the C-terminal part (red box) of TOGARAM:s in different vertebrate species revealed a clear
phylogenetic separation of TOGARAM1 and TOGARAM_2. The following species were used for phylogeny:
Anolis carolinensis (aca), Astyanax mexicanus (ame), Amphiprion ocellaris (aoc), Dasypus novemcinctus
(dno), Danio rerio (dre), Gallus gallus (gga), Homo sapiens (hsa), Latimeria chalumnae (Ich), Lepisosteus
oculatus (loc), Monodelphis domestica (mdo), Mus musculus (mmu), Ornithorhynchus anatinus (oan),
Pelodiscus sinensis (psi), Pogona vitticeps (pvi), Taeniopygia guttata (tgu), Takifugu rubripes (tru), Xenopus
tropicalis (xtr). Dotted lines in the domain representation represent sequence strings so far not covered in
the corresponding genome assemblies. In the phylogenetic tree mammals are given in black, amphibians,
birds, turtles and reptiles in dark gray and teleosts in light gray. The scale bars represent the distance where
20% of the amino acids are changed. (B) Synteny analysis confirms orthology between human and zebrafish
TOGARAM1. The human TOGARAM1 gene is located on chromosome 14. Corresponding chromosomal
regions to the human chromosome 14 are located on zebrafish chromosomes 17 and 20. In contrast to
the zebrafish chromosome 17 where a TOGARAM1 gene can be readily identified, zebrafish chromosome
20 lacks a corresponding ortholog, suggesting that in the case of TOGARAM1 no zebrafish duplicate of
this gene has been retained. (C) Synteny analysis of human TOGARAM2 shows no corresponding gene in
zebrafish. Interestingly, no ortholog of human TOGARAM2 (located on human chromosome 2) is present
in the zebrafish genomic region where the genes flanking TOGARAM?2 are located. (D) Zebrafish togaram1
exons and corresponding protein with domains. Red dashed lines represent unknown intron size. Location
of sgRNAs for genome editing are indicated: two different sgRNAs per target region were co-injected
to generate larger deletions. (E) Phenotype of togaram1 FO mosaic zebrafish: Larvae have kidney cysts
(arrow) and body curvature. Adults develop scoliosis. Scale bars are 500um for larvae and 5mm for adults.
(F) Alleles generated with CRISPR/Cas9 for armc9 and togaram1.
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<Supplemental Figure 7 Phenotypes of togaram1:"** in-frame mutant zebrafish. (A-B) togaram1-/- (-21)
larvae have kidney cysts and curved body shape compared to wild-type (A). Scale bars are 500um. (C-D)
Wild-type and (D) Acetylated tubulin (green) and Arl13b (red) immunofluorescence of 3 dpf togaram1-/-
(-21) zebrafish nose pits shows decreased numbers of both motile and primary cilia compared to wild-type
(C). (E-F) Acetylated tubulin (green) and Arl13b (red) immunofluorescence of hindbrain ventricles show a
clear decrease in cilia number and acetylation in togaram1-/- (-21) compared to wild-type (E). Scale bars
for (C-F) are 10um. (G) Quantification of acetylated tubulin of cilia in hindbrain ventricles, p<0.001 using
Student’s t-test. Zebrafish controls are wt, +/+ or +/- siblings of -/-.
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Supplemental Figure 8 Ciliary INPP5E levels are maintained across ARMCY patient fibroblast lines. (A)
Normalized ciliary ARL13B fluorescence intensity in control and ARMC9 patient fibroblasts. >200 cilia
were assessed per line for measurements. (control = 935 cilia, UW132-4 = 472 cilia, UW132-3 = 337 cilia,
UW116-3=477 cilia, and UW349-3= 208 cilia). p<0.0001 between control and ARMC9 patient cilia UW132-
4, UW132-3, UW116-3, by one-way ANOVA and Dunnett’s multiple comparison test. Results were not
significant for control versus UW349-3 by one-way ANOVA. (B) Normalized ciliary INPP5SE fluorescence
intensity in control and ARMC9 patient fibroblasts. >99 cilia were assessed per line for measurements.
(control = 471 cilia, UW132-4 = 248 cilia, UW132-3 = 100 cilia, UW116-3= 180 cilia, and UW349-3=
194 cilia). Results were not significant as assessed by one-way ANOVA. Dunett’s multiple comparison
test yielded the following p values: control versus UW132-4 p= 0.4373, UW132-3 p=0.1701, UW116-3
p=0.7163, UW349-3 p=0.2038. (C) ARL13B intensity dataset including outlier data points that are not
included in the other graphs, but are included in the statistical analyses. P-value symbols: ns p>0.05,
**%%<0.0001. Bars represent the mean.
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Supplemental Figure 9 SMO ciliary translocation is impaired in TOGARAM1 mutant cell lines. (A) Hh
assay schematic. (B) Intensity values of SMO localization in the ciliary compartment between DMSO and
100 nM SAG treated control and TOGARAM1 mutant cell lines. >150 cilia were assessed for each condition
and pooled from 3 independent experiments (For the control line, N=300 for DMSO and N=248 for SAG
treatment, for TOGARAM1 mutl N=210 for DMSO and N=165 for SAG treatment, and for TOGARAM1
mut2 N=157 for DMSO and N=162 for SAG treatment). Results were statistically significant as assessed by
the Kruskal-Wallis test, multiple comparisons were corrected for using Dunn’s test. p<0.0001 for DMSO
versus 100 nM SAG treatment in all lines. (C) The median ratios of SMO induction levels in response to SAG
treatment across experiments. The central bar represents the mean of 3 independent experiments, the
error bars display the standard deviation. Results were statistically assessed by the Kruskal-Wallis test with
Dunn’s test for multiple testing correction. p=0.02 for induction of TOGARAM1 mut 1 line and TOGARAM1
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lines was observed. (D) Representative immunofluorescence images of SMO (green) localization in DMSO
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(transition zone). Scale bar is 2um.
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Supplemental Figure 10 Aberrant post-translational modifications across ARMCY patient fibroblast lines.
(A) Normalized acetylated alpha-tubulin fluorescence intensity in control and ARMC9 patient fibroblasts.
>80 cilia were assessed per line for measurements. (control = 848 cilia, UW132-4 = 397 cilia, UW132-
3 = 258 cilia, UW116-3= 399 cilia, and UW349-3= 84 cilia). p<0.0001 between control and patient cilia
using one-way ANOVA and Dunnett’s multiple comparison test. (B) Normalized polyglutamylated tubulin
fluorescence intensity in control and ARMC9 patient fibroblasts. >150 cilia were assessed per line for
measurements. (control = 557 cilia, UW132-4 = 262 cilia, UW132-3 = 179 cilia, UW116-3= 253 cilia, and
UW349-3= 194 cilia). p<0.0001 between control and patient cilia using one-way ANOVA and Dunnett’s
multiple comparison test. (C) Full graphs of the dot plots shown in Figure 7E-F showing all data points.
P-value symbols: **p<0.01, ****, p< 0.0001. Bars represent the mean.
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Chapter 4

ABSTRACT

Mutations in over a hundred genes have been reported to cause X-linked recessive intellectual
disability (ID) mainly in males. In contrast, the number of identified X-linked genes in which de
novo mutations specifically cause ID in females is limited. Here, we report seventeen females
with de novo loss of function mutations in USP9X, encoding a highly conserved deubiquitinating
enzyme. The females in our study have a specific phenotype that includes ID/developmental
delay (DD), characteristic facial features, short stature and distinct congenital malformations
comprising choanal atresia, anal abnormalities, post-axial polydactyly, heart defects,
hypomastia, cleft palate/bifid uvula, progressive scoliosis and structural brain abnormalities.
Four females from our cohort were identified by targeted genetic testing as their phenotype
was suggestive for USP9X mutations. In several females pigment changes along Blaschko
lines and body asymmetry were observed which is likely related to differential (escape from)
X-inactivation between tissues. Expression studies on both mRNA and protein level in affected
female-derived fibroblasts showed significant reduction of USP9X level, confirming the loss of
function effect of the identified mutations. Given that some features of affected females are
also reported in known ciliopathy syndromes, we examined the role of USP9X in the primary
cilium and found that endogenous USP9X localizes along the length of the ciliary axoneme,
indicating that its loss of function could indeed disrupt cilium-regulated processes. Absence of
dysregulated ciliary parameters in affected female-derived fibroblasts however points towards

spatiotemporal specificity of ciliary USP9X (dys-)function.
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syndrome with developmental delay and distinct congenital malformations

REPORT

X-linked intellectual disability (ID) with presumed recessive inheritance pattern is shown to
be caused by mutations in over a hundred genes %2 Most families display a clear X-linked
segregation pattern, in which males are affected while females are unaffected or mildly
affected carriers.>® In contrast, the number of identified X-linked genes in which de novo
mutations cause ID specifically in females is limited.

Using whole exome sequencing (WES), SNP array, CGH array and CytoScan HD array
in a diagnostic setting as described before®!!, we identified thirteen de novo loss of function
mutations in USP9X [Ubiquitin-specific protease 9, MIM 300072, RefSeq: NM_001039590.2] in
females with ID/developmental delay (DD) and multiple congenital malformations (Figure 1A,
B; Table S1). Female 7 was previously reported as part of a large study sequencing individuals
with ID, congenital anomalies and/or autism with a targeted gene panel.® Written consent
was obtained from the legal guardians for all females and the study was given IRB approval.
We recognized a similar pattern of facial characteristics, congenital malformations and brain
abnormalities in these females. Four additional affected females were identified as their
phenotype was suggestive for USP9X mutations. Subsequently, de novo protein-truncating
mutations and intragenic USP9X deletions were duly demonstrated by Sanger sequencing,
WES or CytoScan HD array (Figure 1A, B, Table S1), illustrating the clinical recognizability of this
new syndrome. All females (age ranging 2 years 7 months — 23 years) with de novo mutations
shared a distinct phenotype. They showed mild to moderate ID with motor and language
delay, short stature, hearing loss and distinct congenital malformations, notably choanal
atresia, asymmetric hypomastia, cleft palate/bifid uvula, heart defects, progressive scoliosis,
post-axial polydactyly and anal abnormalities (Table 1, Table S2, supplemental case reports).
Shared facial characteristics included prominent forehead, low nasal bridge, prominent nose
with flared alae nasi, thin upper lip, smooth and long philtrum and low set, posteriorly rotated
and dysplastic ears (Figure 2A). In addition to the USP9X variant, female 5 also harbored
a de novo variant in PTPN11 [MIM 176876], which has previously been reported to cause
Noonan syndrome [MIM 163950].1? Though all features that were observed in this female
could potentially be explained by the USP9X variant itself (Table S2), a contribution of aberrant
PTPN11 to phenotypic features such as intellectual disability, short stature and heart defect
in this female is likely. Neuroimaging reports were available for thirteen out of seventeen
females (Table S2). Detailed evaluation of brain images of five of these females (female 1,2,3,
7 and 16) showed asymmetric hypoplasia of the cerebellar vermis and hemisphere with a
retrocerebellar cyst, short and thin corpus callosum, thin brainstem and mildly abnormal
frontal gyration pattern (Figure 3). Notably, we observed thyroid hormone abnormalities in six

of the females, requiring medical treatment in three of them.
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Figure 1: Identified de novo USP9X loss of function mutations (A) Detailed view of the USP9X
(NM_001039590.2) region and the reported deletions. (B) Overview of USP9X including UBL- and catalytic
domain and the location of reported mutations according to their relative position at the protein level. The
reported amino acid substitution is located within the catalytic domain. (C) RNA was extracted from both
control and affected female (c.3028-2A>G) fibroblasts cultured under normal conditions or in the presence
of cycloheximide (CHX) to inhibit NMD. After cDNA synthesis and PCR, agarose gel analysis showed
two different product sizes generated from the ¢.3028-2A>G transcript but only one from the control
fibroblast transcript. Excision and sequencing of the additional band revealed that the aberrant USP9X
transcript lacked exon 21. The level of the aberrant transcript was increased fourfold when fibroblasts
were treated with cycloheximide confirming that the aberrant transcript was indeed subjected to NMD.
(D) USP9X expression is depleted in female cell lines harbouring loss of function alleles. Relative qPCR
analysis of USP9X mRNA and relative quantification of immunoblot analysis of USP9X protein derived from
female and male control cell lines and from affected female cell lines. n=the number of individual cell lines
analysed. Each cell line analysed in quadruplicate. Error bars represent standard deviations. *significantly
different to female controls, p<0.05 by Student’s t-test.
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The X-linked USP9X encodes a structurally and functionally highly conserved
deubiquitinating enzyme, containing a UBL (ubiquitin-like) and a catalytic ubiquitin specific
protease (USP) domain.®** It is known to play an important role in neural development of
both humans and mice and is required for fetal development?®*8, USP9X is highly expressed
during embryogenesis and expression declines as cell fates become restricted.!®* The USP9X
orthologue in Drosophila, fat facets (faf), has been shown to be important in cell polarity and
cell fate of the developing eye in Drosophila.’® A range of signaling proteins involved in different
neurodevelopmental pathways including Notch, Wnt, TGF-3 and mTOR have been shown to
interact with USP9X.%# 2027 ySP9X also has been described to act as both an oncogene and
tumor suppressor gene and is frequently found to be dysregulated in human cancer.* 2% 2°
Two of the affected females developed malignancy at a young age (22 and 8 years). Both acute
lymphoblastic leukemia and osteosarcoma were treated successfully and have not reoccurred.
To determine the risk and nature of particular malignancies in this new syndrome, further
studies are required.

We observed pigment abnormalities along Blaschko lines and facial asymmetry,
asymmetric abnormalities of the brain and breast and asymmetric length of the legs (Figure
2A, 2D, 3), all suggestive for a pattern of post-zygotic mosaicism or differential X-inactivation
(XCI) between tissues (functional mosaicism).3° USP9X is one of the genes shown to escape XCl.
3L32However, it is known that most of the genes that escape from XCl are not fully expressed
from the inactivated X chromosome and rather show a partial escape.®*3> Moreover, there is
accumulating evidence for tissue-specific and developmental stage dependent differences in
XCl and variability of escape of USP9X.3% 3639 |n the partial escaping genes, non-random XCl or
skewing, as observed often in female carriers of an X-linked mutation, will only partially restore
a normal phenotype.** Consistent with this hypothesis, XCl was found to be skewed >90% in
fibroblasts in three of the five of the tested females, but skewing was not related to disease
severity (Table S3). We note that a similar skewing pattern of XCl was observed recently in
females with de novo mutations in DDX3X [MIM 300160], another X-chromosomal gene that
has been suggested to escape XCl and in which de novo mutations cause ID specifically in

females.*®
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Female 1 Female2 Female3 Female4 Female5 Female8 Female9

Female 12 Female 15 Female 17

Female 3 Female 11 Female 12 Female 15 Female 17 Female 3

Figure 2: Clinical characteristics of females with de novo USP9X loss of function mutations (A) Frontal
and lateral photographs of females with de novo mutations in USP9X. Shared facial characteristics include
facial asymmetry, prominent forehead, bitemporal narrowing, short palpebral fissures, low nasal bridge,
prominent nose with flared alae nasi from adolescence age, thin upper lip, smooth and long philtrum,
hanging full cheeks in early childhood and low set, posteriorly rotated and dysplastic ears with attached
lobule. (B) Photographs of the hands of seven affected females. Shared characteristics include ulnar
deviation of 5" digit, tapered fingers, short 4" and 5" metacarpals and post-axial polydactyly (Simian
crease present but not shown). (C) Photographs of the feet of five affected females. Shared characteristics
include hallux valgus and sandal gap (pes cavus present but not shown). (D) Observed Blaschko lines of
female 3, indicative for 11 of the affected females, suggestive for different X-inactivation pattern between
tissues (functional mosaicism).

In one of the affected females a predicted splice site mutation was identified. To
evaluate if this mutation indeed results in an aberrant transcript, we synthesized cDNA from
RNA extracted from primary skin fibroblasts of both the affected female and a control. We
amplified a fragment of 576 basepairs covering exon 20 to exon 22 by PCR. Electrophoretic
separation showed two products of 576 and 455 basepairs in the sample from the affected
female, and a single 576 basepairs product in the control. Sequencing of the smaller product
revealed that this cDNA transcript from the affected female indeed lacked exon 21, confirming
the truncating effect of the splice site mutation. Importantly, the level of the transcript was
increased four-fold when fibroblasts were treated with cycloheximide, strongly suggesting that
the aberrant transcript was subjected to nonsense mediated mRNA decay and as such leads to
loss of function of this USP9X allele (Figure 1C). To study the effect of the heterozygous loss-
of-function USPIX alleles on their mRNA expression and protein levels, we performed both
gRT-PCR and immunoblot blot analysis of fibroblasts (n=4) and lymphoblastoid cell lines (LCLs;
n=1) derived from affected females and both female and male controls (Figure 1D and Figure
S1). We found that expression of USP9X in affected females was reduced compared to control
females in both fibroblasts and LCLs at both mRNA expression and protein levels. Although

some cellular variability was evident, on average this decrease was significant (p<0.05 by

144



De novo loss of function mutations in USP9X cause a female specific recognizable
syndrome with developmental delay and distinct congenital malformations

Student’s t-test) (Figure 1D and Figure S1). There was no correlation between skewing of XCI
and expression of mMRNA and protein level. Whether the cells in affected tissue have benefit
from the skewed XCI remains uncertain. The escape from XCl was supported by the fact that
the average expression of USP9X mRNA in both control male fibroblasts and control male LCLs
was ~50% of that in female controls. After quantification of protein levels in male control LCLs,
similar levels were observed. The USP9X protein level in male control fibroblasts was increased
to ~80% of that in female controls, but was still significantly less than the protein level in
female controls. Intriguingly these data thus reveal that affected females displayed reduced
levels of USP9X compared to female controls, but comparable levels to that in healthy control
males. It will be important to expose whether these trends extend more to other tissues,
where the level of escape from XCl may not comparable. Furthermore, characterization of
different expression patterns between sexes (described for USP9X in brain thus far*') and/or
that of protein levels of USP9X substrates, will be important to ascertain as well.

In contrast to the severely disruptive de novo mutations in females, three milder
mutations in USP9X have been reported in males without multiple congenital malformations.
The mutations were transmitted by phenotypically normal females and resulted in ID,
hypotonia, and behavioral problems in the males.** An additional 2 missense mutations were
identified after resequencing of USP9X in a cohort of 284 males with epilepsy.*® For 2 de novo
mutations reported in large autism cohorts, no specific gender information was described.*
The phenotype of the males differs notably from the observed phenotype in the affected
females described here. They had ID and short stature, but lacked the multiple congenital
malformations observed in affected females. Besides four missense mutations, one frameshift
mutation has been reported in the males. This single frameshift mutation occurred within
the last 50 nucleotides upstream of the last 3’-exon-exon junction, presumably escaping
nonsense-mediated mRNA decay (NMD) and therefore results in a truncated protein lacking
the last exon.*>“¢ Since no truncating variants have been described in healthy controls in the
ExAC database and no mutations causing loss of function of USP9X have been reported in
males, we suspect that loss of function mutations could be lethal in males. This hypothesis
is further supported by the fact that the absence of Usp9X in male mice is embryonically
lethal.” In contrast, all but one of the affected females we report here have protein truncating
mutations and deletions. In one female, we identified a de novo missense mutation, located
in the catalytic domain of the protein. Given the fact that this female was phenotypically
comparable with the other females, it is likely that this specific missense mutation leads to
loss of function of the protein. We hypothesize that in addition to complete loss of function
mutations, such as protein truncating mutations and deletions, also a small subset of specific

missense mutations, will lead to disease in females.
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<Figure 3: Representative MRI images from females (female 1, 2,3 and 7 and 16) with de novo USP9X
loss of function mutations. Female 1 (2 years): MRI T2 axial (A, B), and sagittal (C), T1 axial (D) sections
show brachycephaly, mild enlargement of the lateral and 3 ventricles; mild hypoplasia of cerebellar
vermis and left cerebellar hemisphere; enlarged IV ventricle and cisterna magna with small retrocerebellar
cyst; thin brain stem and mesencephalon; relatively small frontal lobes with somewhat simplified gyration;
short hypoplastic corpus callosum (both rostrum and splenium). Female 2 (1.5 years): MRI T2 axial (E,
F), T1 sagittal (G) and coronal (H) sections show enlargement of the lateral ventricles, mild hypoplasia of
cerebellar vermis and left cerebellar hemisphere; enlarged cistern magna; thin corpus callosum, pons,
mesencephalon and brain stem; broader and underdeveloped frontal gyri. Female 3 (11 years): MRI T2
axial (1, J), T1 sagittal (K) and axial (L) sections show asymmetric enlargement of the lateral ventricles;
simplified convolutions of the frontal lobes gyri; hypoplasia of cerebellar vermis and left hemisphere; large
cisterna magna and retrocerebellar cyst; thin corpus callosum with hypoplasia of the rostrum. Female 7:
MRI T2 axial (M), T1 axial (N), T1 sagittal (O), coronal FLAIR (P) sections show macrocephaly; enlargement
of the lateral and 3" ventricles with an interhemispheric cyst; dysplastic cerebellar hemispheres; dysplasia
of the cerebellar vermis which is uplifted, with a high position of the tentorium and a large posterior
fossa, typical of Dandy-Walker malformation; thin and hypoplastic corpus callosum. Female 16 (2 years):
MRI T2 axial (Q, R, S) and T1 coronal (T) sections show enlarged lateral ventricles; irregular gyri of the
cerebral cortex with irregular depth of the sulci in frontal and perisylvian areas; small heterotopic nodule
of grey matter (arrow) and thin and hypoplastic corpus callosum (both rostrum and splenium); hypoplasia
of the anterior cerebellar vermis and left cerebellar hemisphere; enlarged cisterna magna and arachnoidal
cyst surrounding the cerebellum, especially at the left side; mild hypoplasia of pons and brain stem. This
female was identified with Sanger sequencing based on these brain abnormalities in combination with ID,
dysmorphic features and congenital abnormalities.

Affected females presented with symptoms that overlap with CHARGE syndrome [MIM
214800] (CHD7 [MIM 608892] tested in 4 of the females) and with the clinical spectrum
of some known ciliopathy syndromes, such as Bardet-Biedl, Meckel-Gruber and Joubert
syndrome.”® Therefore, we investigated whether heterozygous protein truncating mutations
result in the disruption of ciliary structure, formation or trafficking in fibroblasts of four of the
affected females we had available (female 1,3,14 and 15). First, we determined subcellular
localization of endogenous USP9X in both controls and affected female derived fibroblasts
under serum starvation to induce ciliogenesis, as well as in serum rich conditions. %0 USP9X
showed diffuse cytoplasmic staining with areas enriched with puncta consistent with its
described association with protein and vesicle trafficking.>* Importantly, upon ciliogenesis of
the fibroblasts, USP9X was indeed found to localize to the cilium. This ciliary localization was
observed along the length of the ciliary axoneme of most fibroblasts, and comparable in cells
from affected females and from age and gender matched controls (Figure 4). This localization
was significantly decreased with siRNA knock down of USP9X indicating specificity of the signal
(Figure S2). We were unable to observe any significant differences in ciliogenesis, ciliary length
or ciliary trafficking between fibroblasts from affected females when compared to controls
(Figure S3), and siRNA knock down of USP9X did not impair ciliogenesis in fibroblasts. This
suggests that USP9X dosage is not critical to the generation of primary cilia in these fibroblasts,
despite localization of USP9X in their cilia. It is therefore more likely, that USP9X-regulated

signal transduction pathways mediated by the primary cilium are more subtly disturbed, and/
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or that this disturbance is spatiotemporally restricted to the tissues affected in this specific
phenotype, possibly due to tissue-specific and developmental stage dependent differences in
XCl and variability of escape of USP9X. Future studies utilizing dedicated cell-based or animal

models will be necessary to evaluate these mechanisms.

Female 1 Female 3 Female 14 Female 15
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Figure 4: USP9X localizes to the primary cilium. To induce ciliogenesis, control and affected female
fibroblasts, matched for gender and age, were starved for 48 hours prior to immunofluorescence labeling.
Endogenous USP9X is detected along the length of the axoneme of primary cilia, using an antibody against
its N-terminus (N-Term, shown in green) as compared to the ciliary markers RPGRIP1L (pink, denoting the
ciliary transition zone at the base of the cilium), and acetylated alpha-tubulin (red, marking the ciliary
axoneme). DAPI (blue) stains the nuclei; scale bars represent 10 um. Ciliated fibroblasts derived from
affected females are shown here, USP9X localization in control fibroblasts is shown in Figure S2.

In conclusion, this study defines a recognizable X-linked ID/DD syndrome with associated
multiple congenital malformations and brain abnormalities specific to females, caused by
de novo loss of function mutations in USP9X, a gene known to escape X-inactivation. The
phenotypic characteristics overlap with ciliopathy conditions and USP9X localization along
the length of the ciliary axoneme of fibroblasts indicates a role in de-ubiquitination of ciliary

proteins, which could contribute to the disease pathogenesis of this specific syndrome.
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Table 1: Clinical features of females with de novo USP9X loss of function mutations

Percentage Number
Development
Intellectual disability / developmental delay 100% 17/17
Growth
Short stature 53% 9/17
Congenital abnormalities
Eye abnormality 59% 10/17
Choanal atresia 35% 6/17
Cleft palate/bifid uvula 29% 5/17
Dental abnormality 71% 12/17
Asymmetric hypomastia 29% 5/17
Heart defect 44% 7/16
Urogenital abnormality 29% 5/17
Sacral dimple 29% 5/17
Scoliosis 65% 11/17
Hip dysplasia 47% 8/17
Post-axial polydactyly 53% 9/17
Abdominal wall abnormality 12% 2/17
Anal atresia 53% 9/17
Neurology
Seizures 24% 4/17
Hypotonia 47% 8/17
Brain abnormalities
Dandy walker malformation (variant) 38% 5/13
Hypoplastic corpus callosum 62% 8/13
(Asymmetric) cerebellar hypoplasia 55% 6/11
(Asymmetric) enlarged ventricles 73% 8/11
Thin brain stem 30% 3/10
Abnormal gyration pattern frontal lobe 50% 5/10
Other
Hearing loss 65% 11/17
(Blaschko) pigment abnormality 65% 11/17
Hypertrichosis 29% 5/17
Leg length discrepancy 41% 7/17
Malignancy 12% 2/17
Recurrent respiratory tract infections 53% 9/17
Thyroid hormone abnormality 35% 6/17
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Supplemental Note: Case Reports

Female 1 is the second child of nonconsanguineous parents of Swedish and Thai ancestry.
She has mild intellectual disability, short stature, hypotonia, PDA, aortic insufficiency, inguinal
herniation, diaphragmatic herniation, a double collecting system of the kidney, bilateral hip
dislocation, patellar dislocation, thoracolumbar scoliosis, abnormal teeth eruption, stenosis
of lacrimary ducts and abnormal middle ears. She has hearing and visual impairment. She has
dysmorphic features including; transverse palmar creases, a square face, brachycephaly (large
fontanel in infancy), high palate, almond shaped eyes, long philtrum, thin upper lip, low set
and posteriorly rotated ears, depressed nasal root and depressed nasal tip. Brain MRI showed
brachycephaly, mild hypoplasia of cerebellar vermis and left hemisphere, small retrocerebellar
cyst, ventricular enlargement, thin brain stem, relatively small frontal lobes with enlarged
gyri and less deep sulci, short hypoplastic corpus callosum (both rostrum and splenium),
malrotated hippocampi and thin commisura anterior. CT scan of the temporal bones showed
dense middle ears, suspected stapes malformation and narrow auditory canals. She suffers
from frequent upper respiratory infections and pneumonias. At 18 months she developed
seizures. She has a percutaneous endoscopic gastrostomy (PEG) and she requires intermittent
home oxygen therapy due to chronic respiratory insufficiency. At age 7 she was diagnosed with
B- cell precursor acute lymphoblastic leukemia (BCP ALL).

Female 2 is the second of two children of nonconsanguineous parents of Dutch ancestry.
Family history was non-contributory. She was born after 41+3 weeks of gestation with a birth
weight of 3530 gram (0 SD), APGAR scores were 7 and 3 after respectively 1 and 5 minutes.
Prenatal ultrasound showed bilateral hydronephrosis, postaxial polydactyly of the left hand

and ventriculomegaly. Due to severe hypotonia, ventilatory support was necessary. Besides

156



De novo loss of function mutations in USP9X cause a female specific recognizable
syndrome with developmental delay and distinct congenital malformations

post-axial polydactyly other congenital abnormalities, including bilateral choanal atresia,
ventral position of the anus, atrial septum defect type Il, and congenital vertical talus were
diagnosed. Renal ultrasound showed no hydronephrosis, however nephrocalcinosis was
evident and unilateral double renal collecting system was suspected. Auditory Brainstem
Response Audiometry showed no abnormalities, however conductive hearing loss was
measured due to recurrent middle ear infections. At the age of 2 years, there was no speech
development and at currently age 3 years she learns to use sign language and she is able to
speak a few single words. Hyperlaxity and hypotonia hampered her motor development; she
started walking at the age of 2 years and 8 months. Physical examination at the age of 2 years
and 11 months showed a height of 86 cm (-3 SD), a weight of 11.4 kg (-1.1 SD) and a head
circumference of +1 SD. Facial dysmorphism, including a widows peak, posteriorly rotated,
dysplastic ears, hypertelorism and a broad nasal bridge were noted. Hypoplastic nipple and
a sacral dimple were present. She had hypertrichosis of both arms. Brain MRI showed mild
hypoplasia of cerebellar vermis and left hemisphere, enlarged cistern magna, ventricular
enlargement, thin pons and brain stem, broader and underdeveloped frontal gyri. Previous
investigations consisting of a CytoSNP 12v2.1 array (lllumina), Asperchip BBS analysis, and
Sanger sequencing of SETBP1, OFD1, CHD7, SALL1, BBS6, POR were normal. Blood analysis
showed an increased TSH with normal FT4 values.

Female 3 is the second of five children of non-consanguineous parents. There was no
family history of developmental delay. She was born after 41 weeks of gestation with a birth
weight of 3500 gram ( -0.5 SD). Delivery was uncomplicated. Physical examination after birth
revealed several abnormalities: large frontal fontanel, post-axial polydactyly, single choanal
atresia and a ventral position of the anus. With neonatal heel prick screening, no abnormalities
were measured.

Nevertheless, at the age of 1 year hypothyroidism was detected. Both motor and
language development were delayed. She walked without support at the age of 27 months
and she spoke her first words at the age of 25 months. Psychological assessment when she was
teenager showed mild intellectual disability. As child, surgery was required to correct strabism.
She had recurrent middle ear infections. Puberty development was normal. However, she
had remarkable asymmetric growth of her breasts. She needed dental braces to position
her teeth. However, there was no growing of her canine teeth. Because of progressive pedes
cavus, she required special shoes. She had diminished sensitivity in her hands, suspicious for
polyneuropathy. However, this was not confirmed with electromyography. There was mild
thoracal kyphosis. Physical examination at the age of 11 years showed macrocephaly, with a

head circumference of 57 cm (+2.0 SD) and also present in her father. Her height was 157 cm
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(0 SD) and her weight was 40.5 kg (-1 SD). She had an asymmetric face with deep set eyes,
long nose, smooth philtrum and bifid uvula. She had small hands with tapering fingers. There
was hypermobility of her joints. Inspection of the skin revealed Blaschko lines on her left arm,
hyperpigmentation in her neck and hypertrichosis. A brain MRI at the age of 11 years showed
hypoplasia of cerebellar vermis and left hemisphere, large retrocerebellar cyst, ventricular
enlargement with left frontal horn of lateral ventricle more than right, simplified convolutions
of the frontal lobes gyri and thin corpus callosum with hypoplasia of the rostrum. Previous
investigations, consisting of 250k SNP-array and analysis of BBS6 were normal.

Female 4 is the first child of nonconsanguineous parents who had a prior first trimester
miscariage. Two maternal uncles have intellectual disability of unknown etiology. She was born
at 40 weeks gestation to a 17-year-old African-American by scheduled Cesearan section for
poor fetal growth, with a birth weight of 2727 grams (-2 SD) and length 48 cm (-1 SD). Prenatal
ultrasound had revealed a Dandy Walker variant. Delivery was uncomplicated. At birth she
was noted to have a large fontanel, congenital scoliosis and pale skin with red streaks (but
no blisters) that darkened with age. Brain MRI confirmed the Dandy Walker variant as well as
bilateral temporal, frontal and insular hypomyelination. Renal ultrasound and echocardiogram
were normal. She was discharged at 10 days of age. She was subsequently diagnosed with
hypothyroidism and treated with synthroid. She developed febrile seizures but was not
treated with antiepileptic medications. Fontanel was late to close. She was evaluated at 7
years of age for intellectual disability and skin pigmentary abnormalities. Physical examination
revealed weight 2%, height 21% and head circumference at 50%. She had a narrow face with
prominent forehead. Palpebral fissures were upslanting, lateral eyebrows were flared and the
philtrum was smooth. She had diffuse Blaschkolinear hyperpigmentation. Array comparative
genomic hybridization (oligonucleotide + SNP) was normal. Whole exome sequencing
revealed a de novo mutation in exon 19 of USP9X: ChrX(GRCh37):g.41029255_41029256insA;
NM_001039590.2: c.2644_2645insA(p.(Arg822GInfs)).

Female 5 is the first child of non-consanguineous parents. There was no family history
of developmental delay. She was born at full term with a birth weight of 3064 gram. Delivery
was via Caesarean section due to abnormal fetal positioning. As neonate, she had failure
to thrive due to feeding difficulties, requiring tube feeding. Left congenital hip dislocation
and persistent ductus arteriosus were noticed. Her development was severely delayed with
both motor and language delay. She walked her first steps at the age of 3 years and at the
age of 9 years, she was essentially non-verbal. There were moderate to severe behavioral
abnormalities with Obsessive-Complusive- Disorder symptoms. She had repetitive signing

or verbalizations, tantrums, self injury, aggressiveness and sleeping problems, requiring
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treatment with clonidine. Her forward vision was impaired due to severe ptosis. No other
visual problems were present. Scoliosis and leg length discrepancy were observed, the latter
required surgery. There were genu valgum and severe pes planus for which she has been
prescribed special shoes. She had a history of easy bruising and episodes of epistaxis, but there
is not a known deficiency in clotting factors. Renal ultrasound at the age of 7 years showed
mild left hydronephrosis. Physical examination at the age of 11 years showed short stature
with a height of 131 cm (-3 SD), weight of 28.4 kg (-2 SD) and head circumference of 53 cm
(0 SD). She had facial dysmorphisms consisting of low posterior hairline, posteriorly rotated
and low set ears with thickened helices and bilateral ptosis, diamond shaped eyebrows,
down slanting palpebral fissures, thin nasal bridge, pinched nasal root and tip, prominent
nasolabial folds, thin upper lip, bifid uvula, crowded teeth and pointed chin. Inspection of
the hair showed a 1 cm lesion of atrophic skin on occiput where hair follicles were lacking,
suspect for aplasia cutis congenital. The right eye lid had a kereatotic lesion and evidence of
mild abrasion. Pectus excavatum and upper thoracic wide scoliosis were present. Brain MRI
showed Dandy Walker malformation. Previous genetic tests, including Prader-Willi syndrome
methylation, showed no abnormalities. Analysis of PTPN11 [MIM 176876] revealed a mutation
c.1282 G>T (p.(V428L)) which was not present in the mother. CGH array showed a deletion in
USP9X: Xp11.4 (Minimum: 41082619-41090198; maximum: ChrX:41082474-41092226), not
present in mother.

Female 6 is the first child to non-consanguineous Caucasian parents. She has a younger
sister who is well. The female was delivered at term following an uncomplicated pregnancy,
with a birth weight of 3.17kg (25-50th centile). There were feeding difficulties in infancy,
requiring a brief period of nasogastric tube feeding. She had developmental dysplasia of the
hips, requiring treatment with a brace, and generalized hypotonia and joint hypermobility.
She crawled at 14 months, and walked at 27 months of age. Currently, at the age of 2 years
and 7 months, she has around 50 spoken words, and over 100 signs. She is putting short
sentences together. She has moderate hearing loss and has hearing aids bilaterally. There is
hypermetropia, and minor cataract in the right eye not requiring treatment. Her current weight
is 10.3kg (3rd centile), height is 84.5cm (3rd centile) and head circumference is 50.5cm (75th
centile). The anterior fontanelle was large and closed late. She has a prominent forehead, and
low-set, posteriorly rotated ears, but is otherwise not dysmorphic. Echocardiogram is normal.
SNP microarray (lllumina HumanCytoSNP-12 v2.1) showed a female molecular karyotype with
an interstitial deletion of 0.2 megabases on Xp11.4 (40,811,713- 41,033,450), encompassing
a single gene USP9X (interpretation based on hg18). Parental testing has confirmed this to be

de novo.
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Female 7 is the eldest of three daughters of healthy nonconsanguineous parents of
Asian (Chinese) ancestry. There was no significant family history. Her two younger sisters
are well. She was born at 33 weeks 5 days of gestation with a birth weight of 1964 grams
(25th-50th centile). Prenatal ultrasound showed borderline ventriculomegaly and suspected
Dandy-Walker malformation. At birth, facial dysmorphism (prominent forehead, low-set
ears), bilateral post-axial polydactyly of the hands, hypoplastic nipples, omphalocoele minor,
anteriorly placed anus with anal stenosis, sacral dimple and ventricular septal defect were
observed. Renal and lumbosacral ultrasound scans were normal. Hip ultrasound scans showed
right hip dislocation and left developmental dysplasia of the hip. Brain MRI done at 1 month
of age showed Dandy-Walker malformation, hydrocephalus and a small arachnoid cyst of the
3rd ventricle on the right. She was also reported to have dysgenesis of the posterior body
and splenium of the corpus callosum on brain CT. Auditory Brainstem Response Audiometry
showed bilateral conductive hearing loss and she has had several procedures for myringotomy
and Gromet tube insertion. She also underwent omphalocoele repair at 3 days old, insertion
of a posterior fossa cysto-peritoneal shunt at 2 months old, right hip surgery at 9 months
old. She has global developmental delay and intellectual disability. At the age of 8 years
10 months, she can sit independently and stand with support, but cannot stand or walk
independently yet. She communicates by pointing to pictures or letters, but is still non-verbal.
Physical examination at the age of 8 years and 10 months showed a height of 98 cm (18 cm
< 3rd centile), a weight of 15.0 kg (3.5 kg < 3rd centile) and a head circumference of 49 cm
(1 cm < 3rd centile). Facial dysmorphism, including facial asymmetry, prominent forehead,
smooth and long philtrum, hanging full cheeks, low-set and posteriorly rotated ears, were
noted. Hypoplastic nipples and a sacral dimple were present. She has a severe propensity
to keloid formation, requiring multiple steroid injections and excisions, as well as corneal
scarring, occurring without any obvious trauma. Previous investigations consisting of serum
transferrin isoforms, and chromosomal microarray analysis (Agilent 400K array) were normal.
Blood analysis showed an increased TSH with normal fT4 values.

Female 8 (DECIPHER ID 258511) is the first child of non-cansanguineous Caucasian
couple. There is no significant family history of note. She was born at term weighing 2.8kgs,
following a fairly smooth pregnancy. She was admitted to SCBU for 48 hours due to poor
feeding and facial asymmetry. She was noted to have bilateral hip dysplasia and a vertical
talus, which were treated with a harness for 6 months and splints for her feet respectively. She
was noted to be hypotonic with significant joint laxity. She also developed scoliosis which was
treated surgically at the age of 8 years. The scoliosis has been progressive. Seizures developed

from 8 years of age and were in the form of absence seizures. The epilim was stopped recently
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as she had been seizure-fee for a few years. A recurrence of seizures has been noted since.
Global developmental delay was noted - she walked at 30 months and her first words came
at 4 years. She was able to use the makaton before that prior to speech development. She
has a hypernasal quality to her voice and has some sounds missing. She has been reported to
have moderate intellectual disability. She was diagnosed with autism at the age of 8 years. Her
behaviour can be very challenging and has been described as Pathological Demand Avoidance.
Physical examination showed brachycephaly, plagiocephaly, very curly hair, a prominent nose
with flared nostrils, hirsuite back, scoliosis and pes cavus. Skull X-rays showed wormian bones.
MRI brain and spine were reported to be normal. Previous investigations including microarrays
and basic metabolic screen were normal.

Female 9 (DECIPHER ID 267427) is the only child of nonconsanguineous parents of UK
ancestry. Family history noted a male first cousin (the childrens’ fathers are brothers) with
a laryngeal abnormality, congenital heart disease and preaxial polydactyly. Pregnancy was
complicated by polyhydramnios and serology positive for Toxoplasmosis at the time of birth.
Antenatal ultrasound had revealed enlarged cerebral ventricles. She was born after 36 weeks
of gestation with a birth weight of 2600 gram (50%), by emergency Caesarean section after
premature rupture of the membranes with meconium stained liquor. She required ventilatory
support at birth and was noted to have bilateral choanal atresia which was surgically repaired.
A subglottic stenosis was subsequently noted. Additional problems in the neonatal period
were a small ASD which closed spontaneously, peripheral cataracts and an anteriorly placed
anus (which did not require intervention). Renal ultrasound was normal. In infancy there
were considerable feeding problems with reflux and repeated episodes of aspiration and
recurrent chest infections. A gastrostomy was placed until the age of 7 years. She has had
recurrent episodes of blepharitis and was noted to have astigmatism. Conductive hearing
loss was noted due to recurrent middle ear infections. Developmental milestones were
delayed. At age 7 years she attends special school, she is able to talk in simple sentences and
demonstrates simple understanding. She has little abstract thinking and poor attention. Her
motor skills remain delayed and she is still hypotonic. She has mirror movements. Physical
examination at the age of 7 years and 7 months showed a height of 119.6 cm (10-25%) and
a head circumference of 50 cm (2%). Facial features include a broad nose with a depressed,
grooved nasal tip. She has mildly posteriorly rotated ears with absent lobes. She has small
hands and feet with tapering fingers and poorly opposable thumbs. She has recently been
noted to have some missing secondary dentition and deficient enamel. She was noted to
have a narrow chest and asymmetry of gait and posture. There is generalized joint laxity. Limb

length discrepancy has been documented and a mild scoliosis convex to the right with apex at
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L2 has been radiologically observed, hypoplasia of clavicles was noted. Her left side is weaker
than right including a mild facial nerve weakness and there is asymmetry of hair growth with
sparser hair on the left side. She has mild skin streaking along Blaschko lines visible mostly on
limbs. Brain MRI showed non-specific underdevelopment of white matter with a slightly larger
lateral ventricle on the left with focal dilation and gliosis around the left frontal horn. Previous
investigations consisting of a Nimblegen 135K HG18 WG CGH v.3.1 which documented a 430
Kb copy number gain at 13q14.11 shared with her normal father and other paternal relatives.
Sanger sequencing of CHD7 shows a change c8339C>T (p Ala2780Val) which is also shared
with her normal father and other relatives in his family. Skin chromosomes were normal 46XX.

Female 10 (DECIPHER ID 281586) is the second of two children of nonconsanguineous
parents of mixed Jamaican / White British ancestry. Her older sister had hydronephrosis in
infancy which resolved, and an autistic spectrum diagnosis made in her teens. The patient
also inherited Familial Hypercholesterolaemia from her father. There is no other family history
of structural anomalies. A right multicystic dysplastic kidney and left hydronephrosis were
detected at 20 weeks. She was felt to be a large baby so delivered by elective section at term
weighing 3500g. There was abdominal distension with bilious aspirates and pylostomy was
required at birth, and later double J stenting. No other anomalies were detected at birth.
Early developmental milestones were all mildly delayed, and she was monitored in the
Child Development Centre. She moved from mainstream school to special school for her
secondary education. At around 5 years of age during investigations for persistent cough,
lower thoracic scoliosis was noted, and found to be related to a hemivertebra at T10, requiring
hemivertebrectomy at age 8. She has 13 pairs of ribs. There is also a suspicion of a leg length
discrepancy due to a pelvic tilt. The scoliosis has continued to worsen below the operated area,
requiring a brace and a second operation will be necessary. She has required investigation
and monitoring for persistent neutropaenia, including bone marrow aspirate which was mildly
hypocellular, but no clear cause has been identified. She requires tonsillectomy and grommet
insertion for glue ear. Problems with frequent gall stones were present. At 8 years breast and
pubic hair development led to investigations. The uterus was found to be absent on MRI, but
both ovaries are present. Bone age was advanced at 11.5years at 9y chronological age. She
has a persistently high Free T4 with normal TSH, without thyroid symptoms. On examination
in the genetics clinic she was also found to have a shortening of the 4th metacarpals, most
pronounced on the right. There are only 3 lower incisors, and the teeth are of poor quality and
pitted. There are areas of hyperpigmentation on the skin, not typical of Café-au-lait patches.
Eye examination was unremarkable. Microarray analysis was also normal.

Female 11 (DECIPHER ID 271249) is the first child of non-consanguineous parents of
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English ancestry. She has an older healthy maternal half-sister. There is no significant family
history. She was born after 39 weeks of gestation with a birth weight of 2877g (-0.9 SD). She was
well at birth. Prenatal ultrasound showed unilateral hydronephrosis. Fetal echocardiography
was normal. At birth she was noted to have bilateral post-axial polydactyly of the hands and
congenital dislocation of the hips. She fed well. She had motor and speech developmental
delay. She walked just before 2 years. Her first words were from 3 years. She had recurrent
urinary tract infections and had a pyeloplasty aged 3 years. At 6 years she was diagnosed
with a submucous cleft palate and bifid uvula. She has amylopia, astigmatism and bilateral
cortical cataracts were diagnosed at 7 years. Abdominal ultrasounds shows a bicornuate
uterus. She is entering puberty at 11.5 years. She has a school educational statement. Facial
dysmorphism, includes low posteriorly rotated dysplastic ears. Her earlobes are attached. High
nasal bridge with hypoplastic nasal alae, an overhanging colomella and smooth philtrum. Her
right eyebrow is interrupted. She has wiry hair which is considered familial. She holds her 5th
fingers in abduction at the MCP joint. She has wasting of the muscles of the hands and legs
distally, with high arches to her feet. There is bilateral hallux valgus. She has faint streaks of
hypopigmentation following the lines of Blaschko over her trunk and arms. Spine MRI scan was
normal. Previous investigations consisted of a normal 0.5Mb BAC array (2007), normal blood
and skin (wrist, ankle, groin samples) karyotype analysis.

Female 12 (DECIPHER ID 258617)is the first child of non consanguineous parents of
Middle East/Maltese and white UK ancestry. The family history was non-contributory. Her birth
was induced because of prolonged rupture of membrane and decreased fetal movements. The
proband was born by normal vaginal delivery at 36 weeks of pregnancy with a birth weight of
2260 gram (-1 to -2 SD) and a head circumference of 32cm (0 SD). She was in good condition
and did not require resuscitation. She was self-ventilating in air and established bottle feeding.
Postnatally she was noted to have bilateral postaxial polydactyly of the hands and an anteriorly
placed anus. Other congenital abnormalities included left choanal atresia and right choanal
stenosis. A moderate patent ductus arteriosis, patent foramen ovale, tricuspid regurgitation
and aortic regurgitation detected early on have resolved and she has required spinal bracing
because of a marked thoracic scoliosis. She suffered with recurrent upper respiratory tract and
middle ear infections. She had grommets and now wears hearing aids because of moderate
conductive hearing loss. She had left sided strabismus, a pinpoint anterior subcapsular lens
opacity on the left side and peripheral retinal pigment epithelial pigment changes bilaterally,
and she has glasses because of mild myopia. More recently treatment has been required for
hypertension of unknown cause. Developmentally she has severe intellectual disability with

motor and speech delay. She had 3 words by the age of 2 % years and at the age of 7 years

163




Chapter 4

she is able to speak in short phrases, however her speech can be difficult to understand. She
also points and uses some Makaton signs. She has hypotonia and mobilises on her knees or
hopping using her hands and knees. She can stand with support with her knees flexed. Physical
examination at the age of 7 years and 4 months showed a height of 109 cm (-3 SD), a weight
of 25.5 kg (0 SD) and a head circumference of 49.9 cm (-3 SD). Facial dysmorphism, including a
widows peak, posteriorly rotated, dysplastic ears, arched eyebrows, a broad nasal bridge with
a flattened nasal tip and a midline tongue depression were noted. A sacral dimple was present.
She had hypertrichosis of her arms and back and patchy pigmentation over her back and the
right side of her chest. A brain MRI showed a Dandy walker complex with a partially developed
cerebellar vermis and a communication between the 4th ventricle and the cisterna magna,
and a small posterior fossa with a hypoplastic cerebellum. A renal ultrasound scan was normal.
Previous investigations included blood and skin karyotyping, 22q11.2 FISH, Sanger sequencing
of CHD7 and microarray analysis. Endocrinology assessment was normal.

Female 13 (DECIPHER ID 261847)is the first of two children of nonconsanguineous
British parents with no family history of relevance. She was born at 39 weeks gestation by
normal delivery weighing 2.65kg. She had surfactant deficiency and was ventilated for 2 days.
At birth she was in an extended breech position, and hip and knee abnormalities were noted.
She had a dislocated right hip and subluxed left hip. There was bilateral absence of patellae
with knee subluxation. Her feet were held in fixed flexion. She had torticollis with narrow
sloping shoulders but other joints were hypermobile. In her early years she had hypotelorism
with a bulbous nasal tip, pronounced nasolabial fold, slightly sagging cheeks and small jaw.
Her dental eruption pattern was unusual and she has gingival hyperplasia. She had a streak
of increased pigmentation on her inner left calf. Investigations included a normal cranial MR
scan and spinal X-rays. She has a normal metabolic screen and chromosome array. Her early
EMG suggested mild axonal loss but she subsequently now has normal power and reflexes.
She has a mild intellectual disability and is emotionally immature. Female 14 is the younger of
two children of non-consanguineous parents. Her older brother is healthy. There was no family
history of developmental delay. She was born after 35 weeks of gestation with a birth weight
of 2510 gram (+0.5 SD). During the last weeks of pregnancy a polyhydramnion was noted.
Delivery was uncomplicated. Physical examination after birth revealed several abnormalities:
a large anterior fontanel, bilateral choanal atresia (neonatal surgically corrected neonatally),
a rectovaginal fistula with anus perinealis (corrected at the age of 5 months), sacral dimple,
short clavicles and left-sided post-axial polydactyly (without osseous structures). Both motor
and language development were delayed with walking without support at the age of 2% years.

There was a history of balance problems, for which no cause could be found (normal CT mastoid
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and normal electronystagmogram). Psychological assessment when she was a teenager
showed a low- normal 1Q of 85. In childhood she developed a progressive scoliosis due to
asymmetry of her legs. She had mild conductive hearing loss caused by recurrent middle ear
infections and tympanic membrane defects. Puberty development was normal with menarche
at the age of 11 years. However, she had a remarkable asymmetric growth of her breasts. She
was referred to the clinical genetics department for reevaluation at the age of 16 years. As part
of the work-up a large ASD was found and surgically closed. At the age of 19 she underwent a
bilateral cataract surgery. At the age of 22 years she was diagnosed with an osteosarcoma in
her distal right femur. After surgery and chemotherapy, she is now without relapse for 1 year.
Physical examination at the age of 16 years showed a height of 158.6 cm (-1.5 SD, target height
171.6 cm) and a head circumference of 55 cm (0 SD). She had an asymmetric face with short
palpebral fissures, low-set and dysplastic ears, broad nasal bridge, bulbous tip of the nose
and a thin upper lip. The left breast was smaller than the right breast. She had Simian creases
on both hands with short 4th and 5th metacarpals. She had a scoliosis and her legs were
asymmetric in length. Inspection of the skin revealed Blaschko lines. A brain MRI at the age
of 6 months showed slightly enlarged ventricles, a thin corpus callosum and a variant Dandy
Walker malformation. Previous genetic investigations, consisting of 105k oligo-array (Agilent
AMADID-nr. 019015) on DNA extracted from blood and fibroblasts, and CHD7 analysis were
normal. Using whole exome sequencing a de novo mutation in USP9X was identified: USP9X;
ChrX(GRCh37):8.41047269del; NM_001039590.2:¢.3709del(p.(Cys1237fs))

Female 15 is the 4th child of 4 children of nonconsanguineous parents. There was no
family history of developmental delay. The first child was born hydropic and died postnatally
due to intrauterine infections. The proband was born after 39 weeks of gestation with a birth
weight of 2610 gram (-2 SD). Delivery was uncomplicated. After birth, several congenital
abnormalities were noticed, including bilateral choanal atresia, anorectal malformation, post-
axial polydactyly, single umbilical artery, a bifid uvula with submucosal cleft palate. Later on a
hip dysplasia was noted. Both motor and language development were delayed. Psychological
assessment at the age of 5,5 years showed mild intellectual disability with an 1Q of 65. In
childhood she developed progressive scoliosis and hypodontia. She had mild sensorineural
hearing loss and hypermetropia (+2,25D OD/+3,75D OS). Physical examination at the age of 16
years showed a height of 152 cm (-3 SD), a weight of 50 kg (0 SD) and a head circumference
of 52 cm (- 2 SD). Inspection of the skin revealed Blaschko lines. She had facial dysmorphic
features, including a bitemporal narrow face, low set ears, short palpebral fissures, down slant
eyes and a bulbous nasal tip. Her legs were asymmetric in length. She had short clavicles

and no axillary hair and amastia. Previous investigations consisting of chromosome analysis
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and oligo array (105K) were normal. CT brain (at age of 2 days) showed no abnormalities.
Using CNV analysis on exome data, a de novo intragenic deletion in USP9X was identified and
confirmed with array: Xp11.4(41,001,431-41,059,516)x1.

Female 16 presented with IUGR and maternal hypertension. She was born by caesarian
section in the 36th week of gestation with a birth weight of 2205 grams, as first child of
healthy unrelated Dutch parents. At birth a bilateral postaxial polydactyly (post-minimum),
open ductus arteriosus and dysmorphic features were present: broad nasal bridge, low set
ears with over folded helix, high palate, prominent heels and small labia majora. Hearing tests
showed bilateral mixed conductive and sensorineural deafness and small ear meatus. She
was temporarily treated with thyroid hormone because of high TSH titers. The psychomotor
development is delayed: she walked unassisted at the age of 5 years, the speech is very nasal
and limited to single words. At the age of 6 years she developed absences and short focal
seizures, requiring treatment with levetiracetam. The EEG showed multifocal generalized peak-
waves abnormalities. Height and head circumference follow the -1/-1.5 SD line. She never was
toilet trained. At the age of 6 years she presented with short palpebral fissures, periorbital
fullness, broad high forehead, broad and flattened nose bridge and nose tip, small nostrils,
short columella, prognathism, rotated ears and underdeveloped ear lobes. The shoulders
are hanging, the neck and distance between nipples is broad; the sternum is short. There is
brachydactyly of the fingers with a bilateral cutaneous syndactyly of digits II-V. The toes are
short with cutaneous syndactyly of digits II-lll. She has flat feet and walks with bowed knees,
but she cannot run, the tendon reflexes are brisk. At the age of 7 years she suffered from a
major head trauma after falling from the stairs, which worsened her motor impairment. Brain
MRI showed hypoplasia of the anterior cerebellar vermis and left cerebellar hemisphere, large
retrocerebellar cyst, enlarged cistern magna, ventricular enlargement, mild hypoplasia of pons
and brain stem, irregular gyri of the cerebral cortex with irregular depth of the sulci in frontal
and perisylvian areas, small heterotopic nodule of grey matter and thin and hypoplastic corpus
callosum (both rostrum and splenium).

Female 17 is the one of 3 children of non-consanguineous parents. There was no family
history of developmental delay. Delivery was possibly complicated with hypoxia. Physical
examination after birth revealed bilateral post-axial polydactyly and anal atresia with fistula
requiring surgery at later age. Moreover, she had brachycephaly, general hypotonia and
facial dysmorphisms, by the clinical geneticist suspicious found for Kaufman-McKusick, but
no definitive diagnosis could be made. Her development was delayed with both motor and
language delay. She walked her first steps at the age of 2.5 years and her speech started at

normal age but developed slow. She followed special education. Psychological assessment
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showed mild to moderate ID with an 1Q of 50. The first four years of life, she had frequent
respiratory infections. Small auditory canals were present. At later age, she was again referred
to the pediatrician for the development of hirsutism, mainly at the back, chest and face. Her
mensis started normal at the age of 12 years, but was irregular. She had severe pedes planus
and shortening of both Achilles tendons, requiring surgery. There was general hypotonia
present. Until adolescence, her growth was normal, but from the age of 12 she was shorter
than expected. Physical examination at the age of 16 years showed a height of 156 cm (-2 SD)
with target height of 175 cm (+1 SD), weight of 59.8 kg (+2 SD) and head circumference of 55 cm
(0 SD). She had some facial dysmorphisms including narrow palpebral fissures, hypotelorism,
bilateral ptosis and extra canine tooth. Her chest was broad and showed hirsutism, as well as
her back. Both hands and feet were short with shortening of the fourth digit and Simean crease
of the right hand. She had a sandal gap at her left foot. There was hyperlaxity of her wrists
and fingers, but no general hyperlaxity. Evaluation of her skin revealed Blaschko lines at both
arms. Previous SNP array revealed no abnormalities. After identification of the first females
she was, based on her phenotype, found suspicious to have a USP9X mutations or deletion.
Sanger sequencing showed no abnormalities, but re-evaluation of the SNP array data showed
three negative probes in the USP9X region. The deletion Xp11.4(41,032,491-41,059,516)x1

was confirmed with CytoScan HD array, which had better coverage of the X-chromosome.
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Figure S1: USP9X expression is depleted in female cell lines harbouring loss of function alleles.

Fibroblast and LCL cell lines from control female and male individuals, and females with heterozygous loss

of function USP9X alleles were derived and cultured under established conditions.1; 2Isolation of mRNA,

and protein was conducted as previously described. 3

(A) Relative gPCR analysis of USP9X mRNA in individual fibroblast cell lines. cDNA synthesis, gPCR
conditions and ACTNB primers were as previously described.1; 4 USP9X primers used were F:
TTGTGAACTCTGTCCAGAGG and R: GTTCATCTGGAGCATCTTGG.

(B) Immunoblot analysis of USP9X protein levels in fibroblast cell lines. SDS-PAGE and immunoblots
were performed as previously described.5 Each panel represents a replicate experiment.

(C) Quantification of immunoblots in B using ImageJ software (NIH).

(D) Immunoblot analysis of USP9X protein levels in LCL cell lines. Each panel represents a replicate
experiment.*p<0.05 by Student’s t-test.
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Figure S2: Decreased levels of USP9X in response to siRNA knock down

(A) Immunofluorescence imaging of control fibroblasts transfected with either S813 non-targeting
siRNA or USP9X siRNA

(B) Western blotting of control fibroblasts demonstrating a decrease in USP9X protein levels in response
to 3 different USP9X targeting siRNAs when compared with the control S813 nontargeting siRNA.
Scale bars represent 10 um.
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Figure S3: Ciliary architecture and ciliary trafficking are normal in affected female fibroblasts

(A) Immunofluorescence imaging of control fibroblasts and USP9X female fibroblasts. To induce
ciliogenesis, fibroblasts were starved for 48 hours prior to immunofluorescence labeling. DAPI is used
for nuclear staining and is shown in blue, RPGRIP1L denotes the ciliary transition zone at the base of the
cilium and is shown in pink, acetylated alpha-tubulin marks the primary cilium and is shown in red, and
WDR19, used as a IFT-A marker, is shown in green and (B) IFT88, used as a IFT-B marker, is shown in green.
Scale bars represent 10 um.
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Table S1: Mutations in USP9X

Female Deletion Nucleotide change Amino acid change Mosaic
breakpoints (NM_001039590.2) in blood
(Hg19)
1 - €.2554C>T p.(Arg852%) no
2 - c.3804T>A p.(Tyr1268%*) Yes®
3 - c.3028-2A>G p.(?) no
4 - €.2644_2645insA p.(Arg882GInfs*3) no
5 Minimum: - - no
ChrX:41082619-
41090198;
Maximum:
ChrX:41082474-
41092226
6 ChrX: 40926769- - - no
41148506
7 - €.1986-1G>T p.(?) no
8 - ¢.5078T>G p.(Leul693Trp) no
9 - €.4082delTinsTGG p. (Ser1363Glyfs*18) no
10 - .7492_7507delCAAGATGC p.(Asp2499_Glu2503del) no
TCCAGATGinsC
11 - c.3763C>T p.(GIn1255%*) no
12 - c.1111C>T p.(Arg371%) no
13 - ¢.1154_1155delGAinsG p.(Met386Trp no
fs*13)
14 - ¢.3709del p.(Cys1237Valfs*2) no
15 ChrX: 40998091- - - no
41057271
16 - ¢.4055dup p.(Phel353Leufs*18) no
17 ChrX: 41032491- - - no

41059516

?Visualization of Sanger sequencing results on next page
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Table S3: X-inactivation in fibroblasts or LCL of USP9X affected females

Female Mutation Cell line Type Skewing Test

1 €.2554C>T (p.Arg852%) Fibroblast 52.7% FRAXA
3 c.3028-2A>G Fibroblast 92.9% AR

6 ChrX:40926769-41148506 del LCL 96.6% FRAXA
14 c.3709del (p.Cys1237fs) Fibroblast 68,4% FRAXA
15 ChrX:40998091-41057271 del Fibroblast 93.6% AR

Abbreviation: LCL = lymphoblastoid cell line
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ABSTRACT

USP9X is an X-linked deubiquitinase essential for neural development in humans and mice.
In female patients, heterozygous USP9X loss-of-function (LOF) mutations present with a
stereotypical brain phenotype characterized by enlarged asymmetrical ventricles, agenesis
of the corpus callosum, and variable manifestation of Dandy Walker malformation. This
neural phenotype closely resembles those observed in neuronal ciliopathies. To understand
the tissue-specific role of USP9X in cilia and brain development, we studied the effects of
LOF patient mutations on early stages of neurogenesis. Neural rosettes are a morphologically
identifiable niche for neural progenitor cells that can be produced in vitro and recapitulate
early neural tube formation in 2D. We observed that during early differentiation circa day 6,
cilia are ubiquitously found on most cell types throughout the 2D culture, and by day 10 of
differentiation, cells display a polarized morphology and cilia are primarily localized to the
apical lumens at the center of the neural rosettes. Using a segmentation analysis protocol for
analyzing 3D organelle structures, we found that the rosettes of the USP9Xdel individual had
volumetrically larger cilia than control rosettes. 3D rendering of the lumenal cilia demonstrated
that the lumenal cilia in the USP9Xdel line were more disperse and loosely packed, while the
counts and surface area of the lumenal cilia are comparable. Additionally, extra-lumenal cilia,
defined as cilia outside the lumen of the rosettes, differed significantly in number and surface
area. Specifically, USP9Xdel rosettes have significantly larger, longer and more extra-luminal
cilia as compared to the control. This phenotype observed in the USP9Xdel line is reminiscent
of the ciliary distribution observed in early rosettes. Our results indicate that LOF mutations in

USP9X potentially affect neural development via the disruption of ciliary architecture.
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INTRODUCTION

There is accumulating evidence that the ubiquitin machinery, involved in both ubiquitination
and de-ubiquitination, plays an important role in the structure and function of the primary
cilium. This is an antenna-like, sensory organelle that projects from the cell surface and plays
an indispensable role in organogenesis via its role in cellular signaling. USP9X, an X-linked
ubiquitin specific protease, has been described to play a role in ciliary and centrosomal biology
12 and is involved in a myriad of cellular functions from chromatin reprograming * to ribosomal
stalling # and post-translation regulation of the ubiquitin precursors UBA52, UBA80, UBB and
UBC °. In the brain, USP9X is indispensable for proper development and cortical architecture
58 Missense mutations in USP9X are associated with intellectual disability in males and LOF
mutations lead to a ciliopathy-like syndrome in females >%°. LOF mutations in USP9X manifest
as a severe heterogeneous congenital disorder that affects multiorgan systems and results in a
stereotypical brain phenotype characterized by enlarged asymmetrical ventricles, agenesis of
the corpus callosum, and Dandy Walker malformation in approximately a third of individuals,
910 a|| of which are symptoms observed in neuronal ciliopathies 714,

Characterizing ciliary abnormalities in ciliopathies is often hindered by access to proper
cell- and tissue types and analysis platforms. Differentiation protocols that give rise to neural
progenitor and neuronal cell types are invaluable system for modeling brain development in
ciliopathies that cannot be comprehensively assessed in other commonly used cell types such
as patient-derived fibroblasts and immortalized cell lines. Three-dimensional segmentation
analysis allows the visualization of organelle structure and localization. Morphological and
positional changes in organelles can occur in response to for instance cell cycle state, nutrient
deprivation 2 and disease-associated mutations ?°. Inducible pluripotent stem cells (iPS cells)
allow researchers to model these effects in human cell types, such as neurons or neuronal
progenitors. These polarized cell types contain complex and dynamic subdomains, that can
require resolutions beyond the capacity of classical confocal microscopy for comprehensive
analysis.

The use of in vitro modeling systems to investigate neural development, evolution,
and disease has been a breakthrough for understanding the human brain. 2D and 3D culture
systems can be used to model inherited and acquired diseases of the brain and understanding
the spatial coordination of cellular processes that drive these trajectories represents a
fundamental goal in biology. Advances in in vitro modeling systems that allow for the study
of neuronal development and maturation further the need for tools to visualize and quantify
dynamic changes in intracellular structures. Intracellular structure and localization patterns

of organelles can be robustly assessed and biologically characterized using automated
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segmentation analysis. Herein we assess cilia in neural rosettes with a segmentation analysis
protocol previously validated in the assessment of mitochondria in neurons **. Due to the
similarities in the overall shape and structure of cilia and mitochondria, we found that the
translational segmentation platform could be used to assess both organelle types.

Neural rosettes are a morphologically identifiable, polarized epithelial niche for neural
progenitor cells that can be generated in vitro via the dual SMAD inhibition neural induction
protocol 16-19. Cilia, found in the central lumen, play a fundamental role in coordinating
cellular responses to differentiation cues. Dual SMAD inhibition, involving the inhibition of
BMP and TGF[3 signaling pathways using Noggin or dorsomorphin and SB431542 respectively.
Inhibition of BMP and TGF[3 signaling inhibits the formation of the endodermal and mesodermal
germ layers, thereby allowing for neuroectoderm differentiation. During early differentiation,
neuroectoderm gives rise to neuroepithelium as seen in embryogenesis during neurulation,
when the neural plate closes to form the neural tube 16.

During differentiation neuronal cell type specification is dependent on signal transduction
via the primary cilium %, Cilia are enriched in multiple signaling receptors that transduce a
variety of extracellular cues essential for cellular differentiation. During embryogenesis the
cilium plays an indispensable role in neuroepithelial formation and patterning 2% Cilia are
essential transducers of hedgehog (Hh) and Wnt signaling, which plays an indispensable role
in ventral and dorsal patterning respectively in the neural tube 2232°,

Volumetric analysis of cilia in neuroepithelial rosettes has the potential to provide
insight into ciliary formation patterns and organization. Advances in imaging methods such
as Airyscan confocal imaging or super resolution stochastic optical reconstruction microscopy
(STORM), provide ways of visualizing the tiniest of structures with increasing detail 2. This
creates a need for automated analysis- and quantification methods, that are open source
for use and community scrutiny and improvement. Current protocols aimed at analyzing
fluorescent imaging data, for instance specifically for mitochondria 323, are more often suited
for larger, flat cell types (i.e. fibroblasts). In these cases, medium-to-high-throughput image
analysis is either incomplete, in case of 2D images resulting from maximum projections, or
time-consuming, when using image stacks. Specifically, our goal is to provide a simple-to-
use protocol for automated medium-to-high throughput analysis of tubular/round organelle
morphology and organization over multiple image stacks, which can be applied or adapted to
any structural imaging experiment. We use this protocol to characterize the effects of USP9X
loss-of-function mutations ° on the polarization of neuroepithelial rosettes, as well as defects

in ciliary volume, surface area, and position.
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RESULTS

Ciliary structure and function are interdependent, and the architecture and number of cilia
found in various tissues affects their capacity to transduce signal *. To determine potential
ciliary defects, we analyzed neuroepithelial rosettes from various time points during neuronal
differentiation and assessed lumenal and extra-lumenal cilia that form in neural rosette
structures. Because LOF mutations in USP9X cause severe congenital malformation of the
brain reminiscent of defects observed in neuronal ciliopathies, we utilized iPSCs derived from
an individual female patient with a large chromosomal deletion in USP9X (ChrX 40998091-
41057271) ° (hereafter referred to as USP9Xdel) to characterize the absence of USP9X on cilia.
No MRI data was available for the USP9Xdel individual, however they presented with mild
intellectual disability (1Q of 65), motor and speech delay, mild sensorineural hearing loss, and
multiple congential abnormalities including bilateral choanal atresia, anorectal malformation,
post axial polydactyly, and a bifid uvula with submucosal cleft palate °.

We generated neural rosettes using a dual SMAD inhibition protocol *® starting from
USP9Xdel- and control-derived IPSCs. The control used for all experiments was an age and
gender matched healthy individual. This protocol ¥ employs the inhibition of BMP and TGF-
beta signaling pathways using dorsomorphin and SB431542 respectively (FIGURE 1A). For
protocol validation, we assessed the expression of various neurogenesis markers in control
rosettes on day 24. Day 24 was choose as it corresponded passage 1 in cell culture where
the neuroepithelial rosettes should express markers of neural progenitor cells and early born
neurons. Our analytical approach requires high axial resolution involving large z stacks with
small inter-plane intervals, therefore we imaged 3D stacks using the Airyscan confocal. To
process the large amount of resulting image data, we used a custom MATLAB image analysis
algorithm for medium-to-high throughput automatic analysis, limiting the bias inherent to
manual analysis *°. The expression of PAX6 and CTIP2, Nestin and GFAP, and SOX2 and ARL13B
(FIGURE 1B) were confirmed via immunofluorescent analysis of rosettes, demonstrating the
presence of neuroepithelium (Nestin, SOX2), radial glial-like progenitors (PAX6, SOX2, GFAP,
Nestin), and early born, post mitotic neurons (CTIP2). A time course analysis over the first 16
days of differentiation using gPCR demonstrated that transcripts associated with pluripotency
were down regulated upon differentiation and neuroepithelium / radial glial associated
transcripts such as PAX6 were upregulated visibly by day 8 (FIGURE 1C). The expression
and efficiency of induction was correlated with the degree of cell confluence at the time of
induction (FIGURE 1C). Due to expression profiles of neuroepithelial markers and patterns of

cilia dispersion (FIGURE 1B-D), days 31 and 43 were selected for further analysis.
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<FIGURE 1: Neural rosettes induction (A) neural rosettes can be produced via the dual SMAD inhibition
neural induction protocol shown here schematically. (B). Rosettes (DIV24) are positive for in vivo markers
of neurogenesis, including PAX6, SOX2, nestin, GFAP, and CTIP2. Scale bar top row: 20 mm, all other scale
bars: 50 mm. (C) qPCR analysis of samples collected during pre- and post-neural induction at days 8,
10, 12, 14, and 16. The minus sign indicates the iPSCs were plated at subconfluent levels at the time of
induction. The plus sign indicates that the iPSCs were at 100% confluence at the time of neural induction.
RV is Revita Cell (rock inhibitor). Performed in technical triplicate. N=1 (D) The lumens of each rosette
(DIV24) are ciliated, recapitulating the architecture of the neural tube, shown here with ARL13B (red).
Lumenal cilia can be assess in 3D via segmentation analysis, shown here as a compressed z-stack (middle
panel). 3D (top) compression and 2D (bottom) single plane analysis of the right panel shows the automated
segmentation assessment of ciliary shape and positioning, outlined in green. Scale bars are 20 microns in
the left and middle panel, and 5 microns in the 2D and 3D compression analysis.

During early differentiation at day 6 and day 10, cilia are ubiquitously found on most
cell types through the 2D culture (Figure 1D, Supplemental figure 2). By day 10, in control
conditions, the cilia, though present on other cells, are primarily localized to the lumenal center
of the neural rosettes where they protrude into the lumen (Supplemental figure 2). Over the
course of differentiation, observable on days 24, 31, and 43, there is a loss of polarization in
neural epithelial rosettes, demonstrated by the decrease in number of apical cilia and the
rounded nuclei (Figure 1D, Supplemental figure 3).

We generated 3D imaging stacks at high magnification, using a Zeiss confocal microscope
with Airyscan module (Supplemental figure 4A-B). The Airyscan detector on the LSM880 is
able to deliver increased resolution and signal to noise ratio by utilizing a 32-channel GaAsP
photomultiplier tube (PMT) array detector combined with linear devolution thereby achieving
a resolution of 120 nm laterally (XY) and 350 nm axially (Z) (Supplemental figure 3B).

Utilizing this automated segmentation analysis, day 31 and 43 neuroepithelial cells from
control and the USP9Xdel individual were fixed and analyzed for ciliary abnormalities. Lumenal
and extra-lumenal ciliary were assessed for ciliary number, volume, shape, and distribution.
To derive analytical data points from 3D Z-stacks of the cilia in neuroepthelial rosettes,
first a median filter is applied to the Z plane images of the stacks, followed by background
subtraction of the 3D rendering to determine which voxels represent cilia. After background
subtraction, a global mask was defined via thresholding. In addition to the global mask, a local
mask was defined via a difference of Gaussians, and subsequent thresholding. For computing
the difference of Gaussians, the local background image was defined by convolution of the
median filtered ARL13B channel with a Gaussian filter of size 11 and standard deviation 1.25.
This local background image was subtracted from a foreground image defined by convolution
of the median filtered mitochondrial channel with a Gaussian kernel of size 11 and standard
deviation 1. The local ARL13B mask was defined by thresholding of the difference of Gaussians
(>4). The final ARL13B mask was defined by Boolean AND operation on the local and global
mitochondrial masks and subsequent removal of objects with less than 7 pixels (Supplemental

figure 4A-C).
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FIGURE 2: The effects of LOF mutations in USP9X on neuroepithelial lumenal cilia morphology and
organization. (A) Schematic representation of the area selected for lumenal ciliary analysis. (B) Wide field
view of cilia within control and USP9X rosettes. Specifically indicated are the lumenal cilia recognized for
segmentation analysis (outlined in green) at day 31 and day 43 in control versus USP9Xdel rosettes. Scale
bar indicates 5 microns. (C) Quantification of the differences in d31 lumenal cilia (Control n = 3; USP9Xdel
n = 3). (D) Quantification of the differences in day 43 lumenal cilia (Control n = 3; USP9Xdel n = 3). NMM is
neural maintenance medium without the growth factors necessary to maintain the cells in a primate state
(E) 3D rendering of ARL13B stained lumenal cilia in the control line rosette on day 31. (F) 3D rendering
of ARL13B stained lumenal cilia in the USP9Xdel line rosette on day 31. #P0.1-0.05, *P<0.05, **P<0.01,
***P<0.001, ****P<0.0001, a two-tailed student’s T-test.
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FIGURE 3: The effects of LOF mutations in USP9X on neuroepithelial extra lumenal cilia morphology and
organization during differentiation. (A) Schematic representation of the area selected for extra lumenal
ciliary analysis. The lumenal cilia count is subtracted from the selected area to obtain the extra-lumenal
cilia count. (B) Wide field view of cilia within control and USP9X rosettes. Specifically indicated are the
extra-lumenal cilia recognized for segmentation analysis (outlined in green) at day 31 and day 43 in control
versus USP9Xdel rosettes. Scale bars are equal to 5 mincrons. (C) Quantification of the differences in day 31
and day 43 extra-lumenal cilia (Control n = 3; USP9Xdel n = 3). ¥P0.1-0.05, *P<0.05, **P<0.01, ***P<0.001,
*¥***p<0.0001, a two-tailed student’s T-test.
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At day 31, the mean volume of lumenal cilia (FIGURE 2A-B) was found to be significantly
greater in the USP9Xdel individual as compared to the control, indicating that the rosettes
of the USP9Xdel individual had volumetrically larger cilia than the control (FIGURE 2C). 3D
rendering of the lumenal cilia found in both the control (FIGURE 2E) and USP9Xdel lines,
demonstrated that at day 31, the lumenal cilia in the USP9Xdel line are more disperse and
loosely packed. While the counts and surface area of the lumenal cilia are comparable, the
volumetric difference at this time point could be due to abnormalities in ciliary trafficking,
when proteins cannot be trafficked out of the cilium, they bulge due to protein retention.
This results in the abrogation of necessary signaling pathways and abnormal development. No
significant difference was observed at day 43 in the volume, area, or count of cilia.

Additionally, at day 31, extra lumenal cilia (FIGURE 3A-B) differed significantly in number
and area, with USP9Xdel rosettes have larger and more extra-luminal cilia. Interestingly, the
USP9X patient cells maintain an extra lumenal ciliary distribution of early rosettes 3¢ longer
than the control (FIGURE 2B; Figure 3B, C). This suggests that at earlier time points USP9Xdel
progenitor cells may be delayed in differentiating. On day 35, the cells are transitioned to neural
maintenance medium (NMM) lacking the necessary growth factors, specifically EGF and FGF,
to maintain them in a primitive state. This supports the cells to differentiate into more mature,
MAP?2 expressing cells. At day 43, ciliary volume was found to be comparable between patient
and control suggesting that at later timepoints USP9Xdel cells may differentiate more rapidly

and thereby reduce the difference between the control and USP9Xdel individual (FIGURE 2D).

DISCUSSION

Here we report on an automated method for the segmentation and quantification of
intracellular tubular-shaped structures, which we employed to begin to gain insight into
changes that occur in organelle structure and localization in response to genetic perturbation.
We used this method to quantify the effects of a LOF mutation affecting USP9X on cilia in neural
rosettes. Our results demonstrate that 3D segmentation analysis is a powerful tool to assist
in the elucidation of ciliary localization patterns, count and size during neural induction and
maturation in health and disease. Utilizing unbiased analysis will allow for the investigation of
ciliary associated structural and spatial dynamics that contribute to neuronal function, neural
differentiation, neural progenitor proliferation, and neuroepithelial cell cycling.

Mutations in USP9X manifest as a severe heterogeneous congenital ciliopathy-like
disorder that affects multiorgan systems, and in particular the brain ®!°. Previous work
demonstrates this protein localizes to the cilium ° and centrioles 2 where it plays a role in

the regulation of ciliogenesis and centriole duplication 2. While no gross abnormalities in
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ciliogenesis or ciliary architecture were observed in USP9X patient derived fibroblasts °, we
aimed to develop tools to ascertain ciliary abnormalities in the brain. To gain insight into
the role of USP9X during neurodevelopment we quantitatively assessed the primary cilia in
neuroepithelial rosettes.

During embryogenesis, USP9X is essential for cell fate decisions in the central nervous
system 37, neuronal outgrowth and cortical architecture %%, USP9X has a vast array of
substrates and interacting partners (reviewed in &) that have been described to be involved
in signal transduction pathways including Hedgehog signaling 3, mTOR “*4* and WNT “?, all
of which play a role in early neural development. In mammals, neurogenesis begins with the
formation of neuroectoderm. Neuroectoderm gives rise to neuroepithelial progenitors that
propagate neurogenesis in the neural tube. Neuroepithelial progenitors give rise to glial and
basal progenitor cells. In vivo and in vitro neural rosettes form via apical constriction which
involves the narrowing of the apical domain of apicobasal polarized cells (reviewed in *3). The
apically located primary cilia of the neuroepithelium extend into lumen of the neuroepithelia
rosette, mimicking the in vivo development of the neural tube. It has previously been described
that in vitro, early stage rosettes do not have cilia that localize to the lumen and instead have
them dispersed throughout the neuroepithelial structure *. Accordingly, a hallmark sign of
rosette maturation is the appearance of primary cilia in the lumenal space. This previous work
36 suggests that, in light of the increased levels of extra-lumenal cilia in the USP9Xdel rosettes
observed at and prior to day 31, USP9Xdel cells may initially exhibit impaired differentiation as
compared to control cells but with time are able to catch up in their maturation trajectory as
defined by the localization of the primary cilium.

Previous work has demonstrated the Usp9x deletion in the mouse brain causes
premature differentiation of cortical progenitors ** and that NSC self-renewal and neurogenesis
is impaired *4. During murine neural development, the absence of USP9X has been correlated
with a disruption in cell cycle and premature pattern of neural progenitor cells ©. This potential
divergence in results could be explained by species-specific differences, e.g. in mice, Usp9x
does not escape x-inactivation ** while in human it has been described to “. Premature
differentiation of NPCs is often associated with microcephaly due to dysregulation of the
NPC pool ¥, however females with LOF mutations in USP9X did not exhibit symptoms of
microcephaly. Instead, two of 17 cases described display macrocephaly °, and macrocephaly
has been previously associated with impaired differentiation . Alternatively, Usp9x plays an
important role in polarization, and disruption of polarization genes also results in premature
differentiational of NPCs *. It is therefore possible that the extra lumenal cilia we observe at

day 31 do not result from delayed maturation, but instead from disorganized polarization of
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USP9Xdel neuroepithelium. Further experiments are necessary to determine the biological

underpinnings of USP9Xdel on neuroepithelial differentiation.

MATERIALS & METHODS

Microscopy

Confocal Z-series stacks (acquired at 0.18 um intervals) of ciliary structures were collected on
the Zeiss LSM880 confocal laser scanning microscope (405nm and 561nm diode lasers, argon
(458, 488, 514nm) and a 633nm laser) equipped with the Airyscan detector, using the 63x
Plan-Apochromat 1.4NA DIC oil immersion objective (Zeiss) and the 561 nm laser line. Zen 2.3

(black edition) software was used for Airyscan processing.

Image analysis

Image analysis was implemented using MATLAB 2018b. The raw tubular organelle analysis
channel was median filtered using a 3x3x3 neighborhood. Next, a Gaussian filter of size 5 and
standard deviation 2 was applied. After background subtraction, a global mask was defined
by thresholding. In addition to the global mask, a local mask was defined via a difference
of Gaussians, and subsequent thresholding. For computing the difference of Gaussians, the
local background image was defined by convolution of the median filtered mitochondrial
channel with a Gaussian filter of size 11 and standard deviation 1.25. This local background
image was subtracted from a foreground image defined by convolution of the median filtered
mitochondrial channel with a Gaussian kernel of size 11 and standard deviation 1. The local
mitochondrial mask was defined by thresholding of the difference of Gaussians (>4). The
final mitochondrial mask was defined by Boolean AND operation on the local and global
mitochondrial masks and subsequent removal of objects with less than 7 pixels. For single
cell analysis, this automated segmentation was combined with a manual segmentation of
single cells using the MATLAB function roipoly. In contrast to this segmentation strategy, the

extracted features were already previously described *.

iPS cell generation and culture

The iPSCs and iNeurons were generated as previously described *°. Control and UPS9X
patient derived fibroblasts were reprogrammed to iPSCs through retroviral transduction of
the Yamanaka factors Oct4, c-Myc, Sox2, and KIf4 5, USP9X patient and control iPSCs were
maintained on Matrigel (VWR 356239), in E8 flex medium (Thermo Fisher Scientific A2858501)
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supplemented with primocin (0.1 ug/ml, Invivogen ant-pm-1), and incubated at 37°C/5%C02,
with medium changes every 2-3 days, and passages 1-2 times per week using ReLeSR (Stem

Cell Technologies). For a more detailed description, see *°.

Neuronal differentiation

Neuroepithelial rosettes were generated as previously described *° using the dual SMAD
inhibition protocol. in brief cells were dissociated using accutase and plated as single cells
in E8 Flex medium supplemented with RevitaCell (ThermoFisher Scientific A2644501) in a
12 well plate coated with Matrigel. Once cells reached 95% confluence, they were switched
to neural induction medium containing a 1:1 mixture of N2 and B27 medium (called neural
maintenance medium NMM supplemented with 1 UM dorsomorphin (SelleckChem #S7306)
and 10 UM SB431542 (called neural induction medium NIM). N2 medium is made up of
DMEM/F12, N2 (GIBCO #17502-048), 5 [Jg/ml Insulin (GIBCO #13105002), 2mM GlutaMAX
(GIBCO #35050038), 100 UM non-essential amino acids (Sigma-Aldrich #M7145), 100 UM
2-mercaptoethanol (GIBCO #21985023), primocin (Invivogen #ant-pm-2); B27 medium:
Neurobasal (Invitrogen), B27 (GIBCO #0080085-SA), 2mM GlutaMAX, and primocin. Medium
was changed every day for the first 10 — 12 days while being monitored for neuroepithelial
induction based on change in morphology, cells were then split using ReLeSR to detach them
in bulk from the Matrigel coated plate and then transferred onto PLO/laminin coated plates.
Upon splitting, cells were kept for 24 hours in NIM and then switched to NMM supplemented
with 10 ng/ mL EGF (PreproTech #AF-100-18B) and 10 ng/mL FGF (PreproTech #AF-100-18B).
After PO split onto laminin, NMM was changed every other day.

Immunofluorescence

To visualize the cilia, neuroepithelial cells were split onto nitric-acid treated coverslips coated
with 50ug/mL poly-L-ornithine hydrobromide (PLO; Sigma-Aldrich #P3655-10MG) and 5 ug/
mL human recombinant laminin 521 (BioLamina #LN521-02). At DIV 6, 10, 24, 31, and 42
cells were fixed using 4% PFA/Sucrose. Cells were imaged using a Zeiss LSM880 with Airyscan
module, laser scanning microscope, equipped with 405nm and 561nm diode lasers, argon

(458, 488, 514nm) and a 633nm laser, at 63X magnification (with oil).
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Primary Use Host Dilution Manufacturer cat #
antibodies
ARL13B Ciliary Mouse 1:300 NeuroMab #75-287
membrane
marker
CTIP2 Neuronal Rat 1:200 Abcam Ab18465
MAP2 Neuronal marker Mouse 1:1000 Sigma #ab16667
Sox2 NPC marker Rabbit 1:300 Abcam #ab97959
Nestin NPC marker Mouse 1:200 Thermo Scientific #MA1-110
Pax6 NPC marker Rabbit 1:300 Covance #PRB-278P
Secondary antibodies Dilution Manufacturer Prod. NO.
Goat anti-Rabbit Alexa Fluor 488 1:300 Invitrogen #A11034
Goat anti-Mouse Alexa Fluor 586 1:300 Invitrogen #A11031
Goat anti-Mouse Alexa Fluor 647 1:300 Invitrogen #A21245
goat anti-guin.pig alexa Fluor 647 1:300 Invitrogen #A21450

Data are expressed as mean + standard error of the mean (SEM). Analysis was done using

one-way analysis of variance with Bonferroni post hoc correction, or two-tailed student’s

t-test, using GraphPad Prism 6 (GraphPad Software). P-values of P<0.05 and smaller, were

deemed significant. Sample sizes were based on our previous experiences in the calculation

of experimental variability, and are described, per experiment, in the corresponding figure

legends.
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SUPPLEMENTAL FIGURES
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Supplemental FIGURE 1. Schematic representation of the biochemical processing pipeline, and visual
representation of the staining strategy. (A) in vitro schematic of the variation observed in ciliated lumens
of neuroepithelial rosettes. Samples are imaged at a high magnification and resolution (in this case,
confocal microscopy using an Airyscan module for increased resolution at high magnification). (B) In vitro
samples are immunohistochemically stained and assessed using the Zeiss confocal equipped with airyscan
processing.
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Control

Day 6

Day 10

USP9Xdel

Day 6

Day 10

Supplemental figure 2: Cilia localization across differentiating cultures as indicated by ARL13B staining

on days 6 and 10 post dual SMAD inhibition treatment. Images are compressed Z-stacks. Scale bars are
50 microns.
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USP9Xdel

Day 24

Day 31

NMM Day 43

Supplemental figure 3: time course differentiation of neuroepithelium. Ciliary localization with DAPI
(gray) across differentiating cultures as indicated by ARL13B (red) staining on days 24, 31 and 43 post dual

SMAD inhibition induction. Ciliated lumens are indicated with a dashed white circle. Images are a single Z
plane. Scale bars are 20 microns.
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Loss-of-function mutations in USP9X disrupt ciliary architecture in iPSC-derived neural progenitors

<Supplemental FIGURE 4. Schematic representation of the separate processing steps included in the
custom MATLAB protocol. (A) By using Zeiss Airyscan module, we image the densely packed neuronal
soma at higher resolution than possible with standard confocal microscopy. (B) To retain the 3D structure,
we acquire several images in a z-axis orientation, starting and finishing “outside” of the neuron. (C) The
images contained in the stack are subjected to several processing steps. A median filter is applied, followed
by background subtraction to determine which signal represents mitochondrial signal. After background
subtraction, a global mask was defined by thresholding. In addition to the global mask, a local mask was
defined via a difference of Gaussians, and subsequent thresholding. For computing the difference of
Gaussians, the local background image was defined by convolution of the median filtered mitochondrial
channel with a Gaussian filter of size 11 and standard deviation 1.25. This local background image was
subtracted from a foreground image defined by convolution of the median filtered mitochondrial channel
with a Gaussian kernel of size 11 and standard deviation 1. The local mitochondrial mask was defined by
thresholding of the difference of Gaussians (>4). The final mitochondrial mask was defined by Boolean
AND operation on the local and global mitochondrial masks and subsequent removal of objects with less
than 7 pixels.
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Chapter 6

GENERAL DISCUSSION

Ciliopathies are a heterogenous group of genetic disorders that manifest as a result of defects
in the function or biogenesis of primary cilia. Advances in genetic diagnosis coupled with
functional studies on proteomics datasets has furthered our understanding of the role of specific
proteins in various structural domains of the cilium and how disruptions in these domains lead
to disease in various tissue types. Despite this forward momentum, an understanding of how
these neuronal disorders affect neural processes, such as brain development and function,
remains poorly understood.

In this work | aimed to investigate biological mechanisms associated with genetic
disorders that arise from primary cilium dysfunction. The research described in this thesis has
led to the characterization of novel centrosomal/axonemal-, ubiquitin-proteasome system-,
and microtubule-associated- ciliary proteins that when disrupted, result in disease. Herein,
a variety of approaches were used to identify and characterize disease genes. In Chapter 2,
ARMC9 was discovered as a potential Joubert Syndrome (JBTS) candidate gene via whole-
exome sequencing of the University of Washington (UW) Joubert Syndrome Research Program
cohort. Assessment of protein localization in RPE1 cells and analysis of ARMC9 patient-derived
fibroblasts demonstrated that ARMC9 localized to the basal body of the primary cilia and
transcripts of ARMC9 were upregulated during ciliogenesis. In Chapter 3, proteins interacting
with ARMC9 were identified using tandem affinity purification and yeast two-hybrid screening.
This proteomics-based approach enabled the identification of a new ciliopathy associated gene,
TOGARAM1, and aided in elucidating affected signaling pathways. TOGARAM1, a TOG array
protein, plays an essential role in modulating microtubule dynamics in the ciliary compartment,
and JBTS-associated variants in both ARMC9 and TOGARAM1 resulted in decreased levels of
the post translational modifications, specifically acetylation and glutamylation, of the ciliary
axoneme. In addition to its association with ARMC9, TOGARAM1 was found to interact with
CCDC66 and the JBTS-associated proteins CEP104 and CSPP1. Clinical assessment, functional
analysis, and zebrafish modeling revealed that mutations in both ARMC9 (Chapter 2) and
TOGARAMI1 (Chapter 3) give rise to JBTS.

In Chapter 4, | describe loss-of-function (LOF) mutations in USP9X that lead to a female
specific, multi-systems disorder. Affected females present with intellectual disability and
stereotyped brain malformations reminiscent of ciliopathy-associated anatomical brain defects,
such as malformation of axonal tracts including agenesis of the corpus callosum, asymmetrical
ventricle formation and Dandy-Walker malformation. USP9X localizes to the ciliary axoneme
however, in the functional characterization of fibroblasts derived from USP9X affected

females, it became apparent that a relevant neuron-specific model was likely necessary to
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unveil a tissue-specific phenotype. In Chapter 5, using iPSCs derived from fibroblasts obtained
from the USP9X affected individuals described in Chapter 4, | set out to establish a model
system for assessing USP9X specific mutations on cilia during neuronal development. While in
its early stages, the work in Chapter 5 suggests segmentation analysis of the cilia present on
neural progenitor cell (NPC) and other early neural cell types may indicate differences in ciliary

phenotypes during neurogenesis.

CILIARY POST TRANSLATIONAL MODIFICATIONS

The genes we identified in our investigations all encode proteins that are required for
cilium function. Interestingly, they are all, at least in part, required for proper coordination
of post translational modification (PTM) of ciliary proteins, either via the regulation of
polyglutamylation and acetylation of tubulin (ARMC9 and TOGARAM1 in Chapters 2 and 3)
or ubiquitination (USP9X in Chapters 4 and 5). PTM of proteins involves a range of regulatory
biological mechanisms that fine tune the functional capacity of the proteome by altering
the interactome, localization, function, and/or stability of the modified proteins. Almost all
eukaryotic proteins are post translationally modified and in humans, PTMs form interconnected

networks of >50,000 residues in about 6,000 proteins .

2.1 Post translational modifications regulate microtubule dynamics

Microtubules (MTs) are tubular, cytoskeletal components consisting of a3 tubulin heterodimers
organized in a head-to-toe, or plus- to minus-end fashion, to form protofilaments. These
protofilaments associate laterally to form a hollow tubular structure allowing for dynamic
changes in length and structure. MTs play an essential role in intracellular trafficking and cell
division. MT assembly or polymerization occurs at the plus-end. MTs are dynamic structures
that can respond to cellular factors by alternating between phases of growth, pause, and
shrinkage. MT catastrophe or depolymerization occurs at increasing frequency with age but
can also be induced by cellular factors such as fluctuations in the size and density of the
protective GTP MT cap. Additionally blocking the MT protofilament at the growing end of the
MT can induce catastrophe.

PTM function to generate a “tubulin code” to diversify the function, stability, and binding
of a myriad of proteins that localize to MT. The eukaryotic cytoskeleton undergoes a variety of
PTM that aid in cell cycle progression 2, cell type differentiation 3, and intracellular trafficking
along microtubule networks *®. PTM of tubulin are indispensable for proper MT function,

including tubulin stabilization ”® and disassembly °, and serve to influence local trafficking,
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motility, and interactions %!, Disruptions in the pattern, level, and distribution of MT PTMs

disturb homeostasis within the ciliary compartment.

2.1.1 Defective tubulin glutamylation and acetylation in Joubert
syndrome

Glutamylation occurs when the amino group of a free glutamate amino acid is conjugated to
the carboxyl group of a glutamate side chain within a target protein and it occurs on tubulin via
the action of a family of tubulin tyrosine ligase like (TTLL) proteins. Polyglutamylation decorates
the axoneme and plays an important role in microtubule severing °, IFT activity, and protein
binding ®2. Several JBTS-associated proteins including ARMC9 and TOGARAM1 (Chapters 2
and 3) have been shown to affect the PTM of microtubules 3. For example, polyglutamylation
of the ciliary axoneme is in part regulated by the JBTS associated proteins ARL13B and CEP41
1415 This is important for proper ciliary function as polyglutamylation levels act as a rheostat
° that is fine tuned to maintain ciliary equilibrium. Changes in glutamylation that result from
disruptions in ciliary glutamylases lead to hyperglutamylation, which reduce tubulin stability
and result in premature ciliary disassembly due to an increase in the level of the severing
enzyme, spastin °. Decreased levels of polyglutamylation result in decreased kinesin-2
mediated anterograde transport and thereby result in defective trafficking and hedgehog
signaling . Specifically, decreased levels of axonemal glutamylation inhibit hedgehog signaling
via aberrant localization of SMO and GLI3, which is potentially a result of defective anterograde
transport , as this mislocalization of SMO and GLI3 appears to be independent of defective
KIF7 targeting 6.

Additionally, acetylation of the cilium is important for motor protein binding and
movement, stability, and ciliary disassembly ** and aberrancies in acetylation can result in
microtubule instability as observed with dysregulation of the JBTS associated proteins KIF7
1718 and INPPSES *. Importantly, mutations in KIF7 172021 and INPP5SE 2223 result in abnormal
hedgehog signaling.

Recently, a genome-wide screen of hedgehog signaling components in mouse fibroblasts
found that more than 25 JBTS-associated genes modulate Hh signaling and additionally
identified ARMC9 as a positive regulator of this signaling cascade 2*. That study also
demonstrated that ectopically expressed ARMC9 translocates from the proximal end of the
cilium to the ciliary tip upon the induction of Hedgehog signaling, thereby suggesting ARMC9
may possibly play a role in the trafficking and retention of Gli proteins 2. Moreover, in the
absence of ARMCY, they found that cilia were shorter, and decreased levels of acetylation and

glutamylation were observed, consistent with our findings (Chapter 3). All ARMC9-TOGARAM1
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complex members have both ciliary base and ciliary tip locations 272 indicating dynamic
localization and potentially dynamic protein partnerships at each location. This suggests that
a proper temporal spatial distribution is required for proper ciliary structure maintenance and

function.

Figure 1: Post translational modifications of the ciliary axoneme. The ciliary axoneme under goes a
variety of post translational modifications including acetylation within the microtubule lumen (shown
in blue) and glutamylation (shown in red). Disruptions in these post translational modifications result in
aberrancies in ciliary architecture and signal transduction.
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Fragment 1 Fragment 2 Fragment 3 Fragment 4
TOG1 TOG2 TOG3 TOG4

Fragment 1 —--—
Fragment 3 -—:I.
Fragment 4 _I:H:I

Figure 2: Fragements of TOGARAML1 have different binding affinities to the microtubule lattice.
TOGARAM1 (red), ARL13B (green), scale bar 10 microns.

2.1.2 TOG-array domains regulate microtubule dynamics and
stability

TOGARAM1, also known as Crescerinl for the latin crescere meaning to grow, is a TOG array
containing protein that regulates microtubule structure within the cilium 2%, TOG domains were
first pinpointed in cytoskeleton-associated protein 5 (CKAP5), a MT polymerase then known
as ch-Tog (clonic and hepatic tumor overexpressed gene) 3 or XMAP215 3, which accumulates
at MT plus ends 2. TOGARAM1 has four TOG domains which function in concert to regulate
microtubule dynamics. Domains TOG2 and TOG4 act to potentiate tubulin polymerization
while TOG3 and TOG4 are essential for microtubule association and lattice binding activity
28, Qur studies assessing TOGARAM1 fragments and their capacity to localize to the cilium
suggest that an intact TOG3 and TOG4 domain are required for ciliary formation, microtubule
binding, and enrichment of TOGARAML1 at the tip, base, and along the ciliary axoneme.

We found that transfection in hTERT-RPE1 cells with a fragment containing TOG1 and
TOG2 alone (fragment 1; figure 2) did not disrupt ciliary formation but the mRFP-tagged
fragment could not enter the cilium, instead it appeared to collect at the ciliary base and did
not show overt indicators of microtubule lattice binding (such as co-localization with a-tubulin).
An intact TOG2 domain appears to be dispensable for ciliary formation and microtubule
binding, but important for ciliary homeostasis. Work from Das et al. has demonstrated that

the TOGARAM1 fragment containing amino acids 577-1776 (consisting of the linker region
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and TOG domains 3 and 4) shows lattice binding activity at a frequency of approximately 56%
and the degree of lattice binding is unchanged with full length TOGARAM1 containing an
Y364E mutation, located within TOG2 2. We found similar results and the capacity for cilium
formation with TOGARAM1 JBTS-variants R368W and L375P (Chapter 3) suggesting we might
see comparable affects with a fragment lacking TOG1 and TOG2, however further work is
needed to confirm this. Fragment 2 (figure 2) containing TOG2, the linker region, and TOG3
and 4 shows seemingly normal ciliary formation, microtubule binding, and localization to the
tip and base of the cilium.

A fragment containing TOG2, the linker region and TOG3 (fragment 3; figure 2) allows
for cilium formation but shows an enrichment of the fragment at the base and only low levels
of localization along the axoneme, and limited microtubule binding was observed with this
fragment. A fragment containing only TOG3 and TOG4 without the linker region showed
abrogated cilium formation, focal enrichment, and no microtubule binding capacity. In chapter
3, we see that patient variants in the TOG2 domain result in an absence of ARMC9 binding
but no apparent disruption in ciliary structure, while the patient variant in the TOG3 domain
result in severely stunted cilia. Nonetheless we found the WT and all 3 patient variants were
still able to bind microtubules (figure 2). Interestingly while KIF7 did not appear in any of our
proteomics data, preliminary work suggested a decrease in KIF7 localization at the ciliary tip in
unstimulated hTERT-RPE1 TOGARAM1 mutant cells lines (figure 3).

We show that ARMC9 directly interacts with the TOG2 domain of TOGARAM1, and JTBS-
associated variants in both genes lead to an attenuation of ciliary microtubule post translational
modifications and a differential effect on microtubule stability (Chapter 3). Work done in
various model organisms and mammalian cells has shown that a wide variety of microtubule
binding proteins function in concert to coordinate, maintain, and polymerize microtubules
11293536 Proteins containing tandem TOG domain repeats function to positively regulate
microtubule growth and stability. Microtubule binding protein dysfunction can give rise to
ciliary tip instability, resulting in aberrant microtubule dynamics and abnormal ciliary structure

37 This affects cilium homeostasis, causing abrogated signal transduction and disease.
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mRFP

mRFP-TOGARAM1

mRFP-R368W

mRFP-L375P

mRFP-R1311C

Figure 3: WT and mutant TOGARAML1 binds microtubules. TOGARAM1 (red), alpha-tubulin (green)

The ciliary tip compartment is essential for Hh signalling as important factors and mediators are
sequestered there during different stages of pathway activation. KIF7 acts to organize the ciliary tip *.
We found that disruptions of TOGARAML1 resulted in decreased SMO translocation to the ciliary tip, while
SMO has been proposed to enter the cilium via lateral membrane diffusion and to a limited extent IFT-
associated trafficking 3, the attenuated translocation likely results in abnormal Hh signaling.
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hTERT-RPE1
control

hTERT-RPE1
TOGARAM1 mut 1

hTERT-RPE1
TOGARAM1 mut 2

Figure 4: Decreased KIF7 localization in the ciliary tip in TOGARAM1 mut lines. RPGRIP1L (white), KIF7
(red), ARL13B (green), scale bar 2 microns

TOGARAM1 (CHE-12) and ARMC9 have been shown to, respectively, positively and
negatively regulate the extension of B tubules in the ciliary tip of Tetrahymena thermophila,
however loss of either TOGARAM1 or ARMC9 resulted in significantly shortened cilia. We
showed that the interaction between ARMC9 and TOGARAML1 is contingent upon TOGARAM1
possessing an intact TOG2 domain (Chapter 3). The structure of TOG domains is highly
conserved for microtubule binding, where the intra-HEAT loop within the discontinuous TOG
domain binds tubulin. Previously, it was described that TOG domains function to positively
regulate microtubule growth and dynamics 2. Interestingly, we found that overexpression of

wild type TOGARAM1 results in increased ciliary length. It has previously been shown that
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different TOG domains in TOGARAM1 have differential microtubule binding capacity and
likely function in concert to coordinate microtubule polymerization with the C-term TOG
domains TOG3 and TOG4 working to promote microtubule lattice binding 2. In hTERT-RPE1
cells, overexpression of the variants Arg368Trp and Leu375Pro, occurring in TOG2, results in a
dissociation of TOGARAM1 from ARMC9, however protein localization and ciliary architecture
remain intact when compared to wild type cells. Variant Arg1311Cys, which occurs in TOG3,
maintains its interaction with ARMC9 but produces severely stunted cilia, suggesting that
mutant TOGARAML1 is no longer able to support ciliary extension effectively. Concurrently,
if ARMC9 functions as a negative regulator of microtubule growth in mammalian primary
cilia as previously observed in Tetrahymena 19, this could in part, explain the resulting ciliary
architecture observed with overexpression of the Arg1311Cys variant and its difference with
the fragments with a disrupted TOG2 domain.

Relatively little is known about the biological function of ARMC9, however, Breslow et al.
provided evidence to suggest it plays a role in modulation of Hh signaling. ARMC9 translocates
to the ciliary tip shortly after Hh ligand binding, and in the absence of ARMC9, Hh stimulation
results in decreased translocation of both GLI2 and GLI3 to the ciliary tip. As no effect was
observed on translocation of SMO, the authors conclude that ARMC9 participates in trafficking
and/or retention of Gli proteins at the ciliary tip. As ARMC9 localization at the tip is transient,
and relatively shortly after stimulation (present at 4 hours post stimulation and absent after
30 hours) %, it would be interesting to investigate if ARMC9 plays a role in tip structural
organization, for example through its LisH Domain, as oppose to (or in addition to) complexing
with Hh related proteins. The fact that we did not find Hh signaling components in our TAP
dataset would be in line with this hypothesis, although many methodological explanations
such as expression levels in HEK293T cells, or lack of Hh signaling responsiveness, could also
explain this absence. Yamazoe et al., 2020 * recently demonstrated that the TOG domain in
CEP104 is essential for the entry of SMO and the exit of GRP161 upon Hh activation, indicating
that CEP104 plays an important role in cilium elongation and Hh signaling.

The importance of proper ciliary structure for intact ciliary function has been studied
in detail 243724 Qur work (Chapter 3) and that of others suggest that axonemal stability is
foundational for proper ciliary function and dysregulation of post translational modifications
of microtubules can compromise microtubule stability. Abrogated or abnormally enriched
post translational modifications result in disruptions in protein binding %> and dysregulation
of the ciliary proteome. Changes in the capacity to interact with motor proteins can result
in mislocalization of ciliary proteins which subsequently interferes with normal signal

transduction. Therefore, manipulation of post translation modifications of microtubules and
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analyzing subsequent changes in protein trafficking and signal transduction, could provide
important insight into the mechanism of JTBS and our fundamental understanding of the

proteome of the cilium in general but also of its subdomains.

2.2 UBIQUITINATION

Ubiquitin, a post translational modifying protein, most well characterized for its role in protein
degradation, is emerging as an essential component of ciliary biology *. The post translational
modification ubiquitination is a highly complex regulatory code that orchestrates a variety
of cellular processes *°. Ubiquitin acts in dynamic protein tagging to control an essential
array of biological processes including protein turnover, transcription, DNA damage repair,
endocytosis, autophagy, and immune homeostasis ¢, The fate of ubiquitinated substrates
is determined by chain topology and specific enzymatic interaction partners. In addition to
its role in protein turnover, the 76 amino acid, 8,5 kDa protein is attached to target substrate
lysines to orchestrate essential cellular processes such transcription, endosomal sorting,
autophagy, cell cycle, chromatin structure, and embryonic development. Ubiquitination is the
process by which an exposed C-terminal end of ubiquitin is covalently linked to lysine residues
in target substrates via a multi-enzymatic process with the aid of ATP in three essential steps:
activation, conjugation, and ligation. These steps are orchestrated by an E1 activating enzyme,
an E2 conjugating enzyme, and an E3 ligase. The diverse functional capacity of ubiquitination
is due in part to the vast array of differential chain topologies that can be generated. Ubiquitin
conjugates can exist as a single moiety, known as monoubiquitin, or polyubiquitin chain as the
seven internal lysines and N-termini methionine can form different isopeptide linkages types
with differing three-dimensional structures (K6, K11, K27, K29, K33, K48, K63, and Metl).
The specific E2 and E3 enzymes recruited to the target substrate dictate the design of these
chains (reviewed in #’). Ubiquitin chain topology is likely a key factor in differential targeting of
proteins to one of the three major degradation pathways in mammalian cells: the proteasome,
the lysosome, or the autophagosome. Ubiquitin marks receptors to be endocytosed to
the lysosome and organelles for disposal via autophagocytosis (reviewed in ). Transient
interactions are formed between specialized ubiquitin binding domains and ubiquitin moieties
and these interactions regulate the aforementioned processes. Defects in the ubiquitin
systems lead to a variety of pathologies such as autoimmune diseases, neurodegenerative

conditions and cancer (reviewed in “°)._
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2.3 UBIQUITINATION OF CILIARY PROTEINS

Over the past decade the components of the ubiquitin proteasome system (UPS) have been
recognized to play an indispensable role in the fate and function of target protein and forms
an active regulatory component of ciliary signal transduction processes. Ubiquitin plays an
essential role in flagellar disassembly. The ubiquitin proteasome system (UPS) coordinates
flagellar absorption prior to cell cycle re-entry. Using flagella isolated from the green algae
Chlamydomonas reinhardtii, Huang et al., demonstrated that these organelles contain a fully
functional ubiquitin system, including both free ubiquitin and the enzymes necessary for

activation, conjugation, and ligation #°.

2.3.1 Defective ubiquitination in ciliopathies

Aside from the essential role of proteasomal degradation in ciliary maintenance and
disassembly, mutations in a number of E3 ligases, the enzymes that catalyzes the attachment of
ubiquitin to target lysines, result in ciliopathies. Examples of these mutated E3 ligases include
TOPORS in retinal degeneration *°, pVHL in VHL syndrome a disorder characterized by cysts in
the kidneys, pancreas, and genital tract >, and KLHL7, which is found in complex with Cullin E3
ligases, in retinitis pigmentosa 24, Polycystin-2, the protein encoded by PKD2 that is mutated
in the renal ciliopathy Autosomal Dominant Polycystic Kidney Disease, (ADPKD) requires a
proper balance between the serine/threonine kinase (NIMA-Related Kinase 1) NEK1 and the
E3 ubiquitin ligase TAZ the proper protein maintenance required for normal ciliogenesis .
Ubiquitin in the ciliary compartment has further been characterize as essential for trafficking
activated GPCR, including SSTR3 and GPR161, out of the cilium. Desai et al. and Shinde et al
show that SMO translocation in to the ciliary compartment is actively trafficked out by the
BBSome complex upon K63 ubiquitination >*’. SMO accumulates in the cilium in the absence
of ligand in the absence of ubiqutination as it cannot be trafficked out by the BBSome complex.

Eguether and colleagues describe a role for CYLD in ciliogenesis 8. CYLD is a DUB known
to specifically catalyzes the removal of K63 and linear chains *°, which is especially interesting
in light of the recent findings that the cilium is enriched with K63 ubiquitin chains *’. Described
mutations in the catalytic domain of CYLD result in appendage tumors known as cylindromas
0, CYLD localizes to the centrosome and basal body in non-cycling cells via its interaction with
the centrosomal protein CAP350. Researchers saw that multi-ciliated cells did not readily form
cilia in the presence of catalytically inactive CYLD however they found that in the complete
absence of CYLD, cells were able to undergo ciliogenesis *®. A potential mechanisms for this

is that in the absence of CYLD, another DUB is able to coordinate the activity necessary for
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normal ciliogenesis however in the presence of the catalytically inactive form of CYLD, the
mutated DUB acts as a dominant negative, thereby resulting in binding which blocks the
removal of K63 and/or linear ubiquitin chains from ciliary proteins.

CYLD ubiqutination Cep70 and inactivates the enzyme Histone deacetylase 6 (HDAC6)
to aid in primary cilium formation. HDAC6, aside from acting as a histone deacetylase to alter
chromatin structure also, plays a role in the aggresome-autophagy pathway, which mediates
destruction of damaged organelles and protein aggregates to prevent proteotoxic congestion
of cellular compartments 7°, and as previously mentioned, acts in ciliary disassembly *°. CYLD
knockout mice manifest with symptoms of polydactyly, impaired sperm production, and
decreased number and length of cilia as well as disorganization of the ciliary axoneme in the
skin, tracheal epithelium, and kidney tissue when compared to wild type mice. The ciliary
shortening defect was partially rescued with administration of HDAC6 inhibitors 7. siRNA
depletion of CYLD in RPE1 cells resulted in decreased levels of centrosomal Cep70 which
could account in part for the impairment in cilium formation 6. However it is interesting
that Eugether et al. found no ciliary defect in the absence of CYLD while Yang et al. found a
phenotype reminiscent of ciliopathies in both the mouse model and in vitro culturing system.
During axoneme extension, the KCTD17, a substrate adaptor, acting in concert with the Cul3
E3 ligases degrades the negative regulator, trichoplein, leading to inactivation of Aurora A
kinase, and cilium elongation 2%. Trichoplein is located at the subdistal/medial zone of the
mother centriole, and upon serum starvation, trichoplein is degraded via the proteasome.
Utilizing a two-step E3 ligase screening technique Kasahara and colleagues identified KCTD17
as the substrate adaptor for the Cul3-RING E3 enzymes that poly-ubiquitination trichoplein
leading to its proteasome mediated destruction. Aberrant activity of the trichoplein-Aurora A
kinase axis results in the absence of KCTD17, thereby inhibiting cilium formation. Ciliogenesis
perturbation results in response to proteasome inhibitor MG132. Indeed, Kasahara and
colleagues show that cilium formation is almost completely abrogated in response to MG132
treatment, and they are able to attribute this dysfunction of the stabilization of trichoplein 2.

Ciliogenesis is intricately linked with the cell cycle and the cell cycle with its regulatory
ubiquitin machinery. Ciliary assembly begins during the G1/G phase of the cell cycle and
disassembly is initiated as the cell enters S phase (reviewed in ). The anaphase promoting
complex (APC), which regulates the onset of anaphase and allows for sister chromatid
separation, acts to destabilize microtubules in the cilium, thereby aiding in its deconstruction.
APC achieves this by targeting the ciliary kinase Nek1 for degradation %2. Wang et al have shown
in their recent work on the role of APC in quiescent cilated cells, that the APC coactivator cdc20,

shown to localize to the basal body, plays an important role in ciliary disassembly. Inhibition
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of the APC-cdc20 complex results in elongated cilia while overexpression of cdc20 decreases
ciliary formation °*°3, Several mitotic regulators have been implicated in ciliogenesis including
Aurora A kinase ® and the NIMA-related kinases such as Nek1 ®-%, Wang et al suggest that the
E2 conjugating enzyme Ube2s is require in conjunction with APC-cdc20 for ciliary shortening ©’.
These data suggest important co-factors involved in cell cycle regulation also play an important
role in ciliary construction and deconstruction.

Immunofluorescence studies have been used to visualize the subcellular localization
of proteasomal components and demonstrate an enrichment of proteasomal machinery
near the mammalian centrosome %7, Work from Gerhardt and colleagues implicated
Rpgripll as an interactor of the 19S proteasomal subunit Psmd2, and demonstrated that it
regulates proteasomal activity at the basal body via this interaction. Rpgrip1l deficient mice
demonstrate severely disturbed ciliary signal transduction which was linked to a decrease in
proteasomal activity due to the absence of the interaction between Rpgrip1l and Psmd2 72, Lui
et al., showed that loss of ciliopathy associated proteins BBS4 or oral-facial-digital syndrome 1
(OFD1), intracellularly located at the centrosomal satellites, leads to accumulation of signaling
mediators that are normally targeted to the proteasome for degradation. In normal conditions
BBS4 and OFD1 associate with subunits of the proteasome and in conditions where BBS4 and
OFD1 are functionally impaired, multiple proteasomal subunits that normally localized to the

centrosome are absent 67375,

2.3.2 USP9X, a deubiquitinating protein at the nexus of ciliary and
neuronal processes

The removal of ubiquitin is mediated by isopeptidases known as deubiquitinating enzymes
(DUBs). These enzymes act to hydrolyze the isopeptide linkages that conjugates ubiquitin to
its substrate lysine or N-termini and in that way counteract the activity of E3 ligases. There
are predicted to be approximately 95 DUBs encoded for by the human genome ¢, and
theses enzymes display a high degrees of specificity due to multiple layers of regulation that
modulate their activity. Ubiquitin homeostasis is maintained through the action of DUBs as
they coordinate the extent of substrate ubiquitination and the availability of free ubiquitin.
Specific DUBs are responsible for post-translational processing of the ubiquitin precursor
proteins UBA52 and RPS27A 77. DUBs are capable of not only removing chains from target
substrate but also editing chain topology, thereby rescuing a substrate from proteasome
degradation, altering protein - protein interaction, or allowing a substrate to be modified by

an additional post translational modifier such as a phosphate group.
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USP9X encodes an X-linked DUB that plays a pleiotropic role in a variety of cellular
processes and appears to be essential for fine tuning protein localization and signal
transduction. Since the first male patients with USP9X mutations were characterized in 2014
by Homan et al. ® and female patients (Chapter 4) in 2016 7, extensive research has been
done to unravel the role of USP9X in centrosomal and ciliary biology and understand its effect
on neural development in humans. USP9X localizes to the centrosome and cilium and has
been linked to numerous ciliopathy associated proteins in proteomic studies . The subcellular
localization of USP9X is dynamic and dependent upon cell type and cell cycle phase. USP9X
and USP7 are essential for proper chromosomal alignment at spindle poles and accurate
division during anaphase, and play an important role in the spindle assembly check point.
USP9X associates strongly with the centrosomes during S and G2 phases, but declines in G,.
It is largely absent from the centrosomes during metaphase #. During S phase, SF11 acts
to localize USP9X to the centrosome where it acts to deubiquitinate and stabilize STIL and
promote centriole duplication . During GO, G1, and S phase, NPHP5 recruits a portion of the
cytoplasmic pool of USP9X to the centrosome where the DUB acts to protect NPHP5 from
thereby supporting ciliary assembly. Beginning in the G, and extending into the M phase of the
cell cycle, USP9X is translocated away from the centrosome, thereby allowing BBS11/TRIM32
to ubiquitinate NPHPS5 via K63 chains resulting in its removal from the centrosome and ciliary
disassembly &,

USP9X plays an essential role in cell cycle progression and centrosome duplication 8.
During the G and S phase transition the single G, centrosome begins its duplication process
which is completed during S phase such that two centrosomes are present in G, thereby
acting to facilitate bipolar spindle formation during metaphase. During cytokinesis, the two
centrosomes are segregated with one being designated into each daughter cell. An essential
feature of centrosome replication is centriole duplication which occurs as the pre-existing
mother centriole, that nucleated the cilium during GO and G1, duplicates itself and forms a
daughter centriole. This process is regulated in part by the kinase PLK4 and two SCF ubiquitin
E3 ligases which act to ensure that only a single replication event occurs per cycle. The loss
of USP9X impairs centrosome duplication and gain-of-function or overexpression results in
centrosome amplification and chromosome instability. &

Work overthe pastdecade has confirmed the essential role of USP9Xin brain development
and function. USP9X is highly expressed in neural progenitor cells (NPCs) during mouse # and
zebrafish 8 embryogenesis. While overall expression levels are reduced in adulthood, they are
maintained in the adult neural progenitor niches #. USP9X is essential for NPC polarization

and organization during nervous system development and subsequent cortical architecture.
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Loss of USP9X results in the disorganization of the ventricular, subventricular and cortical plate
architecture during early brain development. Additionally specific deletion of USP9X from the
dorsal telencephalon resulted in a reduction or complete loss of the corpus callosum and a
decrease in hippocampal size ¥.

USP9X regulates primitive identity in progenitor cell types % as well as the development
and function of post-mitotic mature neurons. USP9X interacts with Ankyrin-G, a scaffolding
protein that links the plasma membrane to the actin / beta-spectrin cytoskeleton, to
regulate dendritic spine development and in the absence of USP9X synaptic abnormalities
result, including decreased cortical spine density and size. The impairment results from a
transient depletion of Ankyrin-G that leads to a persistent neuronal structural defects as well
a behavioral issues 2. Deletion of USP9X results in reduced hippocampal neuron outgrowth
due to deregulation of TGF[3 signaling. USP9X both positively and negatively regulates TGF[3
signaling. It functions to promote TGF[3 signaling via the deubiqutination and stabilization
of Smad4. Deubiqutination allows Smad4 to form a complex with phosphorylated receptor
Smads, translocate to the nucleus, and modulate transcriptional responses to TGF[3 family
ligands . Mouse neurons lacking USP9X are unresponsive to TGF[3 signaling activation ¥’.
Conversely USP9X suppresses TGF[3 signaling by the stabilization of the E3 ligase SMURF1,
which promotes the degradation of TGF[3 receptors **°%. Interestingly TGF[3 signaling directly
regulates the function of USP9X in dendritic development via the serine/threonine kinase
phosphorylation activity of the TGF-beta receptor | and Il ® by enhancing its the interaction
between USP9X and Ankyrin-G %, this activity is independent of the ability of USP9X to
modulate TGF[3 signaling .

The drosophila fat facets (faf), the USP9X homologue, was first identified in a mutagenesis
screen as an essential protein in the development of the syncytial stage of embryogenesis
and in photoreceptor fate determination 4. Overexpression of faf disrupts synaptic outgrowth
by increasing the number of synaptic boutons, synaptic branching, and attenuated synaptic
transmission at the neuromuscular junctions. Interestingly, dysregulated endocytosis may
be a causative feature in the altered synaptic growth °. Conversely, in a separate study the
overexpression of faf lead to a loss of synaptic boutons due to a resultant Parl overexpression,
faf acts to deubiquitinate phosphorylated Parl enhancing its activity, Faf overexpression

rescued the defect .
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2.4 CROSS TALK BETWEEN UBIQUITINATION AND
PHOSPHORYLATION IN MTOR SIGNALING

We found that female patients with loss of function mutations in USP9X present with brain
abnormalities including intellectual disability, agenesis of the corpus callosum, Dandy-Walker
malformation, and asymmetric enlargement of the lateral ventricles (ventriculomegaly)
(Chapter 4) 7°. Male patients also present with CNS disturbances including white matter
abnormalities, thinning of the corpus callosum, widened ventricles and global delay °°.
Ventricular morphogenesis is a complex process that relies on proper microtubule regulation,
ciliary formation, and properly tuned mTORCL1 signaling *’.

The mammalian/mechanistic target of rapamycin (mTOR) is a serine-threonine kinase
that is a key modulator of metabolism in eukaryotic organisms. It functions to modulates
a variety of cellular processes including protein translation and degradation, metabolism
and cytoskeleton dynamics. In mammals mTOR functions via two distinct complexes mTOR
complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Cilia play a role in restricting mTORC1
signaling which is essential for cellular quiescence.

Itis possible that LOF mutationsin USP9X resultin disruptions in mTORC1 signaling via the
primary cilium and thereby cause ventriculomegaly. Ventricular morphogenesis is disrupted in
mutant RG cells that lack a primary cilium due to the absence of IFT88 or KIF3A. Cilia regulate
the size of the ventricular apical domain of radial glia cells via mTORC1 modulation. In the
absence of the primary cilium, the orientation of the mitotic spindle is disrupted and there is
an increase in basal progenitor number and a decreased number of cortical neurons at later
stages. Enlarged apical domains of radial glia cells results in dilation of the ventricles. °® USP9X
likely plays a complex role in the modulation of mTOR signaling which may be cell type and
developmental phase dependent. However, we found assessing mTOR in skin fibroblasts to
be a precarious undertaking. The variability in results and the changes over time lead us to
venture towards a more relevant cell types and disease model for neuronal ciliopathies and
while the abnormalities we observe in individuals with LOF mutations in USP9X could indeed
be linked to abnormalities in mTOR signaling via the primary cilium and further work is need

to understand the observed defects in axonal tract formation.
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Loss of USP9X

Figure 5: mTORC1 signaling in the presence and absence of USP9X.

mTOR associated proteins that localize to the ciliary compartment include liver kinase B1 (LKB1), AMP-
activated protein kinase (AMPK), and polycystin-1 (PKD1) and 2 (PKD2). Several tumor suppressors and
oncoproteins mediate mTORC1 signaling, a key regulatory complex consists of TSC1 and TSC2 which act to
inhibit mTORC1 by activating at the GAP complex for the GTPase Rheb. In the absence of growth factors,
LBK1 activity leads to the activation of AMPK which in term phosphorylates TSC2 leading to the inhibition
of Rheb thereby decreasing signaling via mTORC1.

Much like its relationship with USP9X, mTOR signaling and the primary cilium have a
complex and seemingly contradictory relationship. It has been shown that both TSC1 and TSC2
deficient cells possess longer cilia % however other studies have found shorter cilia in TSC2
deficient cells 1, Additionally mTORC1 activation via Rheb overexpression leads to longer cilia
101 And the induction of autophagy has been shown to both increase ** and decrease ciliary
length 3, It is of course possible that mTORC1 activation must be titrated to either increase
or decrease ciliary length, the increase in mTORC1 may provide the protein building blocks for
elongations of the primary cilium thereby indirectly promoting ciliary lengthening whereas
autophagy may act directly to support ciliary formation and elongation and the inhibition of
this decreases ciliogenesis. These effects may be tissue, cell type, and stage of development
dependent.

USP9X has been shown to be a regulator of mTOR via multiple axes, USP9X acts as
a key regulator of AMPK-related kinase activation via the removal of ubiquitin chains to
allow for LBK1 phosphorylation of NUAK1 and MARK4 (polarity proteins) leading to their
subsequent activation (Figure 4). Furthermore, USP9X plays a complex and dynamic role in
mTOR signaling, it has been shown to directly interact with mTOR, RAPTOR, and RICTOR,
suggesting a role in the modulation of both mTORC1 and mTORC2 signaling. USP9X can exert
influence over multiple points of mTOR signal transduction. Theoretically its role as a AMPK-
like kinase interactor, specifically with MARK4 and NUAK1 %, results in mTOR repression. Via
its role as an interactor of both RAPTOR (mTORC1) 1 and RICTOR (mTORC2) ¢ USP9X would
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theoretically serve to activate mTOR signaling. In its association with RAPTOR, USP9X rescues
RAPTOR from proteasomal degradation . Via its interaction with RICTOR, USP9X enables
the interaction between RICTOR and mTOR, thereby playing an essential role in the formation
of the mTORC2 complex °°, Not surprisingly seemingly conflicting data of the role of USP9X
has emerged overtime, however due to the complex interplay between USP9X where it acts
as both a positive and negative regulator, coupled with differential needs of mTOR signaling
in varying cell types gives rise to the possibility that USP9X has differing roles in modulating
mTOR signaling in different cell types, during different stages of development. While both
mTOR and USP9X have been shown to be indispensable for proper neuronal development and
plasticity, it would be interesting to assess the divergence between their mechanism of action.
Specifically, mTOR has also been shown to play an important role in cytoskeletal plasticity via
its regulation of actin dynamics. Andrews et al., demonstrated that mTOR signaling regulates
the architecture of the neocortex by curating the organization, morphology, and mitotic
behavior of oRG cells and the radial scaffold. mTOR acts to change the actin cytoskeleton via
the activity of the Rho-GTPase CDC42.
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Chapter 7

STATEMENT ON FAIR RESEARCH DATA MANAGEMENT

The data generated in the studies performed during my PhD were in accordance with the
principles of the Declaration of Helsinki. The data is archived according to the Finable,
Accessible, Interoperable, and Reusable (FAIR) principles. Experimental data obtained
during my PhD at the Radboud university medical center (Radboudumc) were documented
in validated, securely archived lab-journals or, in case of digital data, stored on secure data
storage drives of the Radboudumc, Department of Human Genetics. All data is accessible by
the associated authorized scientific staff members. Data, including exome sequencing data, in
the published articles are available from the associated corresponding authors upon request.
All zebrafish experiments were performed in accordance with local laws on animal protection
of the associated collaboration institutes. All patient information and materials used for the

studies in chapter 2, 3, 4, and 5 provided informed consent to their respective clinicians.
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to all of you for helping me get to where | am today.
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Chapter 7

Ollie, my shared first and last co-author, team mate, co-parent of Sushi and Soba, and love of my
life. Thank you for all the support, advice, and adventures. Thank you for helping me manage
anything and everything that has come my way. From traveling the world to watching Netflix
in pajamas, | have enjoyed every moment with you and look forward to all the adventures and

evenings on the couch to come. | love you.
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