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INTRODUCTION
Healthcare-associated infections
Healthcare-associated infections (HAIs) are infections that patients can acquire during their 
stay in a healthcare facility, such as hospitals or nursing homes, and which were not present or 
incubating at the time of admission. HAIs can develop at each body site or organ system, but 
are often associated with devices used in care, such as catheter-related bloodstream infections 
(CRBSIs), catheter-related urinary tract infections, ventilator-associated pneumonia, or 
related to operative procedures such as surgical site infections (SSIs).1 

The burden of HAIs differs throughout the world: the prevalence is higher in low- to middle 
income countries compared to high-income countries.2 As reported by the European Centre 
for Disease Prevention and Control (ECDC), on a daily basis 3.5% – 10.5% patients acquire a 
HAI in Europe, resulting in approximately 4 million patients with a HAI and 37,000 deaths each 
year.3 Thereby, higher rates are reported for intensive care units and high risk populations.4-6 
In the Unites States (US), each year around 4.5% (1.7 million) patients are affected resulting 
in an economic burden of 6.5 billion US dollar.7,8 In the Netherlands, in 2020 around 7.1% 
of the admitted patients developed a HAI with SSI, lower respiratory tract infections and 
bloodstream infections most prevalent.9 Although sometimes HAIs can be treated easily, in 
the majority of patients HAIs lead to prolonged hospital stays, increased use of antimicrobial 
agents, increased morbidity, excess deaths and high burden and costs for health systems, 
patients and their family.1,2,10-14 Especially if the HAI is caused by an antimicrobial-resistant 
microorganism, treatment can be difficult or even impossible with detrimental consequences 
for the patient.15 

Surveillance of healthcare-associated infections
Several studies, in particular the ground-breaking US SENIC project (Study on the Efficacy 
of Nosocomial Infection Control) published in 1985, demonstrated that surveillance plays 
an important role in HAI prevention and control.16-19 The Centers for Disease Control and 
Prevention of the US defines surveillance as ‘the ongoing, systematic collection, analysis, and 
interpretation of health-related data essential to planning, implementation, and evaluation of 
public health practice’.20 By performing surveillance, the data collected are reported back to 
clinicians and stakeholders and will provide insight in trends. Actions and interventions can 
be undertaken in response to increased infection rates in order to improve patient safety.21 

Although monitoring infections may seem like an easy task, in practice it is complex because 
the surveillance requires standardised case definitions, alignments in diagnostic methods, 
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1clear inclusion rules for the population under surveillance (the denominator), and expertise 
within the hospital to conduct the surveillance and to interpret the surveillance results. In 
addition to  these factors, correction for case-mix is required for meaningful interpretation 
of results within and between centres. Several surveillance networks have been established to 
provide guidelines and surveillance protocols to obtain reliable and comparable results. For 
example, in the Netherlands the nosocomial surveillance network PREZIES was established in 
1996, Germany started the KISS network in 1997 followed by the French RAISIN in 1998; all 
coordinated by national public health institutes.22-25 Most national networks also participate 
in the European Network HAI-Net, which is coordinated by the ECDC.26,27  

As HAIs are considered preventable, national and local healthcare inspectorates, hospital 
boards or insurance companies use HAI rates obtained by surveillance for benchmarking, 
public reporting, and to evaluate quality.28,29 In a number of countries the growing demand for 
transparency and accountability by media, accreditation organisations and legislative bodies 
has resulted in mandatory participation in surveillance networks and public disclosure of HAI 
rates.29 In countries such as the US, the surveillance results are used in pay-for-performance 
programmes with financial penalties based on HAI occurence.21,28,30,31 

In most hospitals, surveillance is performed manually by an infection control practitioner 
(ICP) according to the national surveillance protocol and guidelines. Each (electronic) record 
of each individual patient is retrospectively screened for inclusion rules, and whether the case 
definition applies. Although this traditional way of performing surveillance is seen as the 
reference standard, it is considered labour-intensive, prone to subjectivity, and poor interrater 
reliability has been reported.32-37 Furthermore, it seems that ICPs with increasing experience 
enhances case finding, and that within the first years of surveillance activity sensitivity may 
be impaired.38 Therefore, the traditional surveillance is often seen as ‘the-more-you-look-
the-more-you-find’ principle and the reliability and comparability of surveillance data are 
therefore disputed.34,39,40 

Automation is considered as the possible solution to overcome the drawbacks of the 
traditional way of performing surveillance as it will decrease variability and subjectivity 
across institutions and reduces workload.41 The move towards automation is supported by 
the availability and developments of electronic medical record systems, which evolved in the 
1980’s from paper files to electronic medical records in which patient encounters and follow-
up notes were recorded. The current state of electronic health records (EHR) differs from the 
standard electronic medical record from the 1980’s as it contains a broader view of the patient 
(e.g. including clinical data, administrative data and diagnostic test results), integrates data 
from ancillary systems, and therefore provides multiple opportunities for sharing, linking, 
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online access and research.42-45 The improvements in information technology infrastructures 
and the increased use of HAI metrics as a quality indicator have led to an increased demand 
for more standardisation by automated surveillance systems to – partially or completely – 
replace human work. 

Automated surveillance
Over the past years, several automated surveillance (AS) systems have been developed targeting 
different types of HAIs. Surveillance of HAIs can be automated to varying degrees, but in general 
there are two methods: semi-automated and fully automated surveillance (Figure 1.1). In semi- 
automated surveillance, an algorithm classifies patients in low- or high probability for a certain 
HAI. The high-probability records need manual assessment to confirm or reject the HAI, the

 

Figure 1.1. Overview of semi-automated and fully automated surveillance of healthcare-associated 
infections. Patients are included in surveillance based on administrative records (e.g. admission records 
or procedure codes) (1). For these patients, the required administrative and/or clinical data are extracted 
from EHRs (2). Some data may be obtained through data warehouses (3), whereas other data may need 
to be extracted directly from unlinked EHRs (4). Some data sources require cleaning or pre-processing 
before they can be incorporated in an algorithm (5). In the case of semi-automated surveillance, the 
algorithm classifies patients as having a low or high HAI probability (6). Medical charts of high-
probability patients are manually evaluated by an infection control practitioner to assess HAI status (7), 
whereas low-probability patients are assumed not to have developed an HAI (8). In the case of fully 
automated surveillance, the algorithm classifies patients according to their HAI presence or absence 
without manual confirmation (9). Finally, denominator data (number or time at risk) are obtained (10), 
either manually or electronically, and combined with the numerator (HAI cases) to determine the HAI 
incidence (11). For unbiased interpretation of the incidence, determination of risk adjustment variables 
(e.g. surgical wound class, American Society of Anaesthesiologists score, prior surgery) is indispensable, 
and should ideally be collected electronically as well (12). 
Abbreviations: EHRs = electronic health records; HAI = healthcare-associated infection. 
Figure and legend from Sips et al. 2017.49
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1low-probability records are assumed free of HAI. By applying this method there is still a manual 
confirmatory step, however, this allows for nuanced clinical interpretation of the patient’s condition 
and thus acceptance in the field.21,46,47 In fully automated surveillance, the algorithm classifies 
patients in having an HAI or not without any human interference. This is even more standardised 
and time saving compared to semi-automated surveillance, however requires highly standardised, 
complete data sources and adapted, objectified case definitions.21,48-50 Subsequently, the construct 
that is targeted by the AS may differ from the conventional case definition and may therefore not 
be favoured by clinicians.46,51 Results of both AS methods are promising, not only in terms of time 
saving, but also because of high sensitivity (70% to 100%).52,53 Studies reported even superiority of 
AS compared to manual surveillance as more HAIs were detected by the algorithms.54-58

In both semi- and fully automated surveillance, input source data is required. Algorithms 
may combine multiple routine care data to optimise case finding, such as administrative data, 
demographics, clinical chemistry, microbiology-, pharmacy-, or radiology information, or 
narrative clinical information.49,52 Data types are either in structured format (e.g. admission 
dates, medications or microbiology results) or unstructured free-text narratives (e.g. clinical 
progress notes, radiology reports or discharge summaries).43,59,60 Most of these sources are 
stored in the EHR or brought together and linked with information from other medical 
information systems within a so called digital data warehouse or clinical data repository. 
Some studies used administrative codes only, such as International Classification of Diseases 
(ICD)-10, however this was considered inaccurate.61-64 Generally, algorithms deploying 
multiple different data sources lead to better case finding.54,65,66 

The selection and use of data sources or indicators for algorithm development is first dependent 
on data availability, and subsequently on expert (clinical) knowledge, statistical methods, 
machine learning, artificial intelligence or fuzzy logic techniques.67-75 In case of unstructured 
data, techniques such as text mining or natural language processing are required.59,76,77 The 
majority of algorithms are classification algorithms to determine the HAI state, or rule-based 
algorithms that represent infection criteria from the case definition.78-85 The complexity 
between methods varies, but in general, the more understandable for clinicians and IPC staff 
the better acceptance and chances for implementation in the field.48 

Despite the developments in EHRs and international publications of several (successful) 
surveillance algorithms, surveillance is still performed manually in many settings and algorithms 
are rarely used in daily practice. This is mainly because the majority of AS systems that have 
been described are developed in a research setting, applied to one dataset to perform the 
investigation, and limited to a single – often academic – centre.86 Crucial information needed for 
implementation is often not reported, such as selection of the study population (denominator) 
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or maintenance activities of the system. Two systematic reviews by Cato et al.86 and Streefkerk 
et al.53 report the lack of validation of data completeness, validation of the denominator, or 
having a separate cohort to validate the algorithm performance, reducing the reliability and 
reproducibility of these AS methods. Moreover, a review of de Bruin et al.54 reported that only 
8 (25%) AS systems included in their review were used in clinical routine. Hence, knowledge 
about generalisability and feasibility of AS methods for large-scale implementation is lacking 
and there is minimal experience in how to use and organise AS in daily routines.

THESIS AIM AND OUTLINE 
The aim of this thesis is to evaluate current traditional surveillance methods and to explore 
the feasibility and generalisability of AS methods in different hospitals. 

In the first part of this thesis, the value and usefulness of surveillance data is demonstrated 
by two studies: Chapter 2 presents the effect of antibiotic-impregnated external ventricular 
drains as opposed to plain silicone drains on the occurrence of ventriculostomy-related 
infections, and in Chapter 3 the change in HAI rates in Dutch hospitals during the SARS-
CoV-2 pandemic is investigated.

In the second part of this thesis the current traditional surveillance activities in the Netherlands 
are evaluated. In Chapter 4 we explored experiences of ICPs and medical professionals regarding 
the CRBSI surveillance and CRBSI definition, and their suggestions for improvements. 
Subsequently, in Chapter 5 the quality of the traditional SSI surveillance (the reference 
standard) in colorectal surgery patients is reported in terms of reliability and validity. Because 
the development, validation and implementation of AS systems takes time, efforts are made 
in Chapter 6 to investigate whether small changes can be taken in short time to reduce the 
workload in the current traditional surveillance: we investigated the importance of three risk 
factors for SSI, to advice whether they should be preserved in the surveillance protocol.

The last part of this thesis focuses on the generalisability and feasibility of (semi-)automated 
surveillance. In Chapter 7 the current methods and state of AS in Europe are described, together 
with key aspects of implementation and three examples of successful AS systems. In Chapter 8 
& Chapter 9, algorithms for semi-automated surveillance of SSI after respectively orthopaedic 
and colorectal surgeries are validated in multiple centres to investigate their potential for large-
scale implementation. In Chapter 10 we explored whether the performance of the algorithm as 
described in Chapter 9 could be improved by incorporating unstructured (free-text) clinical notes.

The last chapter of this thesis, Chapter 11, provides general discussion on (automated) 
surveillance of HAI, including future considerations.
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ABSTRACT
This observational cohort study assessed the effect of the introduction of antibiotic-
impregnated external ventricular drains (AI-EVDs) as opposed to plain silicone EVDs on 
the occurrence of ventriculostomy-related infections (VRIs) in two Dutch hospitals, without 
other changes to their clinical practice. VRI was defined by Centers for Disease Control 
and Prevention (CDC) criteria and a culture-based definition. A propensity score-adjusted 
competing risks survival analysis showed that introduction of AI-EVDs did not significantly 
decrease the risk of VRI in routine care nor affect its bacterial aetiology, also after adjustment 
for confounding and competing events.
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INTRODUCTION
External ventricular drains (EVDs) are frequently used in neurosurgical patients to 
monitor intracranial pressure and drain cerebrospinal fluid (CSF).1 Although placement of 
a catheter is a successful strategy to manage secondary hydrocephalus, the development of 
meningitis or ventriculitis is not uncommon, with incidences up to 22% being reported.2 
These ventriculostomy-related infections (VRIs) are often caused by coagulase-negative 
Staphylococci (CoNS), Staphylococcus aureus or Gram-positive cocci such as Enterococcus 
faecalis.2-4 Antibiotic-impregnated EVDs (AI-EVDs) have been developed to prevent VRIs; 
they consist of a silicone matrix impregnated with antimicrobials to prevent drain colonisation 
by Gram-positive bacteria. 

Several trials have been conducted to date, but these have not unequivocally demonstrated 
a consistent benefit of AI-EVDs in routine care settings. This study aimed to compare the 
occurrence and bacterial aetiology of VRIs in neurosurgical patients treated with antibiotic-
impregnated EVDs versus plain EVDs in Dutch hospitals. 

METHODS
Study design and participants
This study is a post-hoc analysis of a previous investigation on surveillance methods for VRI.4 
Patients from two Dutch hospitals receiving an EVD were included from January 2012 to 
December 2013 in hospital A, and from April 2012 to April 2013 in hospital B. All adult 
patients (≥ 18 years) who received an EVD were eligible for inclusion. Exclusion criteria were 
death, discharge or transfer to another hospital within 24 hours of drain placement, first drain 
placed elsewhere or pre-existing meningitis. 

We compared the incidence of VRI in patients receiving an antibiotic-impregnated EVD, 
impregnated with 0.15% clindamycin and 0.054% rifampin (Bactiseal, Codman, Johnson 
& Johnson, Raynham, MA, USA) to those receiving a standard silicone drain. Hospital A 
converted to AI-EVDs in October 2012. In hospital B, patients admitted between April and 
September 2012 received either a standard silicone drain or AI-EVD, as decided by the 
treating physician, and starting September 1st 2012 almost all patients received AI-EVDs. 
All EVDs were placed under perioperative antibiotic prophylaxis and drain management 
practices did not change during the study. For each patient, demographic characteristics, 
clinical, therapeutic and microbiological information was collected from the patients’ medical 
record. Approval and a waiver of informed consent were obtained from the Institutional 
Review Board of the University Medical Centre Utrecht.
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Outcomes
The primary endpoint of this study was the occurrence of VRIs. This was defined according to 
modified criteria from the Centers for Disease Control and Prevention (CDC) for healthcare-
associated meningitis as described previously.4 In addition, a culture-based definition was 
applied, defining infection as the occurrence of a single positive CSF culture irrespective of 
the microorganism isolated. For both definitions, infection must have developed when the 
drain was in situ or within seven days after drain removal.4 Moreover, the distribution of 
causative microorganisms was assessed along with their antimicrobial resistance profiles.

Statistical analyses
To evaluate the effect of AI-EVDs on the occurrence of infection, a propensity score-adjusted 
competing risks analysis was performed considering mortality as the competing event. The 
latter accounts for possible bias introduced by non-informative censoring. We used propensity 
scores (PS) to adjust for confounding factors. PS were estimated by regressing treatment 
status (AI-EVD versus plain EVD) on age, sex, American Society of Anesthesiologists (ASA) 
classification, Acute Physiology and Chronic Health Evaluation (APACHE) score, indication 
for drain placement, prior neurosurgery in the last 30 days and emergency of drain placement; 
all were selected based on literature and clinical judgment.5 To assess PS balance, patients’ 
characteristics were compared across PS tertiles. All analyses were conducted at the patient 
level.

Proportional hazard assumptions were checked by examining Schoenfeld residuals and 
cumulative incidence plots. To account for missing data, multiple imputation (five sets) 
was applied with pooling using Rubin’s rule.6 Analyses were performed using SPSS 20.0 for 
Windows (SPSS Inc. Chicago IL) and R version 2.15.0 (cmprsk and function CumIncidence, 
http://www.r-project.org). A probability value of p ≤ 0.05 was considered statistically 
significant. 

RESULTS
During the study period, 215 patients received one or more EVDs of whom 181 patients 
receiving 248 drains satisfied the inclusion criteria: 65 (35.9%) received a plain EVD and 116 
(64.1%) an AI-EVD. The most common indications for drain placement were hydrocephalus 
after intracerebral haemorrhage, CSF leakage, tumour, trauma, or as per-operative prophylaxis 
(Table 2.1). The majority received a single EVD during their admission (82.9%), when 
excluding drains placed after the development of VRIs.
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Table 2.1. Overview of patient characteristics and outcomes.

Characteristics
(n (%)) unless specified)

Plain EVD
(n = 65)

AI-EVD
(n = 116)

Age (mean (SD)) 55.9 (16.3) 62.5 (11.7)
Male gender 27 (41.5) 46 (39.7)
APACHE IV score (median (IQR))a 75.5 (51 – 88) 70.5 (48 – 94)
ASA classificationb

I
II
III
IV
V

5 (7.7)
9 (13.8)
11 (16.9)
6 (9.2)
4 (6.2)

14 (12.1)
24 (20.7)
26 (22.4)
17 (14.7)
2 (1.7)

Indication for first drain 
Hydrocephalus after intracerebral haemorrhage
CSF leakage
Tumour or per-operative
Trauma
Other

56 (86.2)
-
5 (7.7)
1 (1.5)
3 (4.6)

85 (73.3)
1 (0.9)
18 (15.5)
2 (1.7)
10 (8.6)

Drain placed on day of hospital admission 41 (63.1) 68 (58.6)
Admitted to ICU first day of drainage 48 (73.8) 88 (75.9)
Emergency placement of first drain 49 (75.4) 98 (84.5)
Duration of surgery first drain in minutes 
(median (IQR))

31 (21 – 114) 33 (20 – 61)

Prior neurosurgery in last 30 days 10 (15.4) 22 (19)
Number of drains placed c

1 
2
≥ 3

54 (83.1)
10 (15.4)
1 (1.5)

96 (82.8)
16 (13.8)
4 (3.4)

Outcomes
Infection by CDC definition 10 (15.4) 17 (14.7)
Infection by CB definition 9 (13.8) 18 (15.5)
Censored as death under CDC definition 17 (26.2) 42 (36.2)
Censored as death under CB definition 17 (26.2) 39 (33.6)
Total drain duration (days, median, IQR) 8 (5 – 13.5) 9 (5 – 14)

a Missing (n (%)): AI-EVD 16 (13.8), plain EVD 9 (13.8).
b Missing (n (%)): AI-EVD 33 (28.4), plain EVD 30 (46.2).
c Number of drains placed prior to development of VRI.
Abbreviations: AI-EVD = antibiotic-impregnated external ventricular drain; n = number; SD = standard 
deviation; CSF = cerebrospinal fluid; APACHE = Acute Physiology and Chronic Health Evaluation; IQR 
= interquartile range; ASA =  American Society of Anesthesiologists; ICU = intensive care unit; CDC = 
Centers for Disease Control and Prevention; CB  = culture-based.

In patients receiving an AI-EVD, 17 patients developed a VRI (14.7%), compared to 10 (15.4%) 
receiving a plain EVD (p = 0.89). For the culture-based definition this was 18 (15.5%) and 
9 (13.8%) respectively (p = 0.76). Cumulative incidence curves are shown in Figure 2.1. In 
competing risks analysis the adjusted subdistribution hazard ratio was 0.91 (95% confidence 
interval (CI) 0.18 to 1.52) for patients with an AI-EVD compared to patients with a plain 
EVD. Based on the culture-based definition this subdistribution hazard ratio was 1.04. (95% 
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CI 0.48 to 2.25). Sensitivity analysis stratified by hospital revealed that AI-EVDs had opposite 
effect in the individual centres, despite almost equal infection rates in the plain EVD groups 
of both hospitals (Supplemental Table S2.1).

Figure 2.1. Cumulative incidence plots representing the risk on ventriculostomy-related infections 
(VRIs) and death over time. (A) Cumulative incidence curves for infection or death according to the 
definition of the Centers for Disease Control and Prevention. Solid grey line, plain EVD (VRI); broken 
grey line, AI-EVD (VRI); solid black line, plain EVD (deceased); broken black line, AI-EVD (deceased). 
(B) Incidence curves for the culture-based (CB) definition. Solid grey line, plain EVD (CB); broken 
grey line, AI-EVD (CB); solid black line, plain EVD (deceased); broken black line, AI-EVD (deceased).

Under the CDC definition, most cases were caused by CoNS (47.1% in AI-EVD; 40.0% 
plain EVD group), and in approximately one third of cases no microorganism was identified 
(35.3% and 30.0% respectively). In AI-EVD patients, the remaining VRIs were attributed to 
Enterococcus faecalis (n = 1), Streptococcus sanguis (n = 1) or Serratia marcescens (n = 1), 
while in plain EVD patients Enterococcus faecium (n = 1), Staphylococcus aureus (n = 1), or 
Pseudomonas aeruginosa (n = 1) were the other causative pathogens. Resistance to rifampicin 
and clindamycin was found in six cases (35.3%) in the AI-EVD group and one case in the 
plain EVD group (10.0%). The distribution of microorganisms and resistance profiles was 
almost similar under the culture-based definition (Supplemental Table S2.2, Supplemental 
Figure S2.1). Resistance to rifampin/clindamycin was more common in hospital B.

DISCUSSION AND CONCLUSION
Antibiotic-impregnated EVDs are increasingly being adopted as prevention against VRIs, 
although their efficacy in routine clinical care has not been fully demonstrated. This study 
could not demonstrate a statistically significant benefit of AI-EVDs versus plain EVDs on the 
incidence of infection, both under the VRI definition and when considering all positive CSF 
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cultures. In addition, there was no change in the distribution of causative microorganisms and 
the majority of infections was caused by CoNS; bacteria that are targeted by the antibiotics 
incorporated in AI-EVDs. Although resistance occurred in some CoNS, some VRI cases were 
caused by microorganisms with proven susceptibility to the antimicrobials used. Therefore, 
considering the high costs of AI-EVDs, the potential emergence of antibiotic-resistant strains 
and given their uncertain incremental benefit, we recommend careful evaluation of the large-
scale adoption of AI-EVD use in Dutch hospitals. 

Introduction of AI-EVDs had opposite effects in the individual hospitals despite comparable 
rates of VRI in the plain EVD groups. This may in part be explained by differences between 
hospitals regarding drain handling protocols. Hospital B had a daily CSF sampling protocol 
as opposed to sampling on clinical indication only in hospital A, hence increasing the risk of 
pathogens being introduced by frequent drain manipulation and the likelihood of identifying 
contaminant microorganisms in CSF. Although this sampling frequency did not change 
during the study period, the potential protective effect of AI-EVDs may have been obviated by 
the frequency of manipulation. The opposite effects of AI-EVDs may indicate that hospital-
related factors or drain maintenance procedures contribute more to the risk of infection than 
the type of drain as such. Second, after introduction of AI-EVDs microorganisms resistant 
to rifampin/clindamycin became more common in hospital B than in hospital A, despite low 
baseline resistance levels in both hospitals. This increased resistance level may explain the 
failure of AI-EVDs in hospital B.

Our findings regarding AI-EVD efficacy mirror contradicting results from randomised 
controlled trials.3,7,8 In addition, the generalisability of prior trials was somewhat limited as 
patients received both prophylactic and maintenance antibiotics (the duration of which was 
often unspecified) and patients with multiple subsequent catheters were not included, while 
this is a frequent situation in critically ill neurosurgical patients.3,7,9 Moreover, in one trial the 
diagnosis was based on culture results only.3 In the current study there were discrepancies 
in infections identified when only considering positive CSF cultures or also taking clinical 
signs into account. Approximately 30% of patients had a culture-negative VRI, indicating the 
importance of including clinical symptoms as endpoints instead of relying on a positive CSF 
culture alone. Conversely, a culture-based definition hampers distinguishing contaminants 
from true infection.  

This study differs from previous studies in assessing specifically the impact of AI-EVDs 
on clinically relevant infections and culture-based infections in a routine care setting. The 
transition to AI-EVDs was not part of any other intervention or prevention programme. 
This is the first study performing time-to-event survival analysis, whilst accounting for the 
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occurrence of competing events. The main limitation of the present study was its observational 
nature, and although we have used propensity scores to address confounding, some residual 
confounding may remain. In addition, the modest sample size may have limited the likelihood 
of finding statistically significant results. The differences in drain handling practices between 
both hospitals complicate interpretation, but also illustrate the potential value of AI-EVDs in 
the context of other preventive measures.

In conclusion, in this study the introduction of AI-EVDs in routine clinical practice did not 
decrease the risk of VRI and did not change the bacterial aetiology, as compared to standard 
EVDs. 
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SUPPLEMENTARY MATERIAL

Supplemental Table S2.1. Subdistribution hazard ratios stratified by hospital.

SHR (95% CI) Hospital A Hospital B
VRI definition
Crude 0.61 (0.22 – 1.64) 1.15 (0.33 – 3.98)
Adjusted 0.53 (0.18 – 1.52) 1.56 (0.38 – 6.50)
Culture-based definition
Crude 0.46 (0.14 – 1.49) 1.99 (0.58 – 6.80)
Adjusted 0.32 (0.09 – 1.16) 2.37 (0.62 – 8.99)

Abbreviations: SHR = subdistribution hazard ratio; 95% CI = 95% confidence interval; VRI = 
ventriculostomy-related infection.

Supplemental Table S2.2. Resistance percentages stratified by hospital.

Resistance
in plain EVD group (%)

Resistance 
in AI-EVD group (%)

VRI definition
Hospital A 14.3 12.5
Hospital B 0 55.6
Culture-based definition
Hospital A 16.7 40.0
Hospital B 0 38.5

Resistance was defined as resistance to both antimicrobials (if tested), or if one was not tested, proven 
resistance to the other antimicrobial.
Abbreviations: VRI = ventriculostomy-related infection; EVD =  external ventricular drain.
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Supplemental Figure S2.1. Percentage resistance of causative organisms under both defi nitions 
stratifi ed by hospital.
Resistance was defi ned as resistance to both antimicrobials (if tested), or if one was not tested, proven 
resistance to the other antimicrobial.
Abbreviations: AI-EVD = antibiotic-impregnated external ventricular drain; EVD = external ventricular 
drain; VRI = ventriculostomy-related infection defi nition; culture-based = culture-based defi nition.
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ABSTRACT
Introduction: During the COVID-19 pandemic hospitals reorganised their resources and 
delivery of care, which may have affected the number of healthcare-associated infections 
(HAIs). We aimed to quantify changes in trends in the number of HAIs in Dutch hospitals 
during the COVID-19 pandemic.

Methods: National surveillance data from 2016 – 2020 on the incidence of surgical site 
infections (SSIs) and catheter-related bloodstream infections (CRBSIs), and prevalence of 
HAIs measured by point prevalence surveys (PPS) were used to compare rates between the 
pre-pandemic (2016 – February 2020) and pandemic (March 2020 – December 2020) period. 

Results: No differences in SSI rates were observed during the pandemic, except for a decrease 
after colorectal surgeries (6.3%; 95% CI 6.0 – 6.6%) pre-pandemic versus 4.4% (95% CI 
3.9 – 5.0%) pandemic). The observed CRBSI incidence in the pandemic period (4.0/1,000 
CVC days; 95% CI 3.2 – 4.9) was significantly higher than predicted based on pre-pandemic 
trends (1.4/1,000; 95% CI 1.0 – 2.1), and was increased in both COVID-19 patients and 
non-COVID-19 patients at the intensive care unit (ICU). The total HAI prevalence among 
hospitalised patients was higher during the pandemic period (7.4%) compared to pre-
pandemic period (6.4%), mainly because of an increase in ventilator-associated pneumonia 
(VAP), gastro-intestinal infections (GIs) and central nervous system (CNS) infections.

Conclusion: Rates of CRBSIs, VAPs, GIs and CNS infections among hospitalised patients 
increased during the first year of the pandemic. Higher CRBSI rates were observed in both 
COVID-19 and non-COVID-19 ICU population. The full scope and influencing factors of the 
pandemic on HAIs needs to be studied in further detail.
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INTRODUCTION
When the World Health Organisation on March 11, 2020 officially declared the coronavirus 
disease 2019 (COVID-19) a global pandemic,1 COVID-19 hospitalisations in the Netherlands 
were already increasing rapidly. The high influx of patients impacted the critical care capacity, 
work processes, and availability and use of protective equipment in hospitals.2-5 To handle the 
pressure and high demand of care during this crisis, hospitals reorganised their resources and 
delivery of care.6 For example, elective surgeries were postponed or cancelled, intensive care 
unit (ICU) bed capacity was scaled up, the ratio of healthcare workers allocated to patients 
was reduced, external staff was hired, and changes to daily care routines, such as the frequency 
of patient washing, was reduced.7-9

During this pandemic situation, attention to infection prevention and control (IPC) measures 
may have been deprived given the high work pressure, or redirected towards the prevention 
of SARS-CoV-2 transmission.10 In addition, patients hospitalised with COVID-19 are known 
for having comorbidities, long hospital stays and complex care with multiple invasive devices, 
putting them at higher risk for healthcare-associated infections (HAIs).11 Hence, an increase 
of HAIs could be expected and is also reported by previous studies.12,13 On the other hand, 
hospitals applied strict, aggressive IPC measures to prevent within-hospital transmission of 
SARS-CoV-2. As a result, a positive (indirect) effect on HAI occurrence can be expected as 
well and has been reported by others.14-16 

Given these contrasting findings, there is need for adequate HAI reporting not limited to 
COVID-19 cohorts only, with sufficient historical data to allow pre-pandemic comparisons. 
The aim of this study was to quantify trends in the number of HAIs in Dutch hospitals during 
the COVID-19 pandemic, using national surveillance data that continued collection during 
the pandemic. Second, HAI types were compared between COVID-19 patients versus non-
COVID-19 patients. 

METHODS
Study design and data sources
In this retrospective cohort study, data were derived from the Dutch national nosocomial 
surveillance network (PREZIES). In short, acute care hospitals voluntarily participate in one 
or more of the three surveillance modules targeting different HAIs: 1) surgical site infection 
(SSI) incidence surveillance on targeted procedures (see Supplemental Table S3.1 for an 
overview of the procedures); 2) hospital-wide catheter-related bloodstream infection (CRBSI) 
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incidence surveillance in patients with a central venous catheter (CVC) in place for ≥ 48 hours; 
and 3) bi-annually point prevalence surveys (PPS) performed in March and October in which 
the prevalence of all type of HAIs are measured in all admitted patients (excluding patients 
admitted to psychiatry and day-care units). For each module, infection control practitioners 
in each hospital manually review medical records retrospectively according to the national 
surveillance protocols and annotate which patients meet infection case definitions. The 
surveillance protocols and case definitions are based on the (European) Centres for Disease 
Control and Prevention and are described elsewhere.17-19 Only in the CRBSI and PPS modules 
information was collected about whether the patient was admitted to the hospital due to 
COVID-19 (positive test at admission). Hospitals that reported their surveillance data yearly 
to PREZIES over the years 2016 – 2020 were included in this study and used to evaluate the 
infection rates during the pre-pandemic and pandemic period.

Definition pre-pandemic and pandemic period
Based on COVID-19 hospitalisation rates in the Netherlands, the SSI and CRBSI data were 
divided in pre-pandemic (January 2016 to February 2020) and pandemic (from 1st of March 
2020 to December 2020). The PPS surveys of 2016 – 2019 were defined as pre-pandemic and 
the surveys of March and October 2020 were defined as the pandemic period. 

Statistical analyses
Per module, patient-, CVC-, or surgery-related characteristics were reported and compared 
between the pre-pandemic and pandemic period, using a chi-square test for categorical 
variables and Mann-Whitney U test for continuous variables. Thereafter, we quantified the 
number of HAIs during the pandemic. For the SSI and CRBSI incidence, we estimated the 
expected infection rates for the pandemic period based on pre-pandemic data and compared 
this with the actual observed rates in the pandemic period. To estimate the expected 
incidence rate for SSI, the National Nosocomial Infections Surveillance System (NNIS) risk 
index in pre-pandemic data was used to predict the risk of SSI for each NNIS category for the 
pandemic period (Supplemental Figure S3.1). The NNIS risk index, ranging from 0 to 3, is 
composed of 1 point for each of the following criteria: wound class classified as contaminated 
or infected; American Society of Anesthesiologists (ASA) score of 3, 4, or 5; and an operation 
duration above the 75th percentile.20 The predicted infection rate was compared with te 
observed infection rate using a chi-square test. In addition, two sensitivity analyses for SSI 
were performed. First, the same analyses were repeated for deep SSI only, with the rationale 
that superficial SSIs may have been missed during follow-up in the pandemic period: patients 
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avoided contact with healthcare providers afraid of becoming infected with SARS-CoV-2, 
patients did not want to be a burden on the system, and follow-up appointments were replaced 
by remote care because of stay-at-home orders.9 Second, trends in SSI incidence rates were 
checked per surgical specialty. In case an increasing or decreasing trend was detected pre-
pandemic, the expected SSI rate was recalculated based on 2019 data only.

To estimate the expected CRBSI incidence per 1,000 CVC days in the pandemic period, the 
mean pre-pandemic incidence per 1,000 CVC days for each of the three application-based 
categories (total parenteral nutrition (TPN); dialysis; and the remaining other applications) 
was multiplied with the pandemic number of CVCs in each category (Supplemental Figure 
S3.1). The predicted and observed incidence rates were compared using a mid-p exact test.

For PPS data, the difference in observed HAI rates between the pre-pandemic and pandemic 
period was tested using chi-square 2-tailed test with Yates’ correction. 

Last, differences in patient characteristics, medical device use, and HAIs were investigated 
in COVID-19 patients versus non-COVID-19 patients based on CRBSI and PPS data, by 
using a chi-square test or Mann-Whitney test. A p-value of < 0.05 was considered statistically 
significant and analyses were performed using SAS version 9.4 software (SAS Institute, Cary, 
NC).

RESULTS
Table 3.1 shows the number of hospitals participating in the three different modules, per year. 
The number of hospitals reporting PPS data during the pandemic year 2020 was less than half 
compared with previous years. Subsequent analyses were performed for the SSI, CRBSI and 
PPS module, using data from 51, 11 and 10 hospitals respectively that reported their yearly 
surveillance data in 2016 – 2020 to PREZIES (Table 3.1). In these hospitals, the absolute 
annual number of surgeries (for SSI) and admissions (for PPS) was lower in 2020 compared 
to previous years, while there was a slight increase in the number of inserted CVCs (CRBSI 
module).
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Table 3.1. Overview of hospitals included in this study.

Number of hospitals 
reporting data to 
PREZIES 

Number of hospitals 
included in this study 
reporting data each year 
in 2016 – 2020 (general/
teaching/academic)

Number of surgeries, 
CVCs and patients 
included, respectively

SSI module 51 (33/16/2)
2016 84 NA 48,760
2017 81 NA 50,487
2018 75 NA 51,816
2019 68 NA 56,286
2020 66 NA 45,656
CRBSI module 11 (8/3/0)
2016 31 NA 2,454
2017 28 NA 2,030
2018 26 NA 1,735
2019 21 NA 2,019
2020 18 NA 2,286
PPS module 10 (6/1/3)
2016 40 NA 4,036
2017 37 NA 3,956
2018 27 NA 3,841
2019 30 NA 4,273
2020 11 NA 3,124

Abbreviations: SSI = surgical site infection; NA = not applicable; CRBSI = catheter-related bloodstream 
infection; PPS = point prevalence survey, CVCs = central venous catheters.

Healthcare-associated infections during the first pandemic year
Surgical site infections
Within the SSI module, 217,212 surgeries were included in the pre-pandemic period versus 
35,793 surgeries during the pandemic. Compared to the pre-pandemic period, patients 
operated during the pandemic period were more often of the male gender, had slightly 
higher ASA- and NNIS scores and had shorter hospital stays (Table 3.2). The observed SSI 
incidence for all type of surgeries combined in the pandemic period was significantly lower 
than predicted (1.8% versus 2.1%, respectively) (Figure 3.1 and Table 3.3). When stratified 
by surgery type, only the SSI incidence after colon surgery was significantly lower during 
the pandemic (p < 0.01; Table 3). During 2016 – 2019, already a decreasing trend in SSI 
incidence after colorectal surgeries was observed (7.2%; 7.2%; 6.3%; 5.0%, respectively), 
while the proportion of closed procedures increased (p < 0.01; Supplemental Figure S3.2). 
When calculating the expected SSI incidence after colorectal surgery based on 2019 data only, 
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the SSI rate in de pandemic was as predicted (predicted SSI rate = 5.1%; 95% CI 4.5 – 5.8; 
observed SSI rate = 4.4%; 95% CI 3.9 – 5.0; p = 0.1). Sensitivity analysis comparing observed 
and expected incidence of deep SSI only showed similar results (Supplemental Table S3.2).

Table 3.2. Patient-, surgery-, and central venous catheter characteristics.
Pre-pandemic (n (%)) Pandemic (n (%)) p-value

SSI  module 217,212 surgeries 35,793 surgeries
Age in years (median (IQR)) 67.7 (57.5 – 74.7) 67.3 (56.4 – 74.5) <0.01
Sex (male (n (%))) 67.137 (31.6) 11.193 (34.0) <0.01
Body mass index 
(median (IQR))

27.3 (24.4 – 30.8) 27.2 (24.3 – 30.7) <0.01

Length of stay in days 
(median (IQR))

2 (0 – 274) 1 (0 – 95) <0.01

Duration of surgery in minutes 
(median (IQR))

62 (47 – 80) 59 (44 – 76) <0.01

ASA classification (n (%))
1
2
3
4
5
Unknown/NA

38,062 (17.5)
130,422 (60.0)
38,025 (17.5)
1,138 (0.5)
58 (0.0)
9,507 (4.4)

5,083 (14.2)
21,954 (61.3)
7,223 (20.2)
217 (0.6)
4 (0.0)
1,312 (3.6)

<0.01

NNIS index (n (%))
0
1
2
3
Unknown/NA

139,092 (64.0)
59,217 (27.3)
8,891 (4.1)
248 (0.1)
9,764 (4.5)

21,199 (59.2)
11,009 (30.8)
2,186 (6.1)
66 (0.2)
1,333 (3.7)

<0.01

Type of surgery (n (%))
Cardiothoracic surgery 
Mamma surgery
Colon surgery
Orthopaedic surgery
Obstetrics
Neurosurgery

5,596 (2.6)
24,556 (11.3)
26,832 (12.4)
140,821 (64.8)
15,465 (7.1)
3,942 (1.8)

948 (2.6)
4,080 (11.4)
4,770 (13.3)
22,353 (62.5)
2,896 (8.1)
746 (2.1)

<0.01

CRBSI module 8,595 patients (10,546 CVCs) 1,929 patients (2,614 CVCs)
Age in years (median (IQR)) 69.5 (60.3 – 76.5) 68.6 (59.1 – 74.5) <0.01
Sex (male (n (%))) 5,044 (58.7) 1,259 (65.3) <0.01
Number of CVCs per patient 
(median (IQR))

1.2 (1 – 1) 1.3 (1 – 1) <0.01

CVC days (median (IQR)) 5  (3 – 8) 6 (4 – 9) <0.01
ICU (n (%))
Yes
No

6,574 (76.5)
2,021 (23.5)

1,591 (82.5)
338 (17.5)

<0.01

CVC use (n (%))*
Total parenteral nutrition 
Antibiotics 
Dialysis 
Hemodynamic monitoring 
Other 

1,889 (17.9)
5,037 (47.8)
1,191 (11.3)
5,466 (51.8)
1,861 (17.6)

428 (16.4)
1,624 (62.1)
312 (11.9)
1,500 (57.4)
304 (11.6)

0.06
<0.01
0.36
<0.01
<0.01
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Pre-pandemic (n (%)) Pandemic (n (%)) p-value
PPS module 16,106 patients 3,124 patients
Age group (n (%))
< 1 year
1-19 year
20-29 year
30-39 year
40-49 year
50-59 year
60-69 year
70-79 year
80-89 year
≥ 90 year

1,191 (7.3)
804 (5.0)
708 (4.4)
1,032 (6.4)
1,080 (6.7)
1,951 (12.1)
2,972 (18.5)
3,430 (21.3)
2,412 (15.0) 
526 (3.3)

272 (8.7)
163 (5.2)
126 (4.0)
194 (6.2)
211 (6.8)
405 (13.0)
556 (18.1)
705 (22.6)
406 (13.0)
76 (2.4)

<0.01

Sex (male (n (%))) 8,060 (50.0) 1,625 (52.0) 0.04 
Specialism (n (%)) 
Cardiology
Surgery
Internal medicine
Paediatrics
Respiratory medicine 
Other

1,654 (10.3)
2,284 (14.2)
1,908 (11.8)
1,140 (7.1)
1,285 (8.0)
7,835 (48.6)

304 (9.7)
434 (13.9)
332 (10.6)
216 (6.9)
235 (7.6)
1,603 (51.3)

<0.01

McCabe (n (%))
Non-fatal (> 5 year)
Ultimately fatal (1-5 year)
Rapidly fatal (< 1 year)
Unknown

11,615 (72.1)
1,394 (8.7)
308 (1.9)
2,789 (17.3)

2,141 (68.5)
311 (10.0)
69 (2.2)
603 (19.3)

<0.01

ICU (n (%))
Yes
No

1,170 (7.3)
14,936 (92.7)

281 (9.0)
2,843 (91.0)

<0.01

Medical devices (n (%))**
Urethral catheter
Peripheral catheter
Mechanical ventilation 
Central venous catheter

3,374 (20.9)
9,011 (56.0)
482 (3.0)
1,572 (9.8)

711 (22.8)
1,767 (56.6)
128 (4.2)
458 (14.7)

0.02 
0.5
<0.01
<0.01

Antibiotics (n (%))
Yes
No

6,065 (37.7)
10,041 (62.3)

1,330 (42.6)
1,794 (57.4)

<0.01 

* Patients can have a CVC for multiple applications. Percentages are calculated as the proportion of 
CVCs for a specific use out of all CVCs.
** Patients can have multiple devices at the same time. Percentages are calculated as the proportion of 
patients with a specific device out of the total number of patients. 
Abbreviations: n = number; SSI = surgical site infection; IQR = interquartile range; NA = not applicable; 
NNIS = National Nosocomial Infections Surveillance System; CRBSI = catheter-related bloodstream 
infection; CVC = central venous catheter; ICU = intensive care unit; PPS = point prevalence survey.

Table 3.2. (Continued)
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Figure 3.1. Infection rates pre-pandemic, and predicted and observed infection rates during the 
pandemic period. 
Abbreviations: SSIs = surgical site infections; CRBSIs = catheter-related bloodstream infections; HAIs = 
healthcare-associated infections; PPS = point prevalence survey; RTIs = respiratory tract infections; BSIs 
= bloodstream infections; UTIs = urinary tract infections.

Table 3.3. Infection rates pre-pandemic, predicted infection rates during pandemic, and observed 
infection rates during the pandemic.

Pre-pandemic  
(% (95% CI))

Predicted  
(% (95% CI))

Pandemic  
(% (95% CI))

SSI incidence 
Total 2.1 (2.0 – 2.1) 2.1 (2.0 – 2.3) 1.8 (1.6 – 1.9)*
Cardiothoracic surgery 1.7 (1.4 – 2.1) 1.7 (1.4 – 2.1) 1.9 (1.2 – 3.0)
Mamma surgery 3.8 (3.6 – 4.0) 4.0 (3.4 – 4.6) 3.4 (2.9 – 4.0)
Colon surgery 6.3 (6.0 – 6.6) 6.5 (5.9 – 7.3) 4.4 (3.9 – 5.0)*
Orthopaedic surgery 1.1 (1.0 – 1.1) 1.2 (1.0 – 1.3) 1.0 (0.9 – 1.1)
Obstetrics 1.4 (1.2 – 1.6) 1.4 (1.0 – 1.9) 1.3 (1.0 – 1.8)
Neurosurgery 1.0 (0.7 – 1.4) 0.7 (0.4 – 1.3) 0.8 (0.4 – 1.7)
CRBSI incidence 

1.6 (1.3 – 2.0)  1.4 (1.0 – 2.1) 4.0 (3.2 – 5.0)*
HAI prevalence 
Total 6.4 (6.0 – 6.8) NA 7.4 (6.5 – 8.3)*
SSIs 2.2 (1.9 – 2.4) NA 2.3 (1.9 – 2.9)
RTIs 1.2 (1.1 – 1.4) NA 1.4 (1.1 – 1.9)
BSIs (primary & secondary) 1.3 (1.1 – 1.5) NA 1.4 (1.1 – 1.9)
UTIs 0.8 (0.7 – 1.0) NA 0.8 (0.5 –  1.2)   
Other 0.9 (0.8 – 1.1) NA 1.4 (1.1 – 1.9)*

* Statistically significant different from predicted rates.
Abbreviations: 95% CI = 95% confidence interval; SSI = surgical site infection; CRBSI = catheter-related 
bloodstream infection; HAI = healthcare-associated infection; RTIs = respiratory tract infections; BSIs 
= bloodstream infections; UTIs = urinary tract infections; NA = not applicable.
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Catheter-related bloodstream infections
During the pandemic period, patients with a CVC were slightly younger, more often of the male 
gender and more often admitted to the ICU compared to the pre-pandemic period. During 
the pandemic period, the number of inserted CVCs per patient was slightly higher and the 
CVC duration was longer. CVCs were more frequently used for antibiotics and hemodynamic 
monitoring and less often for TPN (Table 3.2). The observed CRBSI incidence of 4.0/1,000 
CVC days (95% CI 3.2 – 4.9/1,000) in the pandemic period was significantly higher than the 
predicted rate of 1.4/1,000 CVC days (95% CI 1.0 – 2.1/1,000; p < 0.01) (Figure 3.1).

Point prevalence survey results
In the PPS, during the pandemic period, a higher proportion of hospitalised patients was 
male, patients had slightly higher McCabe scores and more ICU admissions were observed 
(Table 3.2). The proportion of patients having a medical device increased during the 
pandemic period, in particular the use of CVCs. The proportion of patients with antibiotic 
treatment at the time of the survey was slightly higher during the pandemic (42.6%) versus 
pre-pandemic (37.7%; p < 0.01). The total HAI prevalence was higher during the pandemic 
period compared to pre-pandemic period, mainly because of an increase in gastro-intestinal 
infections and infections of the central nervous system (Table 3.3 and Supplemental 
Table S3.3). The proportion of patients with lower respiratory tract infections (LRTIs) in 
the pandemic period was similar compared to pre-pandemic, however, a larger proportion 
was associated with mechanical ventilation (ventilator-associated pneumonia (VAP); 22.5% 
pandemic versus 13.5% pre-pandemic; Supplemental Table S3.3).

Healthcare-associated infections within COVID-19 patients
A total of 9 out of 11 hospitals participating in the CRBSI module reported whether the patient 
was admitted to the hospital due to COVID-19. These COVID-19 patients were more often 
male, were slightly younger in age, and had significant longer ICU length of stay compared to 
non-COVID-19 patients with a CVC during the pandemic period. In addition, COVID-19 
patients had more CVCs inserted and with a longer duration (Supplemental Table S3.4). 
The CVC was more often used for antibiotics and less for TPN compared to non-COVID-19 
patients. The CRBSI incidence was 8.1/1,000 CVC days (95% CI 5.9 – 10.8) in COVID-19 
patients compared to 3.4/1,000 (95% CI 2.2 – 5.0) in patients without COVID-19 (p < 0.01). 
When stratifying the COVID-19 patients to ICU and non-ICU, CRBSI rates were 7.8/1,000 
CVC days (95% CI 5.6 – 10.7) and 11.1 (95% CI 5.0 – 24.7) respectively. When stratifying the 
non-COVID-19 patients to ICU and non-ICU, CRBSI rates were 4.8/1,000 CVC days (95% 
CI 3.0 – 7.6) and 1.7 (95% CI 0.7 – 4.0) respectively. The CRBSI incidence for non-COVID-19 
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patients in the ICU was significantly higher compared to pre-pandemic years (0.7/1,000; 95% 
CI 0.5 – 1.1) as well. 

Within the PPS module, COVID-19 status was only registered during the survey in October 
2020: 50 (6.6%) patients were SARS-CoV-2 positive during admission and were compared 
with 713 (93.4%) non-COVID-19 patients. COVID-19 patients were more often admitted 
to the ICU and had more often medical devices. A significantly higher HAI prevalence 
was observed in this patient group as compared to non-COVID-19 patients (12% versus 
0.4% respectively; p < 0.01), with bloodstream infections (BSI) as the most predominant 
manifestation (Supplemental Table S3.5). 

DISCUSSION
During the first pandemic year CRBSIs, VAPs, gastro-intestinal- and central nervous system 
infections occurred more frequently among hospitalised patients, while SSIs and catheter-
associated urinary tract infection (CAUTI) rates remained stable. HAIs occurred more often 
in COVID-19 patients, however, in non-COVID-19 patients admitted to the ICU an increase 
of CRBSI was observed during the pandemic as well. 

Regarding SSI, less surgeries were performed in 2020 and the patients that have been operated 
had slightly higher ASA and NNIS scores compared to previous years, possibly explained by 
prioritising urgent procedures during the pandemic period. Although this patient population 
may be more likely to develop SSIs, no increase  in incidence was observed. Remarkable is 
the relative high number of laparoscopic colon surgeries during the pandemic, which may 
be induced by policies to relieve ICU capacity and the shift to minimally invasive surgery to 
protect operating room personnel from SARS-CoV-2 aerosol transmission.21 Future data will 
show whether open surgery had been replaced during the pandemic by closed surgery, or 
whether the open surgeries were postponed. 

The findings of this study are in line with previous research: several studies reported increases 
during the pandemic in among others CRBSIs, BSIs, and VAPs.12,13,22-25 The PPS data showed 
that the prevalence of LRTIs did not change, however the proportion of LRTIs associated with 
ventilation increased, likely due to the increased use of mechanical ventilation.26 Importantly, 
the work pressure, burden and influx of COVID-19 patients was not constant throughout 
2020: COVID-19 surges varied during the year, by region and by hospital.27 Especially for the 
PPS, the timing of the surveys (March and October) may not have paralleled the COVID-19 
surges and circumstances and therefore may have underestimated potential effects: we did not 
find any increase in CRBSIs or CAUTIs in the PPS data while this was reported by others.23,24 
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Within the CRBSI module, the number of CRBSI events was too low to perform sub-analyses 
to evaluate stronger effects on incidence rates during COVID-19 surges. 

Most studies published so far are of variable quality as they are limited to retrospective cohort 
studies. Moreover, they focus solely on COVID-19 patients, and lack standardised case 
definitions without differentiating between settings or specialties.28 The current surveillance-
based study has a retrospective design as well, however, by using standardised case definitions 
and large sample sizes from a fixed number of hospitals for several years, the results of our 
study may be more robust. Still, with our study design, we cannot fully explain (causal) reasons 
for the change in HAIs observed during the pandemic. Several hypotheses are possible, 
probably all contributing to some degree. In part, the increase in HAIs can be explained by the 
fact that hospitalisations were dominated by COVID-19 patients who may have been more 
vulnerable for HAIs and other co-infections due to immune dysregulation.29-32 In Germany, 
there was no ICU overcrowding due to COVID-19 patients because of their high ICU bed 
capacity as compared with the Netherlands, and no increase in device-associated infections 
was observed in this country.33 In addition, COVID-19 patients in general are more exposed 
to known risk factors for HAIs such as longer durations of mechanical ventilation, higher 
number of CVCs inserted, corticosteroid treatment, prone positioning, and longer lengths 
of stay.24 Although not observed within this study, the composition of characteristics of 
remaining non-COVID-19 hospitalised patients is likely to be different than pre-pandemic, 
due to numerous elective procedures that were cancelled and postponed. Unfortunately, 
within the surveillance modules we only have limited patient- and clinical information, 
restricting the adjustment for case-mix. Although we used data of a fixed set of hospitals 
and used the NNIS score and CVC applications to calculate the expected infection rates, 
we may not have completely addressed the shift in characteristics of the patient population 
during the pandemic. The increased CRBSI incidence in non-COVID-19 ICU patients may 
indicate that both a change in patient mix or the reorganisation of care, such as changed 
IPC practices, modified use of personal protective equipment, and additional (unskilled ICU) 
temporary staff, may have contributed to the increased infection risk.5,16,34,35 To fully explain 
HAI dynamics in pandemic circumstances indicators describing the local healthcare context 
at institutional level are needed, such as patient characteristics, disruption of IPC practices, 
prescribing- and (microbiological) order practices, and antimicrobial resistance patterns.36 

Summarised, we observed an increase in rates of CRBSI, VAP, gastro-intestinal- and central 
nervous system infections among hospitalised patients during the first pandemic year. 
Furthermore, CRBSI incidence was also increased in the non-COVID-19 ICU population 
during the pandemic. The full scope and driving factors of this change in HAIs need to be 



Healthcare-associated infections during the COVID-19 pandemic

3

45   

studied in more detail to be able to anticipate – from an infection prevention perspective 
– more adequately on future epidemics of COVID-19 or other severe acute respiratory 
infections. 
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SUPPLEMENTARY MATERIAL

A
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬	𝒊𝒊𝒊𝒊𝒊𝒊𝑬𝑬𝑬𝑬𝑬𝑬𝒊𝒊𝒊𝒊𝒊𝒊	𝑬𝑬𝑬𝑬𝒑𝒑𝑬𝑬𝑬𝑬𝒊𝒊𝑬𝑬𝒑𝒑𝒑𝒑𝑬𝑬 = 	

((𝑨𝑨 ∗ 𝑵𝑵𝒑𝒑) + (𝑩𝑩 ∗ 𝑵𝑵𝑵𝑵) + (𝑪𝑪 ∗ 𝑵𝑵𝑬𝑬) + (𝑫𝑫 ∗ 𝑵𝑵𝑬𝑬) + (𝑬𝑬 ∗ 𝑵𝑵𝑬𝑬))
(𝑵𝑵𝒑𝒑 +𝑵𝑵𝑵𝑵 +𝑵𝑵𝑬𝑬 +𝑵𝑵𝑬𝑬 +𝑵𝑵𝑬𝑬)  

  > A = National infection rate in 2016 – Feb2020 in NNIS category 0 
 > B = National infection rate in 2016 – Feb2020 in NNIS category 1
 > C = National infection rate in 2016 – Feb2020 in NNIS category 2
 > D = National infection rate in 2016 – Feb2020 in NNIS category 3 
 > E = National infection rate in 2016 – Feb2020 in NNIS category ‘unknown’
 > Na = number of surgeries with NNIS category 0 in pandemic period 
 > Nb = number of surgeries with NNIS category 1 in pandemic period
 > Nc = number of surgeries with NNIS category 2 in pandemic period
 > Nd = number of surgeries with NNIS category 3 in pandemic period
 > Ne = number of surgeries with NNIS category ‘unknown’ in pandemic period

B

 > A = National infection rate in 2016 – Feb2020 in group of CVC for total parenteral nutrition 

 > B = National infection rate in 2016 – Feb2020 in group of CVC for dialysis use
 > C = National infection rate in 2016 – Feb2020 of remaining categories (no TPN or dialysis)
 > Na = number of CVCs for TPN use in pandemic period
 > Nb = number of CVCs for dialysis in pandemic period
 > Nc = number of CVCs of remaining categories (no TPN or dialysis) in pandemic period

Supplemental Figure S3.1. Calculations expected surgical site infection rate (A) and cathether-
related bloodstream infections per 1,000 catheter days (B).
Abbreviations: NNIS = National Nosocomial Infections Surveillance System risk index; CVC = central 
venous catheter; TPN = total parenteral nutrition.
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Supplemental Figure S3.2. Trends in total surgical site infection (SSI) rate after colorectal surgery 
and open versus closed procedures.

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬	𝒊𝒊𝒊𝒊𝒊𝒊𝑬𝑬𝑬𝑬𝑬𝑬𝒊𝒊𝒊𝒊𝒊𝒊	𝑬𝑬𝑬𝑬𝒑𝒑𝑬𝑬𝑬𝑬𝒊𝒊𝑬𝑬𝒑𝒑𝒑𝒑𝑬𝑬 = 	
((𝑨𝑨 ∗ 𝑵𝑵𝒑𝒑) + (𝑩𝑩 ∗ 𝑵𝑵𝑵𝑵) + (𝑪𝑪 ∗ 𝑵𝑵𝑬𝑬))
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Supplemental Table S3.1. Procedures under surveillance for surgical site infections.

Type of surgery Procedure
Cardiothoracic surgery 

Mamma surgery
Colon surgery
Orthopaedic surgery
Obstetrics
Neurosurgery

Coronary artery bypass, Aortic valve surgery, Implantable 
cardioverter defibrillator or pacemaker implantation
Mastectomy, Breast lumpectomy
Colorectal resections, Cholecystectomy
Arthroplasty of hip, Arthroplasty of knee
Caesarean section
Laminectomy 
Exploration or decompression of spinal cord through excision or 
incision into vertebral structures

Supplemental Table S3.2. Infection rates pre-pandemic, expected infection rates during pandemic, 
and observed infection rates during the pandemic for deep surgical site infections only.

Pre-pandemic 
(% (95% CI))

Predicted
 (% (95% CI))

Pandemic 
(% (95% CI))

Deep SSI incidence 
Overall 1.0 (1.0 – 1.1) 1.0 (0.9 – 1.1) 0.9 (0.8 – 1.0)
Cardiothoracic surgery 0.9 (0.7 – 1.2) 0.9 (0.7 – 1.2) 1.1 (0.6 – 1.9)
Mamma surgery 0.4 (0.4 – 0.5) 0.5 (0.3 – 0.8) 0.9 (0.6 – 1.2)
Colon surgery 2.7 (2.5 – 2.9) 2.9 (2.4 – 3.4) 1.8 (1.5 – 2.3)*
Orthopaedic surgery 0.9 (0.8 – 0.9) 1.0 (0.8 – 1.1) 0.8 (0.7 – 0.9)
Obstetrics 0.2 (0.2 – 0.3) 0.2 (0.1 – 0.5) 0.2 (0.1 – 0.4)
Neurosurgery 0.1 (0.0 – 0.3) 0.1 (0.0 – 0.4) 0.1 (0.0 – 0.8)

Abbreviations: 95% CI = 95% confidence interval; SSI = surgical site infection.

Supplemental Table S3.3. Distribution of healthcare-associated infections in pre-pandemic and 
pandemic PPS cohort.

(n (%)) Pre-pandemic n = 16,106 Pandemic n = 3,124
HAI (total) 1,028 (6.4) 230 (7.4)
SSIs 347 (33.8) 73 (31.7) 
RTIs
 Of which lower RTIs
Associated with mechanical ventilation (VAP)

202 (19.7) 
177 (87.6)
24 (13.5) 

45 (19.6) 
40 (88.9)
9 (22.5) 

BSIs
Of which catheter-related

205 (20.0) 
44 (4.3)

45 (19.6) 
6 (2.6)

UTIs
Of which catheter-related

134 (13.0) 
81 (7.9)

25 (10.9) 
19 (8.2)

GTIs 37 (3.6) 16 (7.0)
Skin infections 35 (3.4) 7 (3.0) 
Mouth infections 16 (1.6) 5 (2.2)
Central nervous system infections 13 (1.3) 7 (3.0) 
Cardiovascular infections 12 (1.2) 3 (1.3) 
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(n (%)) Pre-pandemic n = 16,106 Pandemic n = 3,124
Bone infections 11 (1.1) 0 (0.0) 
Other systemic infections 8 (0.8) 0 (0.0) 
Reproductive tract infections 5 (0.5) 2 (0.9) 
Eye infections 2 (0.2) 2 (0.9) 
Ear infections 1 (0.1) 0 (0.0)

Percentages are presented as % out of total HAIs.
Abbreviations: n = number; PPS = point prevalence survey; HAI = healthcare-associated infection; SSIs 
= surgical site infections; RTIs = respiratory tract infections; VAP = ventilator-associated pneumonia; 
BSIs = bloodstream infections; UTIs = urinary tract infections; GTIs = gastro-intestinal infections. 

Supplemental Table S3.4. Differences in COVID-19 patients versus non-COVID patients admitted 
to the hospital, March 2020 – December 2020*.

COVID-19 patient
 (n (%))

Non-COVID-19 patient 
(n (%))

p-value 

CRBSI module n = 367 n = 708 
Age in years (median (IQR)) 66.2  (57.0 – 71.8) 69.3  (58.3 – 75.1) <0.01
Sex (male (n (%))) 288 (78.5) 435 (61.4) <0.01
Number of CVCs per patient 
(median (IQR))

1.8 (1 – 2) 1.3 (1 – 1) <0.01

CVC days (median (IQR)) 7 (5 – 10) 6 (4 – 9) <0.01
ICU (n (%))
Yes
No

350 (95.4)
17 (4.6)

518 (73.2)
190 (26.8)

<0.01

Length of ICU stay in days 
(median (IQR))

18 (8 – 33) 4 (2 – 11) <0.01

CVC use (n (%))§

Total parenteral nutrition 
Antibiotics 
Dialysis 
Hemodynamic monitoring 
Other

37 (5.6)
454 (69.3)
92 (14.0)
319 (48.7)
98 (15.0)

200 (21.9)
523 (57.2)
130 (14.2)
441 (48.2)
144 (15.8)

<0.01
<0.01
0.94
0.88
0.72

CRBSI per 1,000 CVC days 
(95% CI)

8.1 (5.9 – 10.8) 3.4 (2.2 – 5.0) <0.01

PPS module n = 50 n = 713
Age in years (n (%))
< 1 year
1-19 year
20-29 year
30-39 year
40-49 year
50-59 year
60-69 year
70-79 year
80-89 year
≥90 year

0 (0.0)
0 (0.0)
0 (0.0)
1 (2.0) 
7 (14.0)
9 (18.0) 
8 (16.0)
15 (30.0) 
7 (14.0) 
3 (6.0)

46 (6.5) 
19 (2.7) 
17 (2.4) 
32 (4.5) 
27 (3.8)
72 (10.1)
120 (16.8)
208 (29.2)
151 (21.2)
21 (3.0) 

<0.01

Sex (male (n (%))) 32 (64.0) 355 (49.8) 0.05

Supplemental Table S3.3. (Continued)
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COVID-19 patient
 (n (%))

Non-COVID-19 patient 
(n (%))

p-value 

Specialism (n (%))
Cardiology
Surgery
Internal medicine
Paediatrics
Respiratory medicine 
Other

1 (2.0)
1 (2.0)
8 (16.0)
0 (0.0)
25 (50.0)
15 (30.0)

81 (11.4)
125 (17.5)
110 (15.4)
52 (7.3)
53 (7.4)
292 (41.0)

<0.01

McCabe (n (%))
Non-fatal (> 5 year)
Ultimately fatal (1-5 year)
Rapidly fatal (< 1 year)
Unknown

44 (88.0)
5 (10.0)
1 (2.0)
0 (0.0)

620 (87.0)
74 (10.4) 
13 (1.8)
6 (0.8)

0.93

ICU (n (%))
Yes
No

13 (26.0)
37 (74.0)

31 (4.4)
682 (95.6)

<0.01

Medical devices (n (%))ǂ
Urethral catheter
Peripheral catheter
Mechanical ventilation 
Central venous catheter

10 (20.0)
39 (78.0)
5 (10.0)
5 (10.0)

147 (20.6)
456 (64.0)
8 (1.2)
47 (6.6)

0.36
0.04
<0.01
0.35

Antibiotics (n (%))
Yes
No

32 (64.0)
18 (36.0)

266 (37.3)
447 (62.7)

<0.01

HAIs (% (95% CI)) 12 (5.6 – 23.8) 0.4 (0.1 – 1.2) <0.01

* For PPS, COVID-19 status was only measured in the survey of October 2020. For CRBSI, COVID-19 
status was reported by 9 out of 11 hospitals for the majority (56.2%) of the patients: 19.2% were 
COVID-19 patients, 37.0% non-COVID-19 and for the remaining 43.8% within the CRBSI module, 
COVID-19 status was unknown.
§ Patients can have a CVC for multiple applications. Percentages are calculated as the proportion of 
CVCs for a specific use out of all CVCs.
ǂ Patients can have multiple devices at the same time. Percentages are calculated as the proportion of 
patients with a specific device out of the total number of patients.
Abbreviations: n = number; IQR = interquartile range; CRBSI = catheter-related bloodstream infection; 
CVC = central venous catheter; ICU = intensive care unit; PPS = point prevalence survey.

Supplemental Table S3.5. Distribution of HAI in COVID-19 patients versus non-COVID patients 
admitted to the hospital, October 2020 – December 2020.

(n (%)) COVID-19 patient n = 50 Non-COVID-19 patient n = 713 
HAIs (total) 6 3 
SSIs 0 (0.0) 1(33.3)
VAPs 1 (16.7) 1 (33.3)
BSIs 4 (66.6) 0 (0.0)
UTIs 1 (16.7) 1 (33.3)

Percentages are presented as proportion of total HAIs.
Abbreviations: HAIs = healthcare-associated infections; SSIs = surgical site infections; VAP = ventilator 
associated pneumonia; BSIs = bloodstream infections; UTIs = urinary tract infections. 

Supplemental Table S3.4. (Continued)
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ABSTRACT
Objectives: Catheter-related bloodstream infections (CRBSI) are a common healthcare-
associated infection and therefore targeted by surveillance programmes in many countries. 
Concerns, however, have been voiced regarding the reliability and construct validity of CRBSI 
surveillance and the connection with the current diagnostic procedures. The aim of this 
study was to explore the experiences of infection control practitioners (ICPs) and medical 
professionals with the current CRBSI surveillance in the Netherlands and their suggestions 
for improvement.  

Design: Qualitative study using focus group discussions (FGDs) with ICPs and medical 
professionals separately, followed by semi-structured interviews to investigate whether the 
points raised in the FGDs were recognised and confirmed by the interviewees. Analyses were 
performed using thematic analyses.

Setting: Basic, teaching and academic hospitals in the Netherlands.

Participants: 24 ICPs and 9 medical professionals.

Results: Main themes derived from experiences with current surveillance were 1) ICPs’ doubt 
regarding the yield of surveillance given the low incidence of CRBSI, the high workload 
and IT problems; 2) the experienced lack of leadership and responsibility for recording 
information needed for surveillance; and 3) difficulties with applying and interpreting the 
CRBSI definition. Suggestions were made to simplify the surveillance protocol, expand the 
follow-up and surveillance to homecare settings, simplify the definition and customise it for 
specific patient groups. Participants reported hoping for and counting on automatisation 
solutions to support future surveillance. 

Conclusions: This study reveals several problems with the feasibility and acceptance of the 
current CRBSI surveillance and proposes several suggestions for improvement. This provides 
valuable input for future surveillance activities, thereby taking into account automation 
possibilities.  
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INTRODUCTION
Catheter-related bloodstream infections (CRBSIs) are common healthcare-associated 
infections (HAIs). These infections are associated with prolonged hospital stay, increased 
risk of mortality, and high costs,1-6 and therefore, one of the major infections targeted by 
surveillance programmes.7,8 Despite the substantial decline in CRBSI incidence achieved 
by implementation of preventive efforts,9-15 surveillance is still considered essential for 
identification of infections and for monitoring preventive interventions. 

Many (national) surveillance programmes measure CRBSI rates systemically, however all 
with slightly different definitions for CRBSI (Box 4.1).16-18 The infection criteria used in the 
Dutch national CRBSI surveillance, coordinated by the surveillance network for HAIs called 
PREZIES (Dutch acronym for ‘PREventie van ZIEkenhuisinfecties door Surveillance’), come 
closest to those defined by the European Centre for Disease Prevention and Control (ECDC), 
although the PREZIES definition always requires a positive blood culture obtained via 
venepuncture to meet criteria for a laboratory-confirmed CRBSI (Supplemental File S4.1).18 
Box 4.2 summarises the Dutch CRBSI surveillance.

Box 4.1. Definitions of central line-associated bloodstream infection and catheter-related 
bloodstream infection.

The National Healthcare Safety Network of the Centers for Disease Control and Prevention 
(CDC) provides the central line-associated bloodstream infection (CLABSI) defined as a primary
laboratory-confirmed bloodstream infection (BSI) where an eligible line is present.17

The European surveillance network healthcare-associated infections (HAI-NET), coordinated by 
the ECDC, applies a more strict definition relying on a laboratory-confirmed BSI in combination 
with either a catheter tip culture with the same microorganism or in combination with a positive 
culture with the same microorganism from pus from insertion site. Additionally, the catheter-
related bloodstream infection (CRBSI) can be scored by a quantitative blood culture ratio  > 5 of 
central venous catheter (CVC) blood and peripheral blood, or by differential period of two hours 
or more of positivity of blood cultures from peripheral blood and CVC blood (CRI-3-CVC).16 
This CRBSI definition is a higher standard of proof of infection compared to the CDC’s CLABSI 
definition. 

For the Dutch surveillance, there are five definitions to score a CRBSI, all including clinical signs 
(fever, chills or hypotension) and absence of other focus of infection. The laboratory-confirmed 
CRBSI, which comes closest to the ECDC definition, requires also a combination of a positive tip 
culture along with a peripherally taken positive blood culture with the same microorganism. Next 
to this laboratory-confirmed definition, there are four other categories to define a CRBSI, trying 
to cover variations in local practices in the absence of culture results. An overview of the Dutch 
definitions is given in Supplemental File S4.1. 
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Box 4.2. The Dutch national surveillance strategy for catheter-related bloodstream infections 
(CRBSIs).

In 2000, the Dutch National Surveillance Network PREventie van ZIEkenhuisinfecties door 
Surveillance (PREZIES) introduced a national CRBSI surveillance protocol which defines CRBSI 
and include instructions for the data collection procedure, aiming to align surveillance in hospitals. 
By executing the surveillance according to this protocol, hospitals can compare their results with 
aggregated national data, thereby helping starting interventions and improving patient care. 

Hospitals include all central venous catheters and peripherally inserted catheters that are in situ for 
48 hours in patients ≥ 18 years. Tunnelled catheters are excluded from surveillance. Follow-up ends 
at day 28, by catheter removal, mortality or by discharge at home or to another hospital. Hospitals 
are free to organise how they record the data, for example, manually entering data in digital files, or 
registering data into build-in surveillance packages within their electronic health record. After data 
collection is completed, hospitals can send their surveillance data to PREZIES by entering the data 
in an online registration system manually or uploading the data into this system directly according 
to standardised format. Hospitals can also send their data in a standardised data format to PREZIES. 

Participation in all PREZIES surveillance programmes is voluntary, without any consequences 
related to performance, and hospitals pay a small fee to join the network. With a personal login they 
have access to an online reporting tool in which they can view their own data and their performance 
in relation to others (anonymously). Additionally, each year, PREZIES publishes an open, online 
report providing a summary of the national numbers and trends generated by the surveillance data.

Within the Dutch surveillance network, yearly training meetings are organised for healthcare 
staff performing surveillance. During these meetings, concerns have been voiced regarding the 
reliability and construct validity of the CRBSI definition and the connection with the current 
diagnostic procedures.19-21 The possible misalignment between the CRBSI definition and 
diagnostic practices was confirmed by a Dutch study performed on an intensive care unit (ICU) 
in an academic hospital: they showed that only 2% of patients with a blood culture obtained 
for clinical reasons (i.e. patients suspected of an infection) had appropriate microbiological 
diagnostics performed that would allow them to meet the surveillance requirements for a 
laboratory-confirmed CRBSI. This was mainly due to the lack of blood cultures obtained by 
venepuncture.22 Although never formally investigated, these experienced incompatibilities 
may be one of the reasons for the decreasing number of hospitals participating in the voluntary 
Dutch national surveillance over the past years.23 A 2016 surveillance protocol amendment 
mandating hospital-wide surveillance instead of ICU-only may also have contributed to the 
decline in participating centers. 

These concerns with current CRBSI surveillance and the increasing availability of structured 
data stored in electronic health records (EHRs) creates a necessity to evaluate whether 
surveillance can be organised differently, preferably by incorporating automated options. 
Almost all studies evaluate surveillance programmes by investigating the effectiveness of 
a programme to reduce HAI.24-27 We feel that a more fundamental approach is needed to 
evaluate surveillance programmes and the quality of data it generates. For this purpose, we 
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collected views and opinions of healthcare professionals involved in the surveillance that may 
help in designing future (automated) CRBSI surveillance. The aim of this study was 1) to 
explore the experiences of infection control practitioners (ICP) and medical professionals 
with the current CRBSI surveillance in the Netherlands; and 2) to collect their suggestions for 
an optimised CRBSI surveillance.  

MATERIALS AND METHODS
From April to July 2019, face-to-face focus group discussions (FGDs) and semi-structured 
interviews were conducted in order to gain understanding of professionals’ experiences with 
the current CRBSI surveillance in the Netherlands and their suggestions for improvements. 
The supportive, non-judgemental setting offered by FGD enhances the likelihood of collecting 
diverse and spontaneous opinions, ideas and feelings.28 Semi-structured interviews were used 
to validate the information collected in the FGDs. 

Participants
In most hospitals, ICPs keep record of HAIs, including CRBSIs. When the hospital takes part in 
the national surveillance they perform the data collection according to the PREZIES protocol 
and annotate records according to the surveillance definition. As they are experienced with 
executing the surveillance, their opinion, experiences and views are important to investigate. 
ICPs from hospitals who indicated their intention to send in CRBSI surveillance data to 
PREZIES in 2017 or 2018 (n = 45) were invited to participate in an FGD by email via the 
PREZIES-network. FGDs were planned with all interested ICPs such that participants in each 
session represented different types of hospitals (academic, teaching and general hospitals) 
and concurrently allowed the largest number of ICPs to attend. ICPs who could not attend 
an FGD were asked to participate in an interview. Apart from ICPs, we included medical 
professionals in this study as they are often responsible for the surveillance of CRBSI, and its 
prevention in  their patients. For the FGD with medical professionals, selection was performed 
using specific-criterion sampling: medical professionals were recruited by the research team 
via their professional network and chosen based on specific characteristics (medical specialty, 
gender, working in academic, teaching or general hospital, years of experience and experience 
in the field of infectious disease surveillance).29 Travel costs of all participants were reimbursed. 

Focus group discussions
We organised two types of focus groups, involving ICPs and medical professionals separately. 
For the ICPs, consecutive FGDs were planned until no new themes were elicited, assessed by 
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analysis alongside the FGDs.30 Thereafter, the FGD with medical professionals was planned. Each 
FGD was facilitated by the same moderator (JV) and observed by the same researcher (TvdK). 
We presented ourselves as researchers involved in the national CRBSI surveillance, and aimed to 
build rapport with the participants in order to encourage them to speak freely and to raise issues 
of importance to them. During each FGD a topic guide was used (Supplemental File S4.2), 
however, participants were also allowed to go beyond the themes. The ICP FGDs were divided 
in two parts: first, the experiences with and opinions on the current CRBSI surveillance were 
discussed. Second, we asked for solutions for the problems that were raised in the first part of 
the FGD and for suggestions for a renewed surveillance regarding what to measure, how and in 
what patient groups. During the FGD with medical professionals more fundamental discussions 
were held about the entity of the infection, patient groups, benchmarking possibilities and 
suggestions for future surveillance activities (Supplemental File S4.2). Each FGD was held in 
Dutch, lasted approximately two hours and was audio recorded. Field notes were made during 
each FGD and incorporated in the analysis. 

Semi-structured interviews
The same topic list was used as for the ICPs’ FGD, complemented with issues that emerged as 
important from the FGDs. During the interviews, the interviewer investigated whether the 
points raised in the FGDs were recognised and confirmed by the interviewees. 

Data analysis 
The FGDs and interviews were audio recorded and transcribed verbatim. The transcripts were 
used for thematic analysis performed by two researchers independently (JV and TvdK) using 
NVivo version 10 (QSR International, Melbourne, Australia). The first transcript of the first 
focus group was read closely and analysed by both researchers independently. The text units 
were inductively coded into categories and grouped in specific themes and subthemes, according 
to thematic analysis described by Braun and Clarke.31,32. We looked for themes which covered 
different socioecological aspects and the context (social, organisational and political factors). 
Both researchers discussed the data and correct interpretation, and an initial thematic map was 
developed. Transcripts from following FGDs were analysed and discrepancies were discussed. 
New themes were added to the map and if needed some previous transcripts were recoded. 
Themes were sorted and categorised in overarching themes resulting in a final thematic map. 
If controversy remained, another research team member (MvM) was consulted to aid decision 
making. The results of the ICP group were compared with the medical professionals’ group to 
grasp diverse aspects of the participants’ experiences and views. Besides, it was checked whether 
the themes derived from the FGDs were also covered in the interview transcripts. Findings are 
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supported by a selection of quotes, translated to English for the purpose of this manuscript. As 
a quality check, these quotes were reverse-translated by another research team member (SdG) 
to check their accuracy. The Consolidated criteria for Reporting Qualitative research guidelines 
were used for reporting the methods, analysis and results.33

Patient and public involvement
Patients and/or the public were not involved in the design, conduct, reporting or dissemination 
plans of this research.

RESULTS
Response and participants
Fourty-five hospitals had signed up in 2017 or 2018 to send in CRBSI surveillance data to 
PREZIES; of those, 23 hospitals (51.1%) had (at least) one ICP that wanted to participate 
in this study. Eventually, 20 ICPs (from 19 hospitals) participated in an FGD. In total three 
FGDs were held with 6 – 7 participants each. After the FGDs, two interviews were conducted 
with four persons from two additional hospitals (duration 46.55 minutes and 43.15 minutes, 
respectively) for the purpose of validating findings. This resulted in 24 participating ICPs (21 
hospitals; response 46.6%), representing approximately 25% of all Dutch hospitals. For the 
medical professionals, one FGD was held with nine medical professionals (doctors, nurse, 
researcher) from seven specialties and from four different centres. The characteristics of the 
professionals that participated in an FGD or interview are presented in Table 4.1. All medical 
professionals were aware of the existence of the national CRBSI surveillance and six were 
actively involved in the CRBSI surveillance of their hospital. 

Table 4.1. Characteristics of professionals participating in this study.

Characteristics Infection control practitioners (n = 24)
Gender; female /male 23/1
Years of experience; mean (range) 12.1 (2.5 – 29)
Type of hospital*; general/teaching/academic 
(% of total Dutch hospitals in each category)

8/10/3 (17.8/38.5/37.5)

Medical professionals (n = 9)
Gender; female /male 5/4
Years of experience; mean, range 10.1 (1 – 20)
Working areas Intensive care (n = 2)/Haematology (n = 1)/Nephrology 

(n = 1)/Paediatric infectious diseases (n = 1)/ Surgery 
(n = 1)/Nursing and vascular access specialist (n = 1)/
Medical microbiology (n = 1)/Research(n = 1) 

* Corrected for hospital level as for one hospital two infection control practitioners participated in focus 
group discussions and interviews were held with two infection control practitioners per hospital.
Abbreviations: n = number.
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Experiences with the current CRBSI surveillance
Thematic analysis identified three main themes with nine subthemes from the experiences of 
the participants with the current CRBSI surveillance (Table 4.2). 

Table 4.2. Overview of themes and subthemes.

Current surveillance
Main theme Subtheme

1. Balancing costs and benefits CRBSI surveillance is valuable to monitor quality of 
care
Low incidence
IT problems
Performing surveillance is too labour-intensive

2. Lack of leadership and responsibility
3. Problems with the CRBSI definition Criteria do not cover all CRBSIs

Criteria not applicable to all patient groups
Criteria not in line with diagnostic practice
Large variability in interpretation
Difficulties in causally relating symptoms to central line

Ideas and suggestions for improvement
Main theme Subtheme

A. Simplified surveillance Simpler inclusion criteria and endpoints
Longer follow-up 

B. Extension surveillance to homecare setting
C. Modification of the definition Definition customised for specific patient groups

No CBRSI subcategories
D. More automated solutions
E. Alternative surveillance options Surveillance of tip colonisation

Shorten the period of executing surveillance
Surveillance of other catheter types

Abbreviations: CRBSI = catheter-related bloodstream infection; IT = information technology.

Theme 1: Balancing the costs and benefits of performing surveillance
One main theme – with four subthemes – that arose from the data was the balance between 
the effort that was put into surveillance activities compared to the benefits. 

CRBSI surveillance is valuable to monitor quality of care
The main reason for all participants to perform surveillance was to generate insights in their 
CRBSI incidence. According to ICPs, the surveillance results led to opportunities for quality 
improvement, raised awareness for infection prevention (e.g. in management layers) and 
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initiated conversations about current practices for example, one ICP gave the example that 
a peak in the CRBSI surveillance data initiated an assessment about the method of catheter 
insertion and method of care and how they could be improved.

‘For us it is mainly a quality indicator, we just want to keep numbers as low as possible 
and the only way to find that out is to register infections.’ (FGD-MP05)

Low incidence
Some ICPs were doubtful whether it is worthwhile continuing the CRBSI surveillance, 
given their stable low incidence over the years and the many hours they spend on executing 
surveillance.   

Information technology problems
Most hospitals use a module or package in their EHR to collect and record surveillance data: 
the stage of development and functionalities vary by hospitals. However, there is a broad 
variety in information technology (IT) problems infection prevention departments face and 
the IT support they receive: there are experiences with uncooperative EHR-developers and 
technical problems of systems, problems with extracting the data from the system, and the 
feeling that it is very difficult to get things done in this field. 

‘I find that in practice, it is very difficult to get the automation department to do things 
anyway. I think that’s the experience in all hospitals.’ (FGD-ICP017)

ICPs feel they often have to arrange and co-develop EHR improvements, however, according 
to them it is not their responsibility or skill. 

‘Look, of course we want to know the numbers, but as long as the automation department 
is  holding us back…WE are not going to do this as an infection prevention department. 
That is not possible, we don’t want to, and we don’t have the time to do it!’ (FGD-ICP03)

Last, for many health professionals it is unclear what the automatisation possibilities are. 
They admit that they don’t have the knowledge or interest; nevertheless, they do have high 
expectations of it.

Performing surveillance is too labour-intensive
Performing surveillance is too labour- and time-intensive according to all participants. One 
ICP called it demotivating. Additionally, the high work pressure people already experience 
in general and the recent extension to CRBSI hospital-wide surveillance were mentioned. 



Chapter 4

64

Executing and coordinating surveillance takes too much time at the expense of other 
infection prevention tasks. For this reason, many hospitals have data managers, students or 
administrative support helping with performing the surveillance.  

‘But yes, it is very a time investment and, so to say, the input does not completely weigh 
up to the benefit.’ (FGD-ICP09)

‘Because people are overloaded, they have so much to do already!’ (FGD-ICP06)

The main reason for the high workload is missing data in the EHR. In most hospitals, healthcare 
professionals register information in the EHR that ICPs use for the surveillance: after catheter 
insertion the catheter is registered into the system, nurses add (daily) information about the use 
of and possible complications associated with the catheter, and record catheter removal. In some 
hospitals the information entered in the system is automatically extracted and ICPs complement 
some data fields required for surveillance. In other cases ICPs fill in surveillance data based on 
free-text notes. ICPs unanimously agreed that information, such as the origin of blood samples, is 
often missing or not filled in properly. In particular the removal date of the catheter is often lacking, 
thereby complicating the calculation of line days needed for the denominator of reporting the 
incidence. Looking up the removal date in free-text clinical notes is experienced as burdensome. 

‘If they don’t enter the removal date [of the catheter] you are searching for hours to find 
it.’ (FGD-ICP02)

This incorrect and missing data lead to incorrect surveillance results. ICPs repeatedly reported 
that they are aware of incomplete or incorrect surveillance data, however they feel they cannot 
help it. 

‘We run into a lot of issues and actually, every now and then it seems we generate 
numbers that are based on shots in the dark….’ (FGD-ICP04)

Theme 2: Lack of leadership and responsibility: ICPs filling the gap 
The ICPs as well as the medical professionals agreed that the responsibility for the treatment 
of the patient and the handling of the catheter lies with the treating physician, and both the 
medical specialists and nurses are responsible for the care. However, as described above, the 
information needed to perform CRBSI surveillance is often not fully available from the EHRs. 
According to the ICPs this is because the people responsible for the patient lack involvement 
with and interest for surveillance and, hence, responsibility for registering information. 
Although responsibilities and actions are often described in protocols and documents, ICPs 
emphasise that practice is not always in accordance with hospital-wide agreements. 
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‘In principle, everything you have to do is described, but  then... you still can do something 
different.’ (FGD-ICP17)

I can’t get them to do it! Manually entering data in the system when ordering a blood-or 
tip culture. They just don’t do it.’ (FGD-ICP02)

Most ICPs stated that in the abovementioned situations they take the responsibility to complete 
the surveillance records by looking up or asking for data, but they feel that it is not their 
responsibility to do so: they should have a coordinating role and are responsible for the CRBSI 
reports. Medical professionals agreed and confirmed that information is lacking in the EHR, 
however they did not provide any suggestions to improve this or who’s responsibility it is.

Theme 3: Problems with the CRBSI definition
Criteria do not cover all CRBSIs
ICPs and medical professionals reported several problems regarding the definition that is 
used in surveillance. First, they emphasised that there are some cases that cannot be scored 
as a CRBSI according to surveillance criteria, but that are seen as CRBSI according to ICPs or 
medical doctors. Therefore, they feel that the surveillance does not catch all CRBSIs.

‘There are CRBSIs that fall outside the criteria of PREZIES. And those, yes those, are the 
ones you are interested in.’ (FGD-ICP07)

Criteria are not applicable to all patient groups
In the current surveillance, the same definitions are used for all patient groups with a central 
venous catheter (CVC) or peripherally inserted central catheter (PICC). According to both 
ICPs and medical professionals, these definitions are not applicable to all patient groups, 
in particular haematology patients as their clinical symptoms caused by neutropenia are 
indistinguishable from infection symptoms. 

Criteria are not in line with diagnostic practice
Clinical practice is often not in line with the strict criteria to define CRBSIs, making them 
difficult to score: for example, the blood and tip cultures are not taken within 24 hours of 
each other, blood samples are obtained via the CVC instead of through a venepuncture, or 
antibiotics are started before cultures are obtained. 

‘Every now and then you just know for sure that it is one [a CRBSI], but then, for 
example, the blood culture was taken two hours too late to meet the definition. Very 
frustrating.’ (Int-ICP22)
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Medical doctors confirmed and emphasised that the current surveillance protocol is not in 
line with their clinical practice. 

Large variability in interpretation
Some ICPs experience a large variability in interpretation of the definition and they therefore 
question the potential for benchmarking. 

Difficulties in causally relating symptoms to central line
Last, all participants concluded that patients with a CVC or PICC suspected for infection are 
complex, and the causes of certain clinical symptoms are not always clear. Causally relating 
the symptoms to the CVC is therefore difficult. They stated that a CRBSI is sometimes used as 
a ‘residual diagnosis’, if no other focus or explanation can be found. 

Suggestions for improvement
Five main themes for improvement were addressed: A) a simplified surveillance; B) extending 
the surveillance to homecare settings; C) modification of the definition; D) more automated 
surveillance; and E) suggestions for alternative surveillance options (Table 4.2). Below a short 
description is given per theme.

Theme A: Wish for a simplified surveillance
The wish for a more simplified surveillance methodology recurred throughout the dataset. 
The current surveillance is experienced as too complicated regarding the inclusion criteria 
for catheters, the information nurses have to enter into EHR systems and the exact endpoints 
of the surveillance. ICPs brought forward the possibility of registering the incidence only, 
without collecting additional information for the purpose of case-mix correction, thereby 
accepting the possible bias. The medical professionals disagreed: they felt case-mix correction 
is essential to have reliable benchmarking. Both groups agreed that the follow-up was 
considered too short and should be longer than 28 days.

Theme B: Extending surveillance to homecare setting
Many participants also agreed on the need to extend the current surveillance protocol to patients 
in homecare settings. Both ICPs and medical professionals argued that they are still responsible 
for the patient when discharged with a CVC or PICC in situ. Given the increasing trend of 
shared healthcare and short hospital stays it is valuable to prolong the follow-up for patients who 
are discharged with a PICC and regularly return to the hospital for check-up visits.
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‘[….] while more and more patients are treated outside the hospital, and these are 
completely excluded form surveillance. And in my opinion, that’s a shortcoming if you 
see that length of hospitals stays are becoming shorter and patients are treated under 
responsibility of the hospital, and we don’t pay attention to that.’ (FGD-MP07)

Theme C: Modification of the definition 
The definition used in surveillance was a recurrent theme in all FGDs and interviews. The wish 
for an adaptation of this definition was even communicated as a compelling advice rather than 
a suggestion. Especially the medical professionals advised to adopt a more tailored surveillance 
definition for specific target groups as the current definitions are not applicable to groups such 
as haematology patients or children (though the latter is currently not included in national 
surveillance). ICPs agreed on this and also suggested to create one single definition per 
patient group instead of the current four categories to score a CRBSI (see Box 4.1).

Theme D: More automated solutions
According to all participants much more could be developed, improved and achieved by local 
automation processes. Their expectations of IT possibilities are high and seen as the solution 
for workload reduction as it can help with easily recording data, and for the problems they 
face regarding definition subjectivity through the use of advanced algorithms. Second, ICPs 
would appreciate if changes to the national surveillance protocol are aligned between the 
national surveillance organisation PREZIES and EHR-software companies. ICPs often have 
to arrange changes in EHR systems while they feel it is not their responsibility and they are 
not comfortable with it.

‘Yes and maybe it is very idealistic, but it would be very appreciated if…when for 
example PREZIES is going to change something in the CRBSI surveillance that there 
is contact with the most common EHR suppliers, and that PREZIES is not saying 
to hospitals every time: “it is your problem to fix it in your EHR. Go and find out 
yourself how you will implement it.”’ (FGD-ICP02)

Theme E: Suggestions for alternative surveillance options
It was argued that catheter tip colonisation combined with information about the causative 
microorganism would give more steering information as it is a harbinger of infection and 
occurs more frequent than the strict definition requiring a positive blood and tip culture. 
Other suggestion was to reduce the current registration period, for example a registration of 
3 months per year, in order to reduce the workload. 
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‘We just take one month and then we add additional information to see what is happening 
over there. You then measure a sort of prevalence. Because now you….you… you are 
looking for all those catheters the entire year…well you become completely crazy!’ (Int-
ICP24)

ICPs indicated they would like to have the possibility to (temporary) monitor other types of 
catheters, e.g. arterial lines, or specific patient groups or wards. This was contradicted by the 
medical professionals who argued to stick to CVCs and PICCs for national surveillance for 
benchmarking purposes, however, to include tunnelled central lines.

None of the participants was interested in shifting the focus of national surveillance from 
CRBSI to other endpoints such as hospital-acquired bloodstream infections (BSIs) or to 
measure other quality indicators instead of CRBSI, such as ventilator-associated pneumonia 
(VAP) for benchmarking purposes.

DISCUSSION
This study revealed multiple problematic factors that ICPs experience in performing 
the current CRBSI surveillance. Surveillance is experienced as too labour-intensive and 
complicated with respect to  applying the definition, the lack of responsibility in recording 
data and IT-related problems. To optimise national surveillance, professionals agreed to adapt 
the surveillance  definition to specific patient groups and extending the duration of follow-
up and the surveillance to home care. It became clear that all professionals look forward to 
automation options to facilitate data collection and improve standardisation of surveillance. 
There were different opinions about the types of catheters to include in surveillance: medical 
professionals suggested to continue CVC and PICC surveillance, however including tunnelled 
catheters, while ICPs were more in favour of more choice in selecting the type of catheter 
under surveillance and were less interested in benchmarking.

A comparable study was performed in Sweden by Ridelberg et al.34: by interviewing 22 
ICPs they evaluated obstacles concerning the surveillance process of their biannual point 
prevalence surveys, focusing on the challenges in using HAI results. Although this study 
evaluated a different type of surveillance, similar obstacles were reported such as limited 
involvement of clinical staff and nurses and shortage of personnel resources and technical 
problems. The high workload and labour-intensiveness is mentioned by several other surveys 
and quantitative studies and is therefore a recurrent theme in performing surveillance.35-37  
Almost all studies evaluating surveillance programmes focus mainly on the effectiveness to 
reduce HAI.24-27 We feel that a more fundamental approach is needed to evaluate surveillance 
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programmes and the quality of data it generates. In our opinion, evaluating surveillance 
should also include a discussion about the effort taken to collect these data, what we actually 
measure and how. Collecting meanings and views about current surveillance activities in a 
systematic way is valuable as it enables the discovery of barriers that should be tackled to 
make surveillance more relevant, effective, feasible and reliable. The value of using CRBSI 
for benchmarking has been questioned due to high variability in CRBSI rates caused by 
differences in diagnostic practices, subjective interpretation, and CRBSI rates close to zero 
limiting meaningful comparisons.21,26,38-42 Hence, effort is put into development of alternative 
definitions of CRBSI in different patient groups43-45 or for alternative quality outcome measures 
for benchmarking such as hospital-onset bacteraemia.46,47

The development of automated surveillance methods is another strategy to improve the quality 
of CRBSI surveillance, which limits subjectivity and reduces the time investment. Several 
research groups developed automated algorithms to detect bloodstream infections in patients 
with a catheter.48-51 Despite good performances, all used the CDC definition for automation 
(central line-associated BSI). To the best of our knowledge, no examples are available for 
automation using the CRBSI definition, which is a higher standard of proof that the infection 
is related to the CVC. Additionally, automation does not change the social practices and 
obstacles of the data collection as described by Dixon-Woods et al.42 This study, therefore, first 
identified views and opinions about the current surveillance to guide further development of 
CRBSI surveillance and automation solutions in the future. Designing IT solutions without 
identifying underlying problems and views may fail to be helpful and to be accepted in the 
field. The in-depth information generated in this study is also meant as a preparation for a 
planned future quantitative study on (semi-)automatisation of CRBSI surveillance. 

Strengths and limitations
We collected opinions from professionals from different types of hospitals with a broad range 
of years of working experience. We included ICPs as the surveillance coordinators using 
the data, but also medical professionals: the latter have a different view on benchmarking 
and national surveillance purposes compared to the ICPs. Unfortunately, only one nurse, 
specialised in vascular access devices, could attend the FGD. 

Views from general hospitals may be slightly under-represented in this study, as only about 
18% of all Dutch general hospitals participated in our FGDs. These hospitals may experience 
less difficulties in organising and conducting surveillance, however as brought forward 
during the FGDs, this is because data collection is performed mainly manually. During 
the FGDs it became clear that ICPs from small hospitals share the desire to have more IT 
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solutions, but lack knowledge and expertise in this field. Second, it is possible that hospitals 
that do not encounter problems are less interested to participate in these FGDs. However, the 
unexpected high response rate (51.1%) – representing a quarter of all Dutch hospitals – could 
be considered indicative of the problems in current surveillance activities. Alternatively, 
non-response may be related to the current shortage of ICP personnel in Dutch hospitals; 
therefore, not having time to travel and participate in the FGDs. It would be interesting to hear 
from ICPs of hospitals that do not participate in national surveillance about their reasons for 
non-participation. However, because we were interested in the experiences with performing 
the current surveillance we only recruited ICPs via the PREZIES network. Last, this study 
is performed in a Dutch setting and evaluated the Dutch national CRBSI surveillance. 
Nevertheless, findings may be recognised by other countries, who may experience similar 
problems and are also looking for surveillance alternatives.

CONCLUSION
This study describes shortcomings in the current Dutch CRBSI surveillance. According to the 
participants of this study, the surveillance is considered too labour-intensive, restricted by IT-
related problems, and some perceived that the benefits of surveillance do not outweigh the 
time-investment required from the ICPs, given the low CRBSI incidence. Moreover, the CRBSI-
definition is not aligned with daily diagnostic practice and there is a lack of responsibility in 
recording data required for surveillance. Suggested improvements include: a modification of 
the definition customised to specific patient groups, automatisation options to improve data 
collection, standardisation and to reduce workload, and to include catheters in homecare 
situations and extend the follow-up period. These results provide valuable input for making 
decisions for future surveillance activities, taking into account automation possibilities. 
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SUPPLEMENTARY MATERIAL 
Supplemental File S4.1. Case definition of central venous catheter-related 
bloodstream infection (CRBSI) in the PREZIES surveillance. 
CRBSI: microbiologically-confirmed CVC-related bloodstream infection 
Clinical symptoms [fever (>38°), shivers, hypotension (systolic pressure <100 mmHg)] 
And 
peripheral venous blood culture is positive 
And 
positive (semi)quantitative culture of the Central Venous Catheter (CVC)- tip [>15 colony-
forming units (cfu)] with identical microorganism 
or 
quantitative blood culture ratio CVC blood sample/peripheral blood sample > 5; 
or 
differential delay of positivity of blood cultures: CVC blood sample culture positive two hours 
or more before peripheral blood culture (blood samples drawn simultaneously); or 
positive culture with identical microorganism from pus from CVC insertion site 
And 
absence of other infection with identical microorganism. 

CRBSI, category 1 
Clinical symptoms [fever (>38°), shivers, hypotension (systolic pressure <100 mmHg)] 
And 
positive qualitative culture of the CVC tip 
And 
peripheral venous blood culture positive with identical microorganism 
And 
absence of other infection with identical microorganism. 

CRBSI, category 2 
Clinical symptoms [fever (>38°), shivers, hypotension (systolic pressure <100 mmHg)] 
And 
positive (semi)quantitative culture of the CVC tip (>15 cfu) 
And 
no peripheral venous blood sample obtained, however arterial blood culture positive with 
identical microorganism 
And 
absence of other infection with identical microorganism. 
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CRBSI, category 3 
Clinical symptoms [fever (>38°), shivers, hypotension (systolic pressure <100 mmHg)] 
And 
peripheral venous blood culture is positive or no blood cultures taken 
And 
positive qualitative or quantitative culture of the CVC tip with identical microorganism or no 
culture of the CVC tip taken 
And 
fever disappears within 24h after CVC removal 
And 
absence of other infection with identical microorganism. 

CRBSI, category 4 
Clinical symptoms [fever (>38°), shivers, hypotension (systolic pressure <100 mmHg)] 
And 
positive peripheral venous blood culture 
And 
CVC remains in situ 
And 
fever disappears within 48 h after start of antibiotic treatment. 
And 
absence of other infection with identical microorganism.

Notes: 
• Catheter-related: the CVC was in situ < 48 hours before the onset of the BSI 
• In Dutch clinical practice, CRBSI is usually investigated by culturing both peripheral 
blood and the CVC tip. If less optimal (laboratory) methods are used, the diagnostic CRBSI 
categories 1 – 4 are available (hierarchical structure). 
• The CRBSI categories specify the laboratory method of culturing the CVC (semi-qualitative 
of quantitative) and the body site from which the blood culture is drawn (peripheral venous 
or arterial). 
• The CVC and blood samples are preferentially drawn simultaneously or within 24 hours.
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Supplemental File S4.2. Topic guide focus group discussions 1) ICPs and 2) 
medical professionals. 

DEMOGRAPHIC DETAILS QUESTIONNAIRE - ICPs
1. Your profession:______________________________________________________

2. Number of years working experience in this profession:_______________________

3. Name(s) of your institution(s):___________________________________________

4. Did your hospital perform surveillance and send in data to PREZIES last year (2018)? 
☐ Yes → What modules? _______________________________________________
☐ No

5. Have you performed CRBSI surveillance in the past, according to PREZIES guidelines? 
☐ Yes → Which time period? ____________________________________________
☐ No

6. Did your hospital adapt the national PREZIES guidelines, or make adaptations in 
executing the surveillance?  
☐ Yes  give a short description: ________________________________________
☐ No

DEMOGRAPHIC DETAILS QUESTIONNAIRE – MEDICAL PROFESSIONALS
1. Your profession: ______________________________________________________

2. Number of years working experience in this profession: _______________________

3. Name(s) of your institution(s): ___________________________________________

4. Were you aware of the existence of national CRBSI surveillance? 
☐ Yes
☐ No

5. Are you, apart from this FGD, actively involved in CRBSI surveillance in your hospital? 
☐ Yes, Please explain: _________________________________________________
☐ No
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FOCUS GROUP DISCUSSION: TOPIC GUIDE ICPs

Prior to FGD
Introduction of 
researchers

Short introduction of ourselves and roles

Introduction to 
study and study 
aim

Introduce study aim
Explain structure of FGD

• Experiences with current CRBSI 
surveillance (Part I)

• Solutions and suggestions for 
problems that arose in part I 
(Part II)

Identify whether there are any 
questions at this moment

Confidentially Please sign informed consents
Announcement privacy: anything that 
has been said within the session will be 
treated confidentially, just be yourself and 
speak honestly. 
Announcement of recording device: 
responses will be stored in anonymous 
format.
Please fill in questionnaire demographics  

Introduction 
round participants

Each participant introduces themselves 
(employer, years of working experience, 
experience with the Dutch surveillance, 
motivation to join this FGD). 

FGD Part I: experiences with current CRBSI surveillance
Question/aim Description Probes
Identify positive 
and negative 
points of CRBSI 
surveillance

Participants write down all positive and 
negative aspects on post-its, which are 
then discussed within the whole group

Did someone else also write this down?  
What do you mean with it?
Can you explain to what situations it 
applies?
What do others think about this point?
Does anyone have a point related to this?
Why did you write this/not wrote this 
down?

Identify most 
important positive 
points

Participants discuss the positive points 
and rank them from most valuable and 
positive to less important

Why is this positive point the most 
valuable one?
From which point does the hospital 
benefit most?

Identify most 
important 
negative points

Participants discuss the negative points 
and rank them from most problematic 
to less important

Why is this negative point most 
problematic?

In-depth 
discussion

The five most important points are 
discussed in more detail
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Break
FGD Part II: solutions, suggestions, wishes and ideas
Identify solutions 
for the negative 
points raised in 
Part I

Participants write down one solution 
for each problem that has been raised 
in Part I, which are then discussed 
within the group.

How could you make better use of point X?
Can you add something? 
Do you have an example that is in use in 
your own hospital?
Do you know examples we can learn from?
Why would this be a solution?

Inventory of other 
ideas and wishes

Within the group other ideas, wishes, 
or new surveillance proposals – apart 
from the problems – are discussed and 
added to the list of solutions.

Do you have an out-of-the-box idea?
Why would you want this? 
What is the motivation?
How would you do that?
In which patient groups?

Scoring of best 
suggestions given 
in Part II

Participants can award five stars to the 
solution/wish/suggestion they prefer. 
Stars can be divided if more than 1 
suggestion is preferred.

What is according to you the best 
solution/adaptation? And why?
Why did you give all your stars to this 
suggestion?

Closure
Closure and 
notifications

Summarise and conclude FGD
Thank you to participants
Instructions to reimburse travel costs 

FOCUS GROUP DISCUSSION: TOPIC GUIDE MEDICAL PROFESSIONALS

Prior to FGD
Introduction of 
researchers

Short introduction of ourselves and 
roles

Introduction to 
study and study 
aim

Introduce study aim
Explain structure of FGD
Identify whether there are any questions 
at this moment

Confidentially Please sign informed consents
Announcement privacy: anything that 
has been said within the session will be 
treated confidentially, just be yourself 
and speak honestly. 
Announcement of recording device: 
responses will be stored in anonymous 
format.
Please fill in questionnaire demographics  

Introduction round 
participants

Each participant introduces themselves 
(profession, employer, years of working 
experience, affinity with/role in 
surveillance, motivation to join this FGD). 

Focus group discussion: topic guide ICPs. (Continued)
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FGD MEDICAL PROFESSIONALS
Question/aim Description Probes
Identify positive 
and negative 
points of CRBSI 
surveillance

Moderator gives a presentation about 
current surveillance and the positive 
and negative points that has been raised 
during the ICP FGDs. Participants 
discuss these findings and add their 
points.

Do you have something to add to this list?
What is your opinion/experience with 
current practices?
If you hear these problems, what do you 
think? 
Do you agree with these points?

Inventory of entity 
of infection and 
benchmarking 
possibilities

Participants discuss what they 
want to measure for surveillance: 
catheter-related or catheter-associated 
bloodstream infections? Which 
outcomes are best for benchmarking?

What is the difference?
What outcome is good to compare 
between hospitals?

Identify types 
of catheters for 
surveillance

Participants write down all types of 
catheters that are present within their 
medical profession/ward and choose 
which they would include for national 
surveillance and benchmarking.

Which catheters are used in your 
specialty?
Why do you think these are (not) 
suitable for national surveillance?
Why did you choose these catheters?

Break
Identify patient 
groups

Participants sum all patient groups with 
catheters in situ and discuss them.

How do these groups differ from each 
other?
Can you compare these groups?

Inventory of 
suggestions 
for renewed 
surveillance

Catheter types and patient groups are 
summarised and discussed to identify 
catheters and groups that are suitable for 
national surveillance and benchmarking.

How can we improve current 
surveillance?
Do you have any new ideas? 
How would you design the surveillance, 
which strategy would you use?

Closure
Closure and 
notifications

Summarise and conclude FGD
Thank you to participants
Instructions to reimburse travel costs 

Focus group discussion: topic guide medical professionals. (Continued)



Evaluation of catheter-related bloodstream infection surveillance 

4

81   





Reliability and validity of multicentre 
surveillance of surgical site infections 

after colorectal surgery 

Janneke D.M. Verberk 

Stephanie M. van Rooden

David J. Hetem

Herman F. Wunderink

Anne L.M. Vlek

Corianne Meijer

Eva A.H. van Ravensbergen

Elisabeth G.W. Huijskens

Saara J. Vainio

Marc J.M. Bonten

Maaike S.M. van Mourik

Antimicrob Resist Infect Control 2022;11(1):10

5



Chapter 5

84

ABSTRACT
Background: Surveillance is the cornerstone of surgical site infection prevention programmes. 
The validity of the data collection and awareness of vulnerability to inter-rater variation 
is crucial for correct interpretation and use of surveillance data. The aim of this study was 
to investigate the reliability and validity of surgical site infection (SSI) surveillance after 
colorectal surgery in the Netherlands.

Methods: In this multicentre prospective observational study, seven Dutch hospitals 
performed SSI surveillance after colorectal surgeries performed in 2018 and/or 2019. When 
executing the surveillance, a local case assessment was performed to calculate the overall 
percentage agreement between raters within hospitals. Additionally, two case-vignette 
assessments were performed to estimate intra-rater and inter-rater reliability by calculating 
a weighted Cohen’s Kappa and Fleiss’ Kappa coefficient. To estimate the validity, answers of 
the two case-vignettes questionnaires were compared with the answers of an external medical 
panel.

Results: 1,111 colorectal surgeries were included in this study with an overall SSI incidence 
of 8.8% (n = 98). From the local case assessment it was estimated that the overall percent 
agreement between raters within a hospital was good (mean 95%; range 90 – 100%). The 
Cohen’s Kappa estimated for the intra-rater reliability of case-vignette review varied from 0.73 
to 1.00, indicating substantial to perfect agreement. The inter-rater reliability within hospitals 
showed more variation, with Kappa estimates ranging between 0.61 and 0.94. In total, 87.9% 
of the answers given by the raters were in accordance with the medical panel. 

Conclusions: This study showed that raters were consistent in their SSI-ascertainment (good 
reliability), but improvements can be made regarding the accuracy (moderate validity). 
Accuracy of surveillance may be improved by providing regular training, adapting definitions 
to reduce subjectivity, and by supporting surveillance through automation.
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INTRODUCTION
Surgical site infections (SSIs) are one of the most common healthcare-associated infections 
(HAIs),1 and are associated with substantial morbidity and mortality, increased length of 
hospital stay and costs.2-6 The highest SSI incidences are reported after colorectal surgeries, 
possibly due to the risk of (intra-operative) bacterial contamination and post-operative 
complications.7-9 Worldwide, incidence rates range from 5% to 30% and are affected by several 
risk factors, including the type of surgery, age, sex, underlying health status, diabetes mellitus, 
blood transfusion, ostomy creation, prophylactic antibiotic use10-12 and by the definition used 
to identify SSIs.4,13 

Surveillance is an important component of prevention initiatives and most surveillance 
programmes include colorectal surgeries.14 Large variabilities in SSI rates between centres 
remain, even after correction for factors that increase the risk of SSIs. Previous studies 
reported significant variability in surveillance methodology and in inter-rater agreement, 
introducing uncertainty regarding whether observed differences in colorectal SSI rates reflect 
real differences in hospital performance.15-21

For the purpose of comparing SSI rates between hospitals, accurate adherence to standardised 
surveillance protocols is required. Furthermore, case definitions should be unambiguous to 
avoid subjective interpretation. To reduce subjectivity the Dutch national surveillance network 
(PREZIES) has modified the case definition on two criteria as compared to the definitions set 
out by the (European) Center of Disease Control and Prevention ((E)CDC).22-25 First, the 
diagnosis of an SSI made by a surgeon or attending physician only is not incorporated in 
the Dutch definitions. Second, in case of anastomotic leakage or bowel perforation, a deep 
or organ-space SSI can only be scored by purulent drainage from the deep incision, or when 
there is an abscess or other evidence of infection involving the deep soft tissues found on 
direct examination. A positive culture obtained from the (deep) tissue is not applicable in case 
of anastomotic leakage. Moreover, to increase standardisation, the Dutch surveillance only 
includes primary resections of the large bowel and rectum, in contrast to the (E)CDC, who 
also allows biopsy procedures, incisions, colostomies or secondary resections.

Awareness of the correctness of applying the definition and vulnerability to inter-rater 
variation is crucial for correct interpretation and use of surveillance data. The aim of this 
study was to investigate the reliability and validity of SSI surveillance after colorectal surgery 
using the Dutch (PREZIES) SSI definitions and protocol. Secondary aims were to report the 
accuracy of determining anastomotic leakage and to provide insights in the SSI incidence and 
epidemiology in the Netherlands. 
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METHODS
Study design
In this multicentre prospective observational study, seven Dutch hospitals (academic (tertiary 
referral university hospital) n = 2; teaching n = 3; general n = 2) collected surveillance data 
for occurrence of SSI after colorectal surgeries performed in 2018 and/or 2019, according to 
the Dutch PREZIES surveillance protocol.23,25,26 Three hospitals had no prior experience in 
performing SSI surveillance after colorectal surgeries and four hospitals already performed 
this surveillance for more than five years as part of their quality programme. Participation in 
SSI surveillance after colorectal surgery is voluntary, hence not all hospitals include this in 
their surveillance programme. When executing the surveillance, additionally intra- and inter-
rater reliability and validity were determined by two case-vignette assessments and a local 
case assessment. Reliability refers to the consistency and reproducibility of SSI-ascertainment 
and was determined by three agreement measures: 1) the intra-rater reliability, reflecting 
the agreement within one single rater over time; 2) the inter-rater reliability, which is the 
agreement between two raters within one hospital; and 3) the overall inter-rater reliability 
between all 14 raters of seven hospitals.27,28 Validity refers to how accurately the surveillance 
definition is applied and was determined by the correctness of ascertainment compared to a 
medical panel as described in detail below. The Medical Ethical Committee of the University 
Medical Centre Utrecht approved this study and waived the requirement of informed consent 
(reference number 19-493/C). All data were processed in accordance with the General Data 
Protection Regulation. Hospitals were randomly assigned the letters A – G for reporting of 
the results.

SSI surveillance after colorectal surgery
All hospitals included all primary colorectal resections of the large bowel and rectum 
performed in 2018 and/or 2019 in patients above the age of 1 year. Per hospital two raters, 
mostly ICPs, manually reviewed the electronic medical records for all included procedures 
retrospectively and classified procedures into three categories: (1) no SSI; (2) superficial SSI 
or (3) deep SSI or organ-space SSI within a follow-up period of 30 days post-surgery. SSIs 
were registered in their own hospital’s surveillance registration system. All identified SSIs and 
questionable cases were validated and discussed with each facility’s medical microbiologist or 
surgeon after completing the assessments which are described below.
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Case-vignette assessment
Case-vignettes were used to assess the validity, intra-rater and inter-rater reliability. Four 
medical doctors developed standardised case-vignettes in Dutch language, based on 20 
patients selected from a previous study.29 Each vignette described demographics, the medical 
history, type of surgical procedure and the post-operative course. An external medical panel of 
seven experts in the field of colorectal surgeries and surveillance classified the case-vignettes 
as a superficial SSI, deep SSI, or no SSI according to the Dutch SSI definition, and indicated 
presence or absence of anastomotic leakage. Their conclusion was considered the reference 
standard. Each rater who performed surveillance completed the case-vignettes individually 
through an online questionnaire. Three months later, the same vignettes were judged once 
more by the same raters, but presented in a different random order. 

Local case assessment
The reliability of surveillance data also depends on the ability to find the information necessary 
for case-ascertainment in the medical records. As this is not measured by the case-vignettes, we 
additionally performed a local case assessment: within each hospital, 25 consecutive colorectal 
surgeries included in surveillance were scored independently by the two raters, on separate 
digital personal forms. After sending the completed forms to the research team, raters discussed 
the results and entered the final decision into their hospital’s surveillance registration system.  

Training
Before starting the surveillance activities, a training session was organised to ensure the 
quality of the data collection and to practice SSI case-ascertainment. Thereby, before starting 
the reliability assessments, each ICP had to complete at least 20 inclusions for surveillance to 
assure familiarity with the surveillance procedure. In case of any questions, the research team 
was available to provide assistance.

Statistical analyses
Descriptive statistics were generated to describe the surveillance period, number of inclusions 
and epidemiology. The number of SSIs per hospital were reported and displayed in funnel 
plots. The primary outcomes of this study were the reliability and validity of the surveillance. 
From the case-vignette assessments, the intra-rater and inter-rater reliability were analysed 
by calculating a weighted Cohen’s Kappa coefficient (κ). The scale used to interpret the κ 
estimates was as follows: ≤ 0, no agreement; 0.01 – 0.20, slight agreement; 0.21 – 0.40, fair 
agreement; 0.41 – 0.60, moderate agreement; 0.61 – 0.80, substantial agreement; 0.81 – 1.00, 
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almost perfect agreement.27 For the inter-rater reliability within a hospital, we used the second 
questionnaire round of the case-vignettes, to account for a possible learning curve over time. 
The overall inter-rater reliability among all 14 raters was estimated using a weighted Fleiss’ 
Kappa. For all Kappa’s, 95% confidence intervals were estimated using bootstrapping methods 
(1,000 repetitions). Inter-rater reliability was also measured from the local case assessment, 
from which the overall percentage agreement was calculated per hospital. Validity was 
determined by comparing the answers of the two case-vignettes questionnaires with the 
answers of the medical panel. The same comparison was performed to investigate the accuracy 
related to the determination of anastomotic leakage. Analyses were performed with R version 
3.6.1 (R Foundation for Statistical Computing, Vienna, Austria)30 with the use of packages 
irr31 for inter-rater reliability and the boot32 package for bootstrapping. 

RESULTS
Epidemiology
1,111 colorectal surgeries were included in the surveillance, in majority right-sided 
hemicolectomies (n = 445; 40.1%). The overall incidence of SSI was 8.8% (n = 98); 46.9% 
developed superficial SSI (n = 46) versus 53.1% deep SSI (n = 52). In 23 deep SSIs (44.2%) 
there was anastomotic leakage. Table 5.1 provides an overview of the cumulative incidence 
of SSIs per hospital and Figure 5.1 displays the incidence of SSIs taking into account the 
number of surgical procedures. SSIs were observed more frequently in open surgeries than 
laparoscopic procedures, with the highest SSI incidence in open sigmoid colectomies (19.4%), 
followed by open left hemicolectomies, open right hemicolectomies and open low anterior 
resections (17.5%; 11.0% and 9.6% respectively). Other risk factors are shown in Table 5.2.

Table 5.1. Overview of colorectal surgeries and number of SSIs per participating hospital. 

Type of 
hospital

Surveillance 
period

Number of colorectal 
surgeries (n)

Superficial SSI 
(n (%))

Deep SSI
 (n (%))

Total SSIs
(n (%))

Hospital A General 2019 221 1 (0.5) 9 (4.1) 10 (4.5)
Hospital B Teaching 2019 205 10 (4.9) 7 (3.4) 17 (8.3)
Hospital C General 2019 148 4 (2.7) 3 (2.0) 7 (4.7)
Hospital D Academic 2018 – 2019 84 4 (4.8) 8 (9.5) 12 (14.3)
Hospital E* Teaching 2019a 144 3 (2.1) 9 (6.3) 12 (8.3)
Hospital F* Teaching 2019a 142 12 (8.5) 11 (7.7) 23 (16.2)
Hospital G* Academic 2018 – 2019a 167 12 (7.2) 5 (3.0) 17 (10.2)
Total 1,111 46 (4.1) 52 (4.7) 98 (8.8)

* Hospitals that started surveillance for the purpose of this study.
 a January – June 2019.
Abbreviations: n = number; SSI = surgical site infection. 
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A

B

C

Figure 5.1. Overview of surgical site infection (SSI) incidence per hospital accounting for the 
number of surgical procedures. The black dotted line shows the mean incidence rate, the grey curved 
lines are the corresponding 95% confidence interval. (A) Overview of all SSIs per hospital; (B) Overview 
of superficial SSIs per hospital; (C) Overview of deep SSIs per hospital.
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Table 5.2. Baseline characteristics and risk factors of patients who underwent a primary colorectal 
surgery.

No SSI  
(n = 1,013)

Superficial SSI 
(n = 46)

Deep SSI  
(n = 52)

Sex (n (%))
Male 
Female

 
506 (50.0) 
507 (50.0)

29 (63.0) 
17 (37.0)

31 (59.6) 
21 (40.4)

Age in years (mean (SD)) 65.7 (13.7) 61.8 (15.0) 63.2 (15.4)
Pre-operative risk factors
BMI (mean (SD)) 
Missing (n (%))

26.1 (4.6) 
29 (2.9)

27.0 (4.8) 
2 (4.3)

27.6 (7.0) 
2 (3.8)

ASA grade (n (%))
Grade I 
Grade II 
Grade III 
Grade IV 
Grade V 
Missing (n (%))

94 (9.3) 
542 (53.5) 
289 (28.5) 
43 (4.2) 
7 (0.7) 
38 (3.8)

5 (10.9) 
20 (43.5) 
12 (26.1) 
5 (10.9) 
- 
4 (8.6)

3 (5.8) 
24 (46.2) 
17 (32.7) 
2 (3.8) 
- 
6 (11.5)

Procedure-related risk factors
Type of surgery (n (%))
Right hemicolectomy, closed procedure 
Right hemicolectomy, open procedure 
Left hemicolectomy, closed procedure 
Left hemicolectomy, open procedure 
Sigmoid colectomy closed procedure 
Sigmoid colectomy open procedure 
Low anterior colectomy, closed procedure 
Low anterior colectomy, open procedure

285 (28.1) 
129 (12.7) 
72 (7.1) 
33 (3.3) 
171 (16.9) 
108 (10.7) 
168 (16.6) 
47 (4.6)

9 (19.6) 
6 (13.0) 
1 (2.2) 
3 (6.5) 
2 (4.3) 
17 (37.0) 
4 (8.7) 
4 (8.7)

6 (11.5) 
10 (19.3) 
5 (9.6) 
4 (7.7) 
5 (9.6) 
9 (17.3) 
12 (23.1) 
1 (1.9)

Surgical approach (n (%))
Closed 
Open

696 (68.7) 
317 (31.3)

16 (34.8) 
30 (65.2)

28 (53.8) 
24 (46.2)

Duration of surgery in minutes (median (IQR)) a 

Missing (n (%))
132 (68) 
11 (1.1)

143 (64) 
-

137 (56) 
-

Emergency (n (%)) b

Yes 
No 
Missing (n (%))

124 (18.8) 
528 (80.1) 
7 (1.1)

13 (48.1) 
14 (51.9) 
-

12 (40.0) 
18 (60.0) 
-

Wound class (n (%)) c

Clean-Contaminated (class 2) 
Contaminated (class 3) 
Dirty-infected (class 4) 
Missing (n (%))

724 (81.0) 
104 (11.6) 
65 (7.3) 
1 (0.1)

20 (58.8) 
2 (5.9) 
11 (32.4) 
1 (2.9)

26 (63.4) 
7 (17.1) 
8 (19.5) 
-

Malignancy (n (%))
Yes 
No 
Missing (n (%))

695 (68.6) 
243 (24.0) 
75 (7.4)

24 (52.2) 
20 (43.5) 
2 (4.3)

33 (63.5) 
16 (30.8) 
3 (5.8)

Stoma (n (%))
Yes 
No

233 (23.0) 
780 (77.0)

28 (60.9) 
18 (39.1)

22 (42.3) 
30 (57.7)
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No SSI  
(n = 1,013)

Superficial SSI 
(n = 46)

Deep SSI  
(n = 52)

Post-operative risk factors
30-day mortality (n (%)) d

Yes 
No

28 (3.8) 
703 (96.2)

1 (3.2) 
30 (96.8)

4 (10.5) 
34 (89.5)

ICU admission (n (%)) e

Yes 
No

162 (24.6) 
497 (75.4)

11 (40.7) 
16 (59.3)

16 (53.3) 
14 (46.7)

Microbiology
Microorganism (n (%))
No microorganism identified or no culture taken 
Positive culture f

Escherichia coli
Enterococcus faecalis
Enterococcus faecium
Pseudomonas aeruginosa
Klebsiella pneumonia
Staphylococcus aureus
Other

NA 
NA

28 (60.9) 
18 (39.1)
6 (25.0) 
2 (8.3) 
3 (12.5) 
5 (20.8) 
1 (4.2) 
2 (8.3) 
5 (20.9)

15 (28.8) 
37 (71.2)
20 (31.3) 
7 (10.9) 
6 (9.3) 
6 (9.3) 
4 (6.3) 
0 (0.0) 
21 (32.9)

a Not available for hospital F.
b Not available for hospital D, E and G, so percentage was calculated without these hospitals.
c Not available for hospital F, so percentage was calculated without this hospital. 
d Not available for hospital E and G, so percentage was calculated excluding these hospitals.
e Not available for hospital D, E and G, so percentage was calculated excluding these hospitals.
f Percentage was calculated relative to the total number of cultured microorganisms.
Abbreviations: SSI = surgical site infection; n = number; SD = standard deviation; BMI = body mass 
index; ASA =  American Society of Anesthesiologists; IQR = Interquartile range; ICU = Intensive Care 
Unit; NA = not applicable.

Reliability and validity
All 14 raters completed the two rounds of online questionnaire with case-vignettes. Of 
those, two had less than one year of experience with HAI surveillance, six had 2 – 5 years 
of experience, five persons 6 – 15 years and one more than 25 years. The estimated Cohen’s 
Kappa for agreement within a rater (intra-rater reliability) calculated from the case-vignette 
assessment varied from 0.73 to 1.00, indicating substantial to perfect agreement (Table 5.3). 
The inter-rater reliability within hospitals showed more variation, with lowest estimates 
reported for hospital A (κ = 0.61; 95% CI 0.23 – 0.83) and the highest in hospital C (κ = 0.94; 
95% CI 0.75 – 1.00). The overall inter-rater agreement of all 14 raters in the second round case-
vignettes was 0.72 (95% CI 0.59 – 0.83). From the local case assessment it was estimated that 
the overall percent agreement between raters within a hospital was almost perfect (mean = 
95%; range 90% – 100%). Regarding the accuracy of determining SSIs correctly, 87.9% (range 
70% – 95%) of the answers given by the raters were in accordance with the medical panel: 

Table 5.2. (Continued)
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three raters had similar SSI rates compared to the medical panel, five raters underestimated 
the number of SSIs, four had higher SSI rates because of incorrect ascertainment and there 
were two raters who had overestimated SSI in the first round, and an underestimation in the 
second round. Presence of anastomotic leakage was accurately scored in the vignettes where 
it was present, however misclassified in cases where anastomotic leakage was absent (Table 
5.3).

DISCUSSION
In this study we observed good reliability of SSI surveillance after colorectal surgeries in seven 
Dutch hospitals. Based on the case-vignette assessment, the intra-rater reliability was estimated 
substantial to perfect (κ = 0.71 – 1.00) and the inter-rater agreement within hospitals was 
substantial, but varied between hospitals (κ = 0.61 – 0.94). The local case assessment showed 
95% agreement within hospitals. Despite the fact that individual raters were consistent in 
their scoring, validity was moderate: in 12.1% (range 5% – 30%) the case-ascertainment was 
not correct as compared to the conclusions of the medical panel. The SSI rate determined by 
surveillance would therefore be under- or overestimated. 

To the best of our knowledge, there is only one other study assessing the inter-rater reliability 
explicitly for SSI after colorectal surgeries. Hedrick et al.18 concluded from their results that 
SSIs could not reliable be assigned and reproduced: they demonstrated large variation in SSI 
incidence between raters with only modest inter-rater reliability (i.e. κ = 0.64). They therefore opt 
for alternative definitions such as the ASEPSIS score.33 In the present study similar estimates for 
inter-reliability were found in 2 out of 7 hospitals (κ = 0.61 in hospital A and κ = 0.65 in hospital 
E), for the other five hospital we found estimates above 0.69. The higher reliability estimates 
found in the present study may be explained by several factors. First, the definitions and method 
used in the Netherlands aim to be more objective: a previous study has shown that surgeon’s 
diagnosis – not included the Dutch definition – lead to biased results.34,35 Another factor that 
may influence reliability is the years of surveillance experience of the raters and their ability to 
find information in the electronic health records needed for case-ascertainment.36 From Table 
5.3 it seems that more experienced raters produce more consistent results. However, the design 
of this study did not allow to investigate this type of causal relationships. 

The reliability estimates of this study show that SSIs after colorectal surgery are an appropriate 
measure to use for surveillance: the same result can be consistently achieved, making them 
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reproducible and suitable for monitoring trends and detecting changes in SSI rates within a 
hospital. However, at this moment, using SSI incidence as a quality measure for benchmarking 
may be hampered because of three reasons. First, we found that on average 12.1% of patients 
in the case-vignettes were misclassified: one rater misclassified 6 out of 20 vignettes while 
another had only one misclassification. This will lead to unreliable comparisons of SSI rates, 
although in practice difficult cases may be discussed in a team hence improving accuracy. As 
superficial SSIs rely on more subjective criteria, focusing on deep SSI may improve accuracy 
and comparability. Additionally, we observed that anastomotic leakage was too often assigned 
while it was actually absent. This may lead to an underestimation as these cases cannot be 
scored by a positive culture anymore according to the Dutch definition (as explained in the 
introduction). Second, Kao et al.16 and Lawson et al.15 investigated whether SSI surveillance 
after colorectal surgeries has good ability to differentiate high and low quality performance 
(i.e. the statistical reliability of SSIs). They both concluded that the measure can only be used 
as hospital quality measure when an adequate number of cases have been reported, which can 
be challenging for some hospitals as shown in Table 5.1. Third, another challenge in using 
SSI rates for interhospital comparisons is the lack of a sufficient method for risk adjustment. 
To obtain valid SSI comparisons, you have to correct for differences in the surveillance 
population and their risk factors. However, to date no method has been proven generalisable 
and appropriate.12,37 The points raised above show that the overall SSI incidence of 8.8% in 
this study is difficult to compare to others. Overall, the SSI incidence was lower compared to 
other studies, but in line with numbers previously reported to the Dutch national surveillance 
network.13,38,39 

When SSIs after colorectal surgery are used for monitoring and perhaps benchmarking, 
continuous training of raters is required to assure correct use and alignment of surveillance 
definitions and methodology. Reliability and validity of surveillance may be improved by 
automatisation methods as they can help to support case finding.40-42 Furthermore, hospitals 
should perform a certain number of colorectal surgeries to generate representative estimates 
of performance. If there is no appropriate case-mix correction, comparisons should be made 
with caution, preferably between similar types of hospitals with comparable patient groups.

Strengths and limitations
This study was performed within multiple Dutch centres, including different types of 
hospitals. The 14 raters in this study were well-trained according to standardised methods to 
minimalise differences possibly caused by years of surveillance experiences between hospitals. 
Unfortunately, this design was not suitable for explaining which factors enhance SSI-
ascertainment or will improve reliability and validity estimates. Second, we aimed to produce 



Reliability and validity of surgical site infection surveillance

5

95   

Cohen’s Kappa coefficients from the local case assessment as well, however it appeared that 
there was too little variation in outcomes and number of cases hindering this calculation. 

Conclusion
Awareness of the validity of surveillance and vulnerability to inter-rater variation is crucial 
for correct interpretation and use of surveillance data. This study showed that raters were 
consistent in their SSI-ascertainment, but improvements can be made regarding the accuracy. 
Hence, SSI surveillance results for colorectal surgery are reproducible and thus suitable for 
monitoring trends, but not necessarily correct and therefore less adequate for benchmarking. 
Based on prior literature, accuracy of surveillance may be improved by providing regular 
training, adapting definitions to reduce subjectivity, and by supporting case finding by 
automation.
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ABSTRACT
Objective: Surveillance is an important strategy to reduce the incidence of surgical site 
infections (SSIs). We investigated whether prior, multiple-, or repetitive surgeries are risk 
factors for SSI, and whether they should be preserved in the protocol of the Dutch national 
SSI surveillance network.

Methods: Dutch national SSI surveillance data 2012 – 2015 were selected, including 34 
commonly performed procedures from 8 major surgical specialties. Definitions of SSIs 
followed international standardised criteria. We used multivariable multilevel logistic 
regression techniques to evaluate whether prior, multiple-, or repetitive procedure(s) are 
risk factors for SSIs. We considered surgeries clustered within partnerships of medical 
specialists and within hospitals (random effects) and different baseline risks between surgical 
specialties (fixed effects). Several patient and surgical characteristics were considered possible 
confounders and were included where necessary. We performed analyses for superficial and 
deep SSIs combined as well as separately.

Results: In total, 115,943 surgeries were reported by 85 hospitals; among them, 2,960 (2.6%) 
resulted in SSIs (49.3% deep SSIs). The odds ratio (OR) for having prior surgery was 0.94 (95% 
confidence interval (CI) 0.74 – 1.20); the OR for repetitive surgery was 2.39 (95% CI 2.06 – 
2.77); and the OR for multiple surgeries was 1.27 (95% CI 1.07 – 1.51). The latter effect mainly 
caused by prolonged duration of surgery. 

Conclusions: Multiple- and repetitive surgeries significantly increased the risk of an SSI, 
whereas prior surgery did not. Therefore, prior surgery is not an essential data item to include 
in the national SSI surveillance network. The increased risk of SSIs for multiple surgeries was 
mainly caused by prolonged duration of surgery, therefore, it may be sufficient to report only 
duration of surgery to the surveillance network, instead of both (the variables duration of 
surgery and multiple surgeries). 
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INTRODUCTION
Surgical site infections (SSIs) are among the most common healthcare-associated infections 
(HAIs), and they occur in approximately 3% of all surgical patients.1,2 The highest incidence 
of SSI has been described in colorectal surgery, with incidence rates as high as 30%.3-7 The 
cumulative incidence of SSI varies by the type of surgical procedure, by hospital, and by the 
quality of data collection; it also depends on the criteria used to define the infection.8,9 SSIs are 
a major concern, because they lead to increased morbidity and mortality, longer hospital stays, 
and higher costs.10,11 In addition, the emergence of antibiotic-resistant strains, the increased 
use of nonhuman implants in surgical procedures and an ageing patient population with high 
morbidity are making infection prevention practices more complicated.12-14 

Surgical site infection surveillance is an essential step in identifying local problems and 
priorities and in evaluating the effectiveness of infection prevention activities.15 Research 
has shown that SSI surveillance results in enhanced infection prevention control actions 
and interventions leading to a significant reduction of SSIs.16,17 In the Netherlands, the 
Dutch surveillance network for healthcare-associated infections PREZIES (Dutch acronym 
for ‘PREventie van ZIEkenhuisinfecties door Surveillance’) monitors the cumulative SSI 
incidence and SSI risk factors.18 

Within the PREZIES network, patient-related, procedure-related, and post-operative risk 
factors are collected for a set of index-surgeries to interpret national trends and comparisons 
between hospitals (Table 6.1).12 Some risk factors, however, are presumed rather than 
established risk factors. For instance, the variables ‘prior surgery’, ‘multiple surgical procedures’ 
and ‘repetitive surgeries’ are included in the surveillance network, but their direct association 
with the occurrence of SSIs has not yet been adequately studied (Table 6.1). 

Table 6.1. Definitions as used in the PREZIES protocol of the Dutch SSI surveillance (2014, version 
1.0).18

Index-surgery 
The first (or primary) surgery to an organ or body structure (i.e. bone, joint, vessel) ever. Restricted to 
a list of 34 surgical procedures, see Supplemental Table S6.1. 
Previous minimally invasive procedures to the same organ or body structure as the index-surgery 
(such as keyhole surgeries, biopsies or inserting stents) are allowed (see definition Prior surgery).
If a patient has two different surgical procedures performed at the same time, only one surgical 
procedure is included in the surveillance. The surgeon decides which procedure serves as index-surgery.  

Prior surgery 
Small minimally invasive procedures to the same organ or body structure (i.e. bone, joint, vessel) as the 
index-surgery, performed during the year prior to the index-surgery. For instance keyhole surgeries, 
biopsies or inserting stents. 
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Examples: meniscectomy prior to total knee replacement, insertion of a pacemaker prior to Coronary 
Artery Bypass Grafting.

Additional for abdominal procedures:  
Any small or large surgical procedure performed during the year prior to the index-surgery, not to 
exactly the same organ or body structure (i.e. joint, vessel) as the index surgery, but still in the abdominal 
region. Example: a Caesarean Section 6 months prior to a colectomy is reported as a prior surgery.

Multiple surgery(ies) 
Additional surgical procedures performed during the index-operation, performed in the same surgical 
area as the index-surgery (through the same incision). 
Example: tubal ligation performed during Caesarean Section.

Repetitive surgery 
A surgical procedure, for any reason other than SSI, within the follow-up period of the index-surgery, 
performed in the same surgical area as where the index-surgery has been performed (through or just 
next to the old incision).
Examples: dislocation following total hip replacement, anastomotic leakage following colectomy.

Because the workload related to data collection for surveillance is burdensome, it is essential 
to incorporate only important risk factors that are easy to measure. Doing so would not only 
result in a reduced workload for hospital personnel but also would improve the willingness of 
healthcare facilities to participate in the surveillance network. In this study, we investigated 
whether prior, multiple-, and repetitive surgeries are relevant risk factors for SSIs, and we 
sought to determine whether data pertaining to these factors should continue to be collected 
in the Dutch national surveillance network.

MATERIALS AND METHODS
Participants and data collection
For this observational cohort study, we used PREZIES SSI surveillance data from January 
2012 to January 2015. Details of the surveillance have been described previously.19,20 In short, 
the PREZIES surveillance database contains prospectively collected data of 34 commonly 
performed surgical procedures (i.e., so-called index-surgeries, Supplemental Table S6.1) of 
8 major surgical specialties: cardiovascular, breast, gastro-intestinal, vascular, orthopaedic 
surgeries, gynaecology, neurosurgery, and cosmetic surgeries.18,19 For each surgical procedure 
under surveillance, data concerning the patient, surgery, and infection were collected in a 
prospective manner according to the surveillance protocol by trained infection prevention 
professionals and medical microbiologists.17,18 Retrospective on-site validation was performed 
by the PREZIES team.18 Hospitals can report the causative microorganism; however, this is 
not mandatory because the diagnosis of SSI can be based on clinical symptoms alone (Table 

Table 6.1. (Continued)
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6.2). Participation in the surveillance network is voluntary for all healthcare facilities in the 
Netherlands, including university hospitals, general hospitals, and private medical centres 
(hereafter, cumulatively referred to as hospitals). In addition, hospitals are free to choose when 
and how long they participate in the surveillance network and which surgical procedures they 
report. 

Table 6.2. Definitions used to diagnose surgical site infections in the Dutch SSI surveillance. 
Reprinted from the PREZIES protocol (2014, version 1.0).18

Superficial incisional SSI

Infection occurs within 30 days after surgery, and infection involves only skin or subcutaneous tissue of 
the incision, and at least one of the following:
1. Purulent drainage from the superficial incision
2. At least one of the following signs or symptoms: pain or tenderness, localised swelling, erythema, 

or heat, 
AND 
Microorganisms isolated from an aseptically obtained culture from the superficial incision

3. At least one of the following signs or symptoms: pain or tenderness, localised swelling, erythema, 
or heat, 
AND 
Superficial incision is deliberately opened by the surgeon (not applicable if culture-negative incision)

Deep incisional SSI

Infection occurs within 30 days after surgery if no implant is left in place, or within 1 year if an implant 
is in place and the infection is related to the surgery. Infection involves deep soft tissues (e.g., fascial and 
muscle layers) of the incision and at least one of the following:
1. Purulent drainage from the deep incision, excluding organ/space#

2. An abscess or other evidence of infection involving the deep soft tissues is found on direct 
examination, during repetitive operation, or by histopathologic or radiological examination*

3. At least one of the following signs or symptoms: pain or tenderness, localised swelling, erythema, 
heat, or fever (> 38°C), 
AND
A deep incision that spontaneously dehisces or is deliberately opened by a surgeon (a culture-
negative finding does not meet this criterion)$

Organ/space SSI*

Infection occurs within 30 days after surgery if no implant is left in place or within 1 year if an implant 
is in place. Infection involves any part of the anatomy (e.g., organs or organ spaces), which was opened 
or manipulated during an operation and at least one of the following:
1. Purulent drainage from a drain that is placed through the stab wound into the organ/ space
2. An abscess or other evidence of infection involving organ/space, which is found on direct 

examination, during repetitive surgery, or by histopathologic or radiological examination
3. Microorganisms isolated from an aseptically obtained culture from the organ/space$

# Report infection that involves both superficial and deep incision sites as a deep incisional SSI.
* Report an organ/space SSI that drains through the incision as a deep incisional SSI.
$ Not applicable for colectomy followed by anastomotic leakage or perforation.
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Due to the increase in outpatient care, same-day surgery, and shorter hospitalisations, many 
SSIs develop post discharge.20-23 To detect post-discharge SSIs, two standardised methods 
of post-discharge surveillance were chosen by PREZIES and were mandatory.20,22,24 For all 
surgeries included in surveillance, a follow-up period of 30 days was required. This follow-up 
period was extended to 1 year for deep SSIs if a nonhuman implant was used. The surveillance 
ended (1) if the follow-up period was completed; (2) if a deep SSI was diagnosed; or (3) the 
patient died. 

Definitions and outcome
In total, 34 types of index-surgeries can be included for surveillance. The definition of an 
index-surgery is given in Table 6.1.18 Operation types with at least 100 completed records 
were included.

The risk factors under investigation in this study were ‘prior surgery’, ‘multiple surgical 
procedures’ and ‘repetitive surgery’. Detailed definitions for these variables are summarised 
in Table 6.1.18 In short, prior surgery is a surgery performed within 1 year prior to the index 
surgery. Multiple surgical procedures refer to an additional surgical procedure performed 
during the index surgery. In case of multiple index surgeries, the designation of the primary 
index surgery is left to the discretion of the surgeon. Repetitive surgeries are defined as a 
reoperation for any reason other than an SSI. 

The primary end point of this study was the cumulative incidence of SSI as defined by criteria 
from the (European) Centers for Disease Control and Prevention ((E)CDC), translated and 
modified by PREZIES (Table 6.2).18,25-27 Organ-space and deep SSIs are grouped under the 
umbrella term ‘deep SSI’ because, in practice, it is difficult to distinguish deep SSIs from 
organ-space SSIs.18,28 In this study, 3 outcomes were considered. The first outcome was the 
cumulative incidence of SSIs (total), which indicates the development of an SSI regardless of 
the type of infection (deep or superficial). In addition, as secondary outcomes, we used the 
incidences of superficial SSIs and deep SSIs, respectively, to determine whether risk factors are 
different for these types of infection.8,29,30

Statistical analyses
Results are reported as medians and means for continuous variables and as frequencies and 
proportions for categorical variables. Box-and-whisker-plots were generated to describe the 
distribution of SSIs for the 8 selected specialties. 
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We used multivariable multilevel logistic models to estimate the odds of an SSI due to prior, 
multiple-, or repetitive surgeries. We considered possible clustering of the data by adding random 
effects of the combination of surgical specialty and hospital, thereby creating partnerships of 
surgical specialties within hospitals. Surgical specialty was added as fixed effect to the model to 
correct for the baseline differences in SSI risk per type of surgical specialty. Possible confounders 
were selected based on literature and clinical judgment and were tested using a stepwise forward 
selection method. If a covariate changed the odds ratio (OR) by 10% or more, this variable was 
considered a confounder and was included in the final model. For all three potential risk factors, 
the following possible confounders were considered: age, gender, body mass index (BMI), 
normal body temperature during the surgery (normothermia), wound class, American Society 
of Anesthesiologists (ASA) class, malignancy and the use of an implant in surgery. In addition, 
for the analyses focusing on prior surgery and repetitive surgery, the possible confounder 
duration of surgery was also investigated. In addition, for repetitive surgery, the variables prior 
surgery and multiple surgeries were considered additional potential confounders: for multiple 
surgeries, the possible influence of prior surgery and repetitive surgeries was examined. For 
multiple surgeries, the influence of the duration of surgery was additionally analysed because, 
with more operational procedures in one session, the operation time is likely to be longer. 
Therefore, we investigated the extent to which the relationships among these factors could 
influence the results. Odds ratios and 95% confidence intervals (95% CI) were calculated for the 
three outcomes: total SSI, superficial SSI and deep SSI. 

For the sensitivity analysis, the analyses for superficial and deep SSIs were repeated after 
excluding breast surgeries. Because it is notoriously difficult to distinguish superficial SSIs 
from deep SSIs in breast surgeries without implants, the results of analysing deep and 
superficial SSIs separately may not be reliable for this specialty. Therefore, we repeated the 
separate analyses for deep and superficial infections excluding all breast surgeries.

Descriptive analyses were performed using SPSS version 22.0 software (SPSS, Chicago, IL). 
The multivariable multilevel models were analysed using SAS version 9.3 software (SAS 
Institute, Cary, NC). A p ≤ 0.05 was considered statistically significant.

RESULTS
In total, 115,944 surgeries were reported between January 2012 and January 2015 in the 
PREZIES database. Only surgical procedures reported more than 100 times were included 
for analysis, resulting in the inclusion of 115,943 surgeries of 7 specialties reported by 85 
hospitals. Among the included surgeries, 2,960 (2.6%) SSIs were diagnosed: 1,502 of these 
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(50.7%) were superficial and 1,458 (49.3%) were deep SSIs. In 1,170 deep SSIs (80.2%) and 
906 superficial SSIs (60.3%), a causative organism was reported. 

Table 6.3 shows the baseline characteristics for the included surgeries, stratified by the three 
investigated risk factors. Box-and-whisker-plots (Figure 6.1) illustrate SSI incidences for 
each surgical specialty. The highest SSI incidences were found in gastrointestinal surgery, 
followed by vascular and breast surgery. For vascular operational procedures, two hospitals 
had exceptionally high infection rates (24.5% and 25.0%), but had reported only 49 and 20 
surgeries respectively (data not shown). 

Data regarding prior surgery were available for 108,618 patients. Of 3,511 patients with a 
prior surgery 87 (2.5%) developed an SSI compared to 2,757 of 105,107 patients without prior 
surgeries (2.6%). Prior surgery was more often performed on women, due to the high number 
of caesarean sections and hysterectomies. We found no significant association between prior 
surgery and the development of SSIs (either deep, superficial or both combined (i.e. total 
SSI)), and no confounders were detected (Table 6.4). 

Having had multiple surgeries during the index-surgery was positively associated with prior 
surgery, repetitive surgery, suspicion of malignancy, and an increased mean duration of 
surgery. Of 3,542 patients with multiple surgeries, 178 (5.0%) developed an SSI, compared 
to 2,782 of 112,401 (2.5%) in the group without multiple surgeries. An increased OR of 
developing an SSI was found for patients having multiple surgeries, which was significant for 
deep SSIs and all SSIs combined (OR = 1.48; 95% CI 1.17 – 1.88; OR = 1.27; 95% CI 1.07 –1.50, 
respectively) but was not statistically significant for superficial SSIs (OR = 1.14; 95% CI 0.90 – 
1.43). When excluding breast surgeries from the analyses, effects for deep and superficial SSIs 
became more similar; however, only the result for deep SSIs was statistically significant. After 
adjusting for duration of surgery in the models, no effect of multiple surgeries on deep SSIs, 
superficial SSIs, or both was found (OR range = 0.94 – 1.15, data not shown).

Of 115,943 patients, 3,013 underwent a repetitive surgery. In these patients, 236 (8.5%) developed 
an SSI compared to 2,724 of 112,930 patients (2.4%) in the group without repetitive surgery. For 
patients who developed an SSI, the median time to repetitive surgery was 6 days versus 13 days 
for people without an SSI (p ≤ 0.001). Most repetitive surgeries were reported for breast surgeries. 
Odds ratios for the relationship between repetitive surgeries and all SSI types (total), superficial 
SSIS, or deep SSIs were all significantly increased (OR range = 1.73 – 3.44) (Table 6.4). After 
excluding breast surgeries from the analyses, the effects were even stronger. Body mass index was 
found to confound the relationship between repetitive surgery and superficial SSIs.  
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n = 1,945 
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Figure 6.1. Distribution of surgical site infection (SSI) incidence in hospitals per surgical specialty.

Table 6.4. Results of multivariable multilevel analyses for prior, multiple- and repetitive surgery(ies) 
on the outcomes of SSI (total, superfi cial and deep).

Prior surgery
(n (%)) Yes

n = 3,511
No

n = 105,107
OR (95% CI)
all surgeries

OR (95% CI) without 
breast surgeries

SSI (Total) 87 (2.4) 2,757 (2.6) 0.94 (0.74 – 1.20) 1.03 (0.79 – 1.36)
Superfi cial SSI 47 (1.3) 1,397 (1.3) 0.79 (0.56 – 1.10) 0.84 (0.55 – 1.28)
Deep SSI 40 (1.1) 1,360 (1.3) 1.12 (0.81 – 1.57) 1.25 (0.88 – 1.76)

Multiple surgeries
Yes

n = 3,542
No

n = 112,401
Total SSI 178 (5.0) 2,782 (2.5) 1.27 (1.07 – 1.50) 1.31 (1.08 – 1.58)
Superfi cial SSI 92 (2.6) 1,410 (1.3) 1.14 (0.90 – 1.43) 1.28 (0.94 – 1.65)
Deep SSI 86 (2.4) 1,372 (1.2) 1.48 (1.17 – 1.88) 1.37 (1.06 – 1.78)

Repetitive surgery
Yes

n = 3,013
No

n = 112,930
Total SSI 236 (7.8) 2,724 (2.4) 2.31 (1.99 – 2.68) 2.99 (2.52 – 3.51)
Superfi cial SSI 91 (3.0) 1,411 (1.2) 1.62 (1.27 – 2.06)* 2.14 (1.63 – 2.82)**
Deep SSI 145 (4.8) 1,313 (1.2) 3.44 (2.85 – 4.14) 3.95 (3.26 – 4.79)

* Adjusted for BMI. Non-adjusted OR = 1.57 (95% CI 1.25 – 1.97).
** Adjusted for BMI. Non-adjusted OR = 1.99 (95% CI 1.54 – 2.56).
Abbreviations: n = number; OR = odds ratio; 95% CI = 95% confi dence interval; SSI = surgical site 
infection.
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DISCUSSION
The analyses show that multiple- and repetitive surgeries significantly increased the odds of 
SSIs: ORs were 1.27 and 2.31 for developing deep and superficial SSIs combined respectively, 
and the OR was even larger for deep SSIs. Having had a prior surgery did not, however, 
significantly increase the odds of SSIs, so we concluded that prior surgery is not a risk factor 
for the development of an SSI. Because retrieving information about prior surgery(ies) per 
patient is time-consuming and laborious, we consider it no longer worthwhile to report this 
variable in our surveillance system.

Patients with multiple procedures during the index surgery had increased odds of developing 
SSIs. When analysing this association for superficial and deep SSIs separately, we observed 
a significantly increased and slightly larger risk for deep SSI compared to superficial SSI. 
When excluding breast surgeries from the analyses, effects found for deep and superficial 
SSIs became more similar; however, only the risk for deep SSI was statistically significant 
increased. A possible explanation could be that, with more procedures performed through 
the same incision during one surgery, more deep tissue is handled and damaged, resulting 
in a greater risk for deep SSI.31 Another possibility is that the longer duration of the surgery 
rather than the secondary procedure itself (compared to patients with a single operation, i.e., 
only the index surgery) is responsible for the higher odds. A longer duration of surgery has 
been associated with an increased risk of SSI,5,7,30,32-35 and with more operational procedures 
in one session, time between incision and closure is likely to be longer. When we included 
duration or surgery in the model of multiple surgeries and superficial infections, no effect of 
multiple surgeries was found. Based on these findings, we concluded that multiple surgeries 
are an indirect risk factor for developing SSI, and therefore, the related data are useful data 
to report to the surveillance network. However, when duration of surgery is also reported to 
the surveillance network, it is worthwhile to consider discontinuing the reporting of multiple 
surgeries, especially because the duration of surgery is easier to interpret and to report. 
Additional research with more detailed information about multiple surgeries will be valuable 
to validate our findings.

Repetitive surgery is reported for SSI surveillance if a patient is reoperated on for any reason 
other than infection. This study showed that repetitive surgery is a risk factor for SSIs, and 
this might be explained by the fact that in repetitive surgeries the incision (or the area around 
the incision) is reopened, resulting in more scar tissue and new opportunities for skin flora 
to invade the wound. Furthermore, we found that a higher BMI distorts the relation between 
repetitive surgeries and superficial SSIs. 
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Strengths and limitations
To the best of our knowledge, this study is the first multicentre study investigating the effect 
of prior, multiple-, and repetitive surgeries on SSIs, including several surgical specialties. A 
major strength of this study is that the Dutch surveillance network consists of many general 
hospitals, as well as university hospitals and private medical centres, providing a good 
reflection of care institutions in the Netherlands. In addition, mandatory standardised post-
discharge surveillance methods were used in all of these hospitals. Thanks to the large study 
population, sound statistical methodology and the use of standardised definitions for SSIs, we 
believe that reliable and robust results were achieved.

This study has several limitations. First, despite the broad range of patient- and procedure-
related data collected for surveillance, additional factors may contribute to SSI incidence 
that are not reported for surveillance, such as surgeon expertise and organisational and 
environmental factors. However, these factors are hospital specific and difficult to measure, 
and little is known about the actual adherence of individual surgeons to guidelines and work 
agreements. Secondly, surveillance data rely on the ability of surveillance personnel to find 
and report data consistently and correctly.14 For example, we have become aware that, for 
breast surgeries without implants, it is very difficult to distinguish deep SSIs from superficial 
SSIs, and assigning SSIs for this type of surgery to either deep of superficial is, in fact, 
unreliable. Therefore, currently, the PREZIES network has stopped distinguishing deep from 
superficial SSIs for this type of surgery. For the interpretation for deep and superficial SSI, 
therefore, the analyses excluding breast surgeries are preferable. Third, some heterogeneous 
surgical procedure types are included in surgical specialties; the risk for may not be increased 
for all index surgeries within a specialty. Finally, we are aware that some variables might be 
interpreted differently by hospital personnel. Although large abnormalities can be identified 
through validation of the data, some small errors will always remain. Nevertheless, we assume 
that a few misinterpretations of the protocol in such a large national surveillance network will 
not significantly modify the associations we found. 

Future recommendations
Future studies should be conducted to determine the risk differences in developing SSIs 
considering timing and the type of reoperation. We could not determine whether all types 
of reoperations and the timing of them are equally important because data regarding the 
type and reason to perform a repetitive surgery were not available for all specialties. Further 
investigation is needed to determine whether reporting repetitive surgeries for surveillance 
purposes can be simplified, or whether reporting is needed for only a selection of surgical 
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procedures. If such a customised surveillance is possible, SSI surveillance will be more 
efficient. 

In conclusion, we aimed to optimise the current SSI surveillance system in the Netherlands 
by investigating whether prior, multiple-, and repetitive surgery(-ies) are true risk factors 
for SSI. Multiple- and repetitive surgeries significantly increased the overall odds of an 
SSI, whereas a prior surgery did not. Because retrieving information about prior surgeries 
is time-consuming and laborious, we consider it no longer worthwhile to report this data 
to the surveillance network, and therefore, we have excluded this variable from the Dutch 
SSI surveillance protocol. Additionally, we found that reporting multiple surgeries is not 
required for surveillance if duration of surgery has already been reported. Other national 
SSI surveillance protocols could also consider removing prior surgery as well as multiple 
surgeries when duration of surgery is included in the surveillance data. 
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SUPPLEMENTARY MATERIAL

Supplemental Table S6.1. Overview of the 34 operation types included in the Dutch surveillance 
protocol and their infection rates.

Specialism Code in 
PREZIES

 Description Number of 
surgeries (n (%))

SSI (n (%))

Cardiovascular 
surgery
n = 6,537

BYPASS Coronary Artery Bypass Grafting 
(CABG)

4017 (61.5) 63 (1.6)

KLEPOP Aortic valve replacement, open 
procedure

1487 (22.7) 10 (0.7)

KLEPGS Aortic valve replacement, endoscopic 
procedure

167 (2.6) 0 (0.0)

BYPKLP Combined CABG and aortic valve 
replacement

866 (13.2) 15 (1.7)

PACICD Pacemaker/Implantable cardioverter 
defibrillator surgery

0 (0) -

Breast surgery
N=11,994

MAMABL Mastectomy 5109 (42.6) 204 (4.0)
MAMLUM Lumpectomy 6885 (57.4) 132 (1.9)

Gastro-
intestinal 
surgery
n = 20,549

COREOP Right hemicolectomy, open procedure 2026 (9.9) 281 (13.8)
COREGS Right hemicolectomy, laparoscopic 

procedure
1563 (7.6) 154 (9.8)

COLIOP Left hemicolectomy, open procedure 585 (2.9) 95 (16.2)
COLIGS Left hemicolectomy, laparoscopic 

procedure
480 (2.3) 54 (11.2)

SIGMOP Sigmoidectomy, open procedure 992 (4.8) 198 (20.0)
SIGMGS Sigmoidectomy, laparoscopic procedure 1175 (5.7) 102 (8.7)
LOWAOP Low anterior resection, open procedure 584 (2.8) 96 (16.4)
LOWAGS Low anterior resection, laparoscopic 

procedure
817 (4.0) 97 (11.9)

CHOLOP Cholecystectomy, open procedure 334 (1.6) 29 (8.7)
CHOLGS Cholecystectomy, laparoscopic 

procedure
9990 (48.6) 215 (2.2)

APPEOP Appendectomy, open procedure 818 (4.0) 25 (3.1)
APPEGS Appendectomy, laparoscopic procedure 1185 (5.8) 24 (2.1)

Vascular 
surgery
n =1,945

RCAOOP Aortoiliac bypass, open procedure 440 (22.6) 13 (3.0)
RCAOEN Aortoiliac bypass, laparoscopic 

procedure
317 (16.3) 3 (0.9)

BLVBUI Reconstruction of other abdominal 
blood vessels  

409 (21.0) 4 (1.0)

FEMBYP Femoropopliteal or femoro-crural 
bypass, open procedure

463 (23.8) 63 (13.6)

DESFEM  Desobstruction common femoral 
artery, open procedure

316 (16.2) 11 (3.5%)
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Specialism Code in 
PREZIES

 Description Number of 
surgeries (n (%))

SSI (n (%))

Orthopaedic 
surgery
n = 54,854

HEUPPR  Total hip replacement 27645 (50.4) 434 (1.6)
KOPHAL  Partial hip replacement 3964 (7.2) 153 (3.7)
KNIEPR Total knee replacement  23245 (42.4) 259 (1.1)

Gynaecological 
surgery
n = 18,344

ABDUTE Abdominal hysterectomy 1860 (10.1) 26 (1.4)
VAGUTE Vaginal hysterectomy 1098 (6.0) 12 (1.1)
PROLUT  Vaginal hysterectomy with prolapse 

repair
553 (3.0) 2 (0.4)

SECTIO Caesarean section 14833 (80.8) 173 (1.2)
Neurosurgery
n = 1,720

LAMINE Laminectomy 1720 (100.0) 12 (0.7)

Cosmetic 
surgery
n = 1

BORSTZ Breast augmentation without lifting 1 (100.0) 0 (0.0)
BORSTM Breast augmentation with lifting 0 (0.0) -

Supplemental Table S6.1. (Continued)
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ABSTRACT
Background: As most automated surveillance (AS) methods to detect healthcare-associated 
infections (HAIs) have been developed and implemented in research settings, information 
about the feasibility of large-scale implementation is scarce.

Aim: To describe key aspects of the design of AS systems and implementation in European 
institutions and hospitals.

Methods: An online survey was distributed via email in February/March 2019 among 1) 
PRAISE (Providing a Roadmap for Automated Infection Surveillance in Europe) network 
members; 2) corresponding authors of peer-reviewed European publications on existing AS 
systems; and 3) the mailing list of national infection prevention and control focal points of the 
European Centre for Disease Prevention and Control. Three AS systems from the survey were 
selected, based on quintessential features, for in-depth review focusing on implementation in 
practice.

Findings: Through the survey and the review of three selected AS systems, notable differences 
regarding the methods, algorithms, data sources and targeted HAIs were identified. The 
majority of AS systems used a classification algorithm for semi-automated surveillance 
and targeted HAIs were mostly surgical site infections, urinary tract infections, sepsis or 
other bloodstream infections. AS systems yielded a reduction of workload for hospital staff. 
Principal barriers of implementation were strict data security regulations as well as creating 
and maintaining an information technology infrastructure.

Conclusion: AS in Europe is characterised by heterogeneity in methods and surveillance 
targets. To allow for comparisons and encourage homogenisation, future publications on 
AS systems should provide detailed information on source data, methods and the state of 
implementation.
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INTRODUCTION
Healthcare-associated infections (HAIs) are a worldwide concern due to their implications on 
morbidity, mortality and costs.1-3 In Europe, annually, around 3.2 million people are affected by 
HAIs.4 Surveillance of HAIs is listed as a core component of effective infection prevention and 
control (IPC) programmes by the World Health Organisation,5 and has been demonstrated 
to effectively reduce HAI occurrence.6-9 Despite the adoption of electronic health records 
(EHRs), the majority of surveillance activities still rely on manual patient chart review by 
infection control staff, a process that is often paper-based and resource-intensive.10, 11 This 
conventional surveillance is prone to human error as well as low inter-rater reliability.12-14 
The opportunities arising from improved information technology (IT) infrastructures in 
many hospitals have incentivised the development of automated surveillance (AS) systems to 
overcome the limitations of traditional manual surveillance.15, 16 

Surveillance of HAIs can be automated to various degrees, but generally two methods can be 
distinguished: semi-automated surveillance and fully automated surveillance.15, 17 In semi-
automated surveillance, an algorithm classifies patients in a high-or low probability for 
certain HAIs. Whereas ‘high-probability’ patients require a manual confirmation to classify 
them as having a HAI or not, low-probability patients are assumed to not have HAIs and 
no manual assessment is performed. The algorithms used in semi-automated surveillance 
can be classification algorithms or decision trees, comprising of a set of indicators derived 
from structured data from hospital information systems.18-21 The selection of indicators 
incorporated in the algorithms is based on previous experience and clinical knowledge, 
statistical methods or machine learning techniques.18, 19, 22-24 For fully automated surveillance, 
algorithms perform HAI ascertainment without human interference. Algorithms for fully 
automated surveillance have been developed using (clinical) indicators by various techniques 
such as statistical models or machine learning, or by using data that represent infection 
criteria (rule-based algorithms).25-33 For incorporating unstructured data in the algorithm, 
text-mining techniques can be used.27, 34-36 Overall, most published AS methods reduce the 
workload and some showed even higher sensitivity compared to manual surveillance.20, 37-39

Though many AS methods and algorithms show promising results, the majority has been 
developed and implemented in (single-centre) research settings and information about the 
feasibility of large-scale implementation is scarce. Research showed that only 25% of the 
systems are actually used in clinical routine.39-41 The PRAISE network (Providing a Roadmap 
for Automated Infection Surveillance in Europe) was established to support the transition to 
large-scale implementation. This network involved 30 experts from 10 countries, representing 
different types of institutions, such as hospitals and public health institutes. The PRAISE 
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network recently developed a roadmap to bring AS from the research setting to large-scale 
implementation.17 As part of this project, the network investigated and evaluated AS systems 
that are currently implemented and in use by means of a survey.

The aim of this study was to describe key aspects of AS systems and implementation thereof 
in European institutions and hospitals based on survey results. Furthermore, we selected 
AS systems that were included in the survey and for further elaboration on their distinctive 
features and real-life implementation challenges.

METHODS
The PRAISE network developed a survey with the main aim to map the current state of AS 
systems for HAIs in Europe, including existing systems as well as pre-implementation research, 
and to illustrate key aspects of AS systems (including types of HAIs under surveillance, degree 
of automation, underlying algorithms), and identify barriers and limitations. Furthermore, 
the survey aimed to describe extraction and utilisation of raw data (e.g. migration of patient-
related data into a data warehouse), and learn about implementation, maintenance and 
evaluation of AS systems. As a secondary objective, the survey aimed to identify existing AS 
systems to be selected for a more in-depth investigation through follow-up interviews and 
complementary literature searches. 

In February and March 2019, the survey was distributed among network members via e-mail 
(purposive sampling). Invitations were also sent to corresponding authors of peer-reviewed 
publications on AS in Europe published between 2010 and 2019. To achieve maximum 
dissemination, survey invitees were encouraged to share the survey link with other suitable 
persons (snowball sampling). Furthermore, the questionnaire was distributed via the mailing 
list of national IPC focal points of the European Centre for Disease Prevention and Control 
(ECDC). The survey language was English and contained both multiple choice and free text 
questions. Data were entered online and data entry was possible from February, 13rd 2019 
until July, 22nd 2019. A reminder was sent to all invitees in May 2019. The survey comprised of 
a maximum of 29 questions that explored different aspects of AS (Supplemental File S7.1). 
Nineteen questions were directly targeted to learn about specifications of existing AS systems, 
additional questions collected context information. 

Only responses from European institutions who fully completed the survey were included. 
Where more than one response per institution was received (‘duplicates’), responses were 
merged. Free text answers were grouped into thematic groups at the discretion of the study 
team in order to increase the intelligibility of the content. From the responses received, three AS 
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systems were selected by the authors, based on quintessential characteristics, to be described in 
greater detail and to further illustrate the possibilities and variability of AS systems.

RESULTS
A total of 25 responses were transmitted to the PRAISE network. Three responses were excluded 
due to incompleteness (n = 1) and country of origin outside of Europe (n = 2). In three cases, two 
responses were attributable to the same institution and therefore merged, leaving 19 responses 
for further analysis. The data were from 11 countries (The Netherlands (n = 5); France (n = 4); 
Sweden (n = 2); Austria, Belgium, Denmark, Finland, Germany, Norway, Switzerland, Wales 
(all n = 1)). Eight responses pertained to a surveillance network, and 11 pertained to a hospital 
(tertiary care university centres (n = 9); non-university teaching hospitals (n=2)).

Twelve (63%) survey participants reported that AS was in use at their hospital or surveillance 
network at the time of the survey (surveillance network (n = 5); hospital (n = 7: six university 
hospital, one non-university hospital)). Seven (37%) participants stated that AS had been 
considered but was not implemented at the time of the survey (surveillance network (n 
= 3); hospital (n = 4: three university hospital, one non-university hospital)). Reasons for 
non-implementation reported by surveillance networks were a lack of data harmonization 
and willingness of the participating hospitals. Hospitals reported the lack of digitalization 
of patient data and insufficient IT infrastructure along with low prioritization by hospital 
management and data security concerns.

Automated surveillance systems
Existing AS systems mostly targeted surgical site infections (SSIs), urinary tract infections 
(UTIs), central line-associated or -related bloodstream infections, and sepsis or other 
bloodstream infections (Figure 7.1). Whereas four (surveillance network (n = 2); hospital (n = 
2)) institutions reported employing a fully automated surveillance method, seven (surveillance 
network (n = 3); hospital (n = 4)) reported conducting semi-automated surveillance. 
Information on this aspect was not provided by one institution. Classification models (n = 
8) were the most prevalent algorithm type. A machine learning system or regression model 
was reported by one participant each. Two participants were unable to provide specifics on 
underlying algorithms. Specifics on the source data included in the AS system are illustrated 
in Figure 7.2. Five AS systems (all from hospitals) reported migration of most or all data 
sources into a clinical data warehouse, and seven AS systems (surveillance network (n = 5); 
hospital (n = 2)) relied on collecting data from multiple separate data sources.
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Figure 7.1. Healthcare-associated infections under surveillance in existing automated surveillance 
systems at the surveillance network (grey bars, n = 5) and hospital level (black bars, n = 7). 
Abbreviations: BSI = bloodstream infection; SSI = surgical site infection; UTI = urinary tract infection; 
VA = ventilator-associated.
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Figure 7.2. Source data types included in existing automated surveillance systems at the surveillance 
network (grey bars, n = 5) and hospital (black bars, n = 7) level. 
* Note that relevance of these data sources depend on the targeted infection (e.g. use of invasive devices 
is not applicable to surgical site infection surveillance). 
Abbreviations: SOFA = Sequential Organ Failure Assessment.
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Experience of implementing AS
Table 7.1 summarises experienced advantages of the AS system, key determinants of 
successful implementation and barriers, as well as potential improvements. Most noticeably, 
time efficiency and reduction of workload for hospital staff were cited as the most important 
advantages of AS. Conversely, creation and maintenance of sophisticated IT infrastructures 
as well as strict data security regulations were reported as the most significant barriers for 
successful AS implementation.

Table 7.1. Reported experiences of users of semi- and or fully automated surveillance systems at the 
surveillance network (n = 5) and hospital (n = 7) level.

Topic Surveillance network Hospital

Key advantages 
of automated 
surveillance systems 
over manual 
surveillance systems

• Time efficiency/Reduction of 
workload

• Re-allocation of saved IPC 
resources

• Greater uniformity and validity 
of data across different hospitals

• High acceptance by staff in 
participating hospitals

• Time efficiency/Reduction of workload
• Re-allocation of saved IPC resources
• Better involvement of non-IPC staff
• Inclusion of larger amounts of data (e.g. 

more procedures, more types of HAIs) 
to generate a more comprehensive 
overview

• Higher structural uniformity of 
collected data

• Real-time data view

Key determinants 
of successful 
implementation 
of automated 
surveillance systems

• Legal regulations (mandatory 
participation)

• Flexibility for participating 
hospitals with regard to software 
selection

• Clearly defined responsibilities
• Frequent exchange with 

regional/hospital partners
• Availability of high quality data

• Support from hospital management
• Functioning cooperation with an IT 

department
• Existence of a data warehouse
• Exclusion of unnecessary details
• Involvement of frontline healthcare 

workers into the daily workflow

Barriers of successful 
implementation 
of automated 
surveillance systems

• Strict data protection 
regulations

• Heterogeneity of data sources 
and data quality

• Lack of adequate IT 
infrastructures 

• Strict data protection regulations
• Difficult accessibility and low quality of 

data sources
• Lack of quality control of source data
• Lack of prioritization within hospital

Possible further 
improvements 
of implemented 
automated 
surveillance systems

• Further integration of data 
sources

• More freedom concerning data 
protection regulations (e.g. 
access to non-anonymised data)

• Harmonization with existing 
(international) HAI definitions

• More comprehensive data reporting
• Flexibility concerning included data 

(e.g. in case of outbreaks)
• Reduction of manual work processes

Abbreviations: IPC = infection prevention and control; IT = information technology; HAI = healthcare-
associated infection.
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In-depth view of three existing AS systems
There is a large variety in the methods, algorithms, data sources and targeted HAIs used for 
AS, complicating head-to-head comparisons. Additionally, information publicly available 
regarding surveillance systems is not exhaustive, and usually has a technical focus, whereas 
the process of actual implementation, architecture, maintenance and workflow are generally 
not systematically published.42 For these reasons, three successfully implemented AS systems 
are described in greater detail, focusing on the aspects that are not described in scientific 
reports.18, 20, 29, 30, 42, 43 A concise overview of these systems is provided in Table 7.2. 

Table 7.2. System features and lessons learned from automated surveillance systems HAIBA, semi-
automated SSI surveillance (UMCU), and HAI-proactive. 

HAI-proactive UMCU HAIBA
Country Sweden the Netherlands Denmark
Year of 
implementation

Currently being 
implemented

2015 2015

Administration 
level

Regional Local (institutional) National

Type of system Fully automated rule-based 
algorithm

Semi-automated 
classification tree

Fully automated rule-based 
algorithm

HAI targets Hospital-onset sepsis, UTI Deep-Incisional SSI 
(after THA, TKA, 
cardiac, spinal, IO 
surgeries)

HOB, UTI, CDI, Deep-
Incisional SSI (after THA 
and TKA)

Data sources Structured/unstructured 
EHR data

Structured EHR data Structured data from 
national registries

Data type 
included

Microbiology, Antibiotics, 
Clinical

Administrative, 
Microbiology, 
Antibiotics

Administrative, 
Microbiology

Sensitivity > 85% compared to manual 
surveillance

> 95% compared to 
manual surveillance 

36% compared to PPS

Reporting Manual to healthcare 
providers

Online dashboard 
within institution

Automated output reports

Lessons Learned • Unstructured free text 
data is useful for finding 
symptoms

• Legislation and data 
protection regulation 
can be very time 
consuming elements 
in the development 
and implementation of 
systems

• Distinction primary 
and non-primary 
procedures not 
always feasible 

• Collection of risk 
factor data is limited 
to those variables 
documented 
systematically in the 
EHR

• Develop a system in 
close collaboration 
with the end users. This 
ensures algorithms and 
outputs are meaningful 
and increases trust in 
the system

• Changes in the data 
sources can have a 
major impact

Abbreviations: UTI = urinary tract infection; SSI = surgical site infection; EHR = electronic health 
record; THA  = total hip arthroplasty; TKA  = total knee arthroplasty; IO =  intra-ocular; HOB = 
hospital-onset bloodstream infection; CDI = Clostridioides difficile infection; PPS = point prevalence 
survey.



Automated surveillance systems in Europe

7

131   

Danish Hospital-Associated Infections Database (HAIBA)
Increased attention to HAIs and the increasing threat of antimicrobial resistance has led to the 
vision of establishing the Healthcare-Associated Infections Database (HAIBA) in Denmark. 
HAIBA was developed on request of the Danish Ministry of Health by the Statens Serum 
Institute in collaboration with the Danish Regions, departments of clinical microbiology, 
infection control units and clinical societies. The first edition of HAIBA was launched in 
March 2015, and soon became the main tool for monitoring of HAIs in Denmark, replacing 
the prevalence surveys.44-46 HAIBA’s data are publicly available on www.esundhed.dk, and 
sent to regional servers, where they are integrated on hospital-intranet pages and in hospital 
management systems.

Data, algorithms and method of validation 
All patients that have been in contact with the Danish healthcare system, both in outpatient 
and inpatient settings, are included in the HAIBA surveillance system. HAIBA generates 
incidence data by fully automated surveillance for the following: hospital-onset bacteraemia 
(i.e. positive blood cultures more than 48 hours after admission), UTIs, Clostridioides difficile 
infections and deep SSIs after total hip and knee replacement.29, 43, 44 The algorithms are rule-
based and use data from existing data sources: 1) the Danish Microbiology Database, a real-
time database including all microbiological testing; 2) the National Patient Registry, containing 
administrative data on admissions and ambulatory contacts with the secondary and tertiary 
healthcare system, diagnosis codes (Danish adaptation of the ICD-10 classification), and 
operation codes (Nordic Classification of Surgical Procedures); and 3) the civil registration 
registry. Data from these registries are linked by a personal health identification number, and 
are updated, extracted and evaluated by algorithms every night; as a result of the COVID-19 
pandemic and competing server capacity, the update frequency has been reduced to weekly. 
The algorithms were validated by comparing with results from prevalence surveys and manual 
evaluation of medical records for discrepant cases. 

The Danish Health Data Authority maintains the servers. The surveillance system is maintained 
at Statens Serum Institute, encompassing IT infrastructure (i.e. servers, connections with data 
sources), applications (i.e. visualization software), adjustment of data model and algorithms 
to new features in data sources (i.e. new variables, changes in data models, new classification 
systems such as ICD-10). 
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Next steps
A change in the Danish law is expected to facilitate data sharing between regions on the level 
of individual patients. This will further increase the possibilities for applying surveillance data 
for specific IPC use cases.

Semi-automated SSI surveillance
From 2010 onwards, the University Medical Centre Utrecht (UMCU) has been developing 
AS of HAIs using internal funds. After an implementation period of two years to prepare the 
infrastructure, a semi-automated surveillance system was launched in 2015 for surveillance 
of SSI after orthopaedic and cardiac surgery.

Data, algorithms and method of validation
Patients are automatically included in the surveillance, based on procedure codes for targeted 
surgical procedures. After a 120-day follow-up period, algorithms are applied to identify 
patients with a high probability of having developed an SSI in the 90 days following surgery. 
Manual chart review verifying an SSI is performed for these patients only. Surveillance results 
are documented in the EHR, and used for feedback to clinicians, both in yearly reports and 
via an interactive online dashboard.

The source data required for inclusion of patients in the surveillance, application of the 
algorithm, and some risk factors are extracted from a clinical data warehouse that is maintained 
by the hospital’s IT department. Classification algorithms are applied to administrative data 
(information about admissions and discharges), antibiotic prescriptions, surgical procedures 
and results of microbiological testing. Algorithms are run bi-monthly by a local data manager. 
Maintenance is performed yearly by the infection control department and includes updates of 
procedure codes, validation of the algorithm and evaluation of IT infrastructure.

Next steps
Development of new algorithms and HAI outcomes is ongoing, in close collaboration with 
clinical departments. Experiences are being transferred to the national surveillance network 
‘PREZIES’ that is currently preparing a strategy to implement the semi-automated algorithm 
for SSIs after orthopaedic surgery nationally.20

HAI-Proactive
The national innovation project ‘HAI-proactive’, supported by the Swedish Innovation Agency 
(VINNOVA), aims to develop fully automated surveillance tools for HAIs. The project, headed 
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by Karolinska University Hospital (KUH) and Region Stockholm, is organised in three phases: 
1) collaboration building between healthcare providers, academic institutions, and industry 
(2015); 2) prototype development (2016 – 2018); and 3) implementation (2018 – 2021). 

Data, algorithms and method of validation 
To date, two rule-based algorithms for healthcare-associated sepsis and UTIs have been 
developed locally, using data of a testbed that consists of EHR data from KUH from 2008 
– 2014.30, 31 Both algorithms include all patients aged > 18 years that have been admitted 
to the hospital for > 24 hours. The sepsis algorithm was developed using retrospective 
data to identify patients fulfilling the Sepsis-3 clinical criteria, based on structured data 
from antibiotics, microbiological test results and sequential organ failure (SOFA) scores.30 
The algorithm accounts for baseline values and dynamic changes in the SOFA score. The 
algorithm for UTIs is designed to perform surveillance of microbiologically confirmed UTIs 
according to ECDC definitions.31 It is a rule-based algorithm that utilises microbiological 
culture results and information on symptoms both from structured and unstructured (text) 
data from EHRs. Performance of algorithms is assessed in validation sets of care episodes that 
have been annotated by infectious disease physicians.

Next steps
Currently, the project works towards implementation of the surveillance algorithms within 
a centrally organised data warehouse that receives comprehensive EHR data from multiple 
hospitals in Region Stockholm and Region Västerbotten, Sweden. Data is planned to be 
extracted daily by the IT department, to which algorithms are applied to continuously 
monitor patients for sepsis or UTI cases. Aggregated results will be reported back to local 
care providers for epidemiological surveillance. Future targets are to develop algorithms for 
other HAIs and to utilise data for HAI risk prediction as well as increasing the amount of 
incorporated primary healthcare data.

DISCUSSION
The current landscape of AS of HAIs in Europe is promising in terms of innovation and 
research, but at the same time heterogeneous with regards to methods, algorithms, data 
sources and targeted HAIs. Overall, AS systems based on classification algorithms for semi-
automated surveillance were found to be most prevalent. Workload reduction and time 
efficiency were identified as primary benefits of AS over the conventional approach. Moreover, 
we described three examples of successfully operating systems in more detail. Sharing more 
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detailed information on the development and implementation can support others who intent 
to start, implement or use AS surveillance.

Although it is encouraging that some AS systems are operational and in use, AS in Europe 
is to a certain extent still in its infancy, because many institutions face multiple barriers 
impeding successful implementation. Main barriers perceived and reported by institutions 
already using AS systems and those that do not include a lack of harmonised IT infrastructure 
and strict data protection regulations. This finding underscores the need for standardisation 
and interoperability of medical data across different institutions to support the reuse of EHR 
data for the development of more efficient and less resource intensive surveillance methods. 
Furthermore, while data security and privacy regulations are a cornerstone in the practice 
of medicine, our findings illustrate the need to clarify or even adapt certain regulations that 
could potentially discourage important developments benefiting patient safety as well as the 
need to broadly implement technical solutions that facilitate use of personal (health) data 
under the current regulations. 

Heterogeneity in AS systems is in itself not a limiting factor, however, it hampers comparisons. 
There are several systematic reviews trying to compare systems, however, they all concluded 
that certain performance characteristics were missing and methodological differences impede 
head-to-head comparisons.39-41, 47, 48 For institutions interested in establishing AS, it is difficult 
to choose an approach that suits their needs. To facilitate more widespread development of AS 
and the ability to compare surveillance systems, essential specifications in future publications 
on surveillance systems should be described (Box 7.1). First, it would be helpful if all systems 
clearly explain what population they include in their surveillance, and the data sources and 
data cleaning steps utilised for population selection and algorithm application. Second, it 
is important that both the algorithm and the definitions of targeted HAIs are described in 
detail, as in some AS systems existing HAI definitions are adapted.17 Third, performance 
characteristics should be reported, such as sensitivity, specificity, positive predictive value, 
negative predictive value, time savings or reduction in the number of charts to review. Fourth, 
it should be clearly described how the system was validated (i.e. against which reference 
standard, in what time period and in how many patients), so others can assess their validation 
method. Last, authors should be explicit about the phase the proposed AS method is in at 
the time of writing (development phase, implementation phase, or in actual use in the clinic 
or surveillance network). To encourage implementation, it will be helpful if logistics and 
organisational matters are systematically reported in scientific publications or reports, such 
as maintenance needs, specifics on algorithm application (e.g. frequency), and barriers and 
facilitators of implementation (Box 7.1).
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Box 7.1. Items for reporting automated surveillance systems in (scientific) publications.

• Describe data sources needed for patient selection and algorithms

• Describe inclusion criteria of the patient population under surveillance and clarify how 
they are selected (manual, partially or fully automated including details)

• Describe what healthcare-associated infection definitions are targeted by the algorithm, 
and how they are adapted for automating purposes

• Describe the algorithm and algorithm performance (in terms of sensitivity, specificity, 
positive predictive value, negative predictive value, time savings and/or reduction in 
records to review)

• Describe the method of validation (reference standard used, sample size)

• Clarify the phase of the automated surveillance system (development phase, 
implementation phase or in actual use)

• If implemented, describe the workflow and maintenance of the surveillance system 

• If implemented, describe barriers/facilitators of implementation 

The main limitation of the current study is that no systematic review of AS systems was 
performed, and therefore we do not know whether all AS systems that have been developed 
and implemented in Europe are included in the survey responses. However, as the actual state 
of implementation often remains unclear in research papers targeted by systematic reviews, 
we have chosen to broaden our scope by opting for a survey, using snowball sampling. We 
have also actively invited researchers of published papers to complete the survey.

In conclusion, creating and maintaining IT infrastructures and data security restrictions 
represent the most relevant challenges and barriers for AS implementation. Existing AS 
systems in Europe encompass a variety of data sources, algorithms and HAI targets, thereby 
reducing comparability across systems. In order to facilitate comparisons and stimulate 
exchange of experiences and surveillance methodology, it should be encouraged to describe 
AS systems with a standardised minimum set of information. 
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Supplemental File S7.1. Survey.

Automated surveillance survey
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ABSTRACT
Objective: Surveillance of healthcare-associated infections is often performed by manual 
chart review. Semi-automated surveillance may substantially reduce workload and subjective 
data interpretation. We assessed the validity of a previously published algorithm for semi-
automated surveillance of deep surgical site infections (SSIs) after total hip (THA) or total 
knee arthroplasty (TKA) in Dutch hospitals. In addition, we explored the ability of a hospital 
to automatically select the patients under surveillance.

Design: Multicentre retrospective cohort study.  

Methods: Hospitals identified patients who underwent THA or TKA either by procedure 
codes or by conventional surveillance. For these patients, routine care data regarding 
microbiology results, antibiotics, (re)admissions and surgeries within 120 days following 
THA or TKA were extracted from electronic health records. Patient selection was compared 
with conventional surveillance and patients were retrospectively classified as low- or high 
probability of having developed deep SSI by the algorithm. Sensitivity, positive predicted value 
(PPV), and workload reduction were calculated as compared to conventional surveillance.

Results: Of 9,554 extracted THA and TKA surgeries, 1,175 (12.3%) were revisions and 8,378 
primary surgeries remained for algorithm validation (95 deep SSIs;  1.1%). Sensitivity ranged 
from 93.6% to 100% and PPV ranged from 55.8% to 72.2%. Workload was reduced by ≥ 98%. 
Also, two SSIs (2.1%) missed by the algorithm were explained by flaws in data selection.

Conclusions: This algorithm reliably detects patients with a high probability of having 
developed deep SSI after THA or TKA in Dutch hospitals. Our results provide essential 
information for successful implementation of semi-automated surveillance for deep SSIs after 
THA or TKA.
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INTRODUCTION
Healthcare-associated infections (HAIs) are infections acquired as the result of medical care.1 
The most common HAIs are surgical site infections (SSIs), accounting for > 20% of all HAIs.2 
SSI incidence depends on the type of surgery: in the Netherlands, 1.5% of primary total hip 
arthroplasties (THAs) and 0.9% of primary total knee arthroplasties (TKAs) are complicated 
by SSIs, most of which are deep (1.3% and 0.6% respectively).3,4 This finding is in line with 
numbers reported in Europe and the United States.5-7 Deep SSIs after THA or TKA are 
associated with substantial morbidity, longer postoperative hospital stays, and incremental 
costs.3,8,9 Given the aging population, volumes of THA and TKA and numbers of associated 
SSIs are expected to increase further.7,10,11

Accurate identification of SSIs through surveillance is essential for targeted implementation 
and monitoring of interventions to reduce the number of SSIs.12,13 In addition, surveillance data 
may be used for public reporting and payment mandates.14 In most hospitals, surveillance is 
performed by manual chart review: an infection control practitioner (ICP) reviews electronic 
health records (EHRs) to determine whether the definition for an SSI is met. This method is 
costly, time-consuming and labor intensive. Moreover, it is prone to subjectivity, suboptimal 
interrater reliability, and the ‘more-you-look-more-you-find’ principle.15-19 

The widespread adoption of EHRs facilitates (semi-)automated surveillance using routine 
care data, thereby reducing workload and improving reliability. SSI surveillance after THA or 
TKA is particularly suitable for automation because these are high-volume procedures with 
a low incidence of SSI; hence, the potential gains in efficiency are considerable. In addition, 
treatment of (possible) SSIs is highly uniform across hospitals, which facilitates algorithmic 
detection.

As a first step towards semi-automated surveillance of deep SSIs after TKA or THA, a 
tertiary-care centre developed a classification algorithm relying on microbiology results, 
reinterventions, antibiotic prescriptions, and admission data (Table 8.1).20 This algorithm 
retrospectively discriminates between patients who have a low or high probability of having 
developed a deep SSI, and only patients with a high probability undergo manual chart review. 
Patients classified as low probability are assumed to be free of deep SSI. In a single-hospital 
setting, this algorithm identified all deep SSIs after THA or TKA (sensitivity of 100%) and 
resulted in a reduction of 97.3% charts to review.20 
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Table 8.1. Algorithm specifications. 

Category Criteria for fulfilment:  ≥ 3 out of these four criteria must be fulfilled to be 
considered high probability for having deep SSI

Microbiology ≥ 1 positive microbiological culture(s) or ≥ 5 cultures obtained from ≥ 1 potentially 
relevant body site(s), i.e. wound cultures, pus, joint aspirations, prosthetic material, 
tissue, blood cultures or unspecified material.

Antibiotics ≥ 14 days of antibiotic exposure, where an ‘exposure day’ is defined as a day with ≥ 
1 prescription for an antibiotic (ATC code of J01).

(Re)admissions Length of hospital stay of the index admission (i.e., admission during which the 
index procedure took place) of ≥ 14 days or ≥ 1 readmission(s) for a relevant 
specialty such as orthopaedics, trauma or surgery.

Reintervention Any orthopaedic surgical procedure performed by the department of orthopaedics, 
without further restrictions.

Note: ≥ 3 of these 4 criteria must be fulfilled to be considered high probability for having deep surgical 
site infection.20 All criteria should be fulfilled within 120 days after the index surgery.

A prerequisite for large-scale implementation of this algorithm is validation in other centres 
that may differ in EHR systems, patient populations, diagnostic procedures, or clinical practice. 
Therefore, the main aim of this study was to validate the performance of this algorithm, 
defined in terms of sensitivity, positive predictive value (PPV), and workload reduction, for 
semi-automated surveillance to detect deep SSIs after THA or TKA in general hospitals in 
the Netherlands. A secondary aim was to explore methods for selection of the surveillance 
population (denominator data).

METHODS
Study design
This multicentre retrospective cohort study compares the results of a surveillance algorithm to the 
results of conventional manual surveillance of deep SSIs following THA and TKA. Manual SSI 
surveillance, considered the reference standard, was executed according to national definitions 
and guidelines set out by PREZIES; the Dutch surveillance network for healthcare-associated 
infections.21,22 SSI surveillance includes all patients aged ≥ 1 year who underwent a primary THA 
or TKA (so called index surgery); revision procedures were excluded. SSIs were defined using 
criteria from the (European) Centres for Disease Control and Prevention, translated and adapted 
for use in the PREZIES surveillance: organ-space SSIs are reported as deep SSIs.21,22 The mandatory 
follow-up for THA and TKA SSI surveillance is 90 days after the index surgery.

This study was reviewed by the Medical Institutional Review Board of the University Medical 
Centre Utrecht and was considered not to fall under the Medical Research Involving Human 
Subjects Act. Hence the requirement of an informed consent was waived (reference number 
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17-888/C). From all participating hospitals, approval to participate was obtained from the 
local boards of directors.

Hospitals 
We selected 10 hospitals (~14% of all Dutch hospitals) based on their interest in automated 
surveillance and expected surgical volume and invited them to participate in the study. 
Hospitals had to meet the following inclusion criteria: 1) recent participation in PREZIES SSI 
surveillance for THA and TKA according to PREZIES guidelines; 2) availability of at least two 
years of THA and TKA surveillance data after 2012 and data on at least 1,000 surgeries; 3) 
ability to select the surveillance population (the patients who underwent the index surgery) 
in electronic hospital systems; and 4) ability to extract the required routine care data of these 
patients from the EHR in a structured format to apply the algorithm.

Data collection from electronic health records and algorithm application
Hospitals were requested to automatically select patients who underwent the index surgeries 
(denominator data), and to extract the following data for these patients from their EHR: 
microbiology results, antibiotic prescriptions, (re)admissions and discharge dates, and 
subsequent orthopedic surgical procedures. All extracted data were limited to 120 days 
following the index surgery to enable the algorithm to capture SSIs that developed at the 
end of the 90-day follow-up period. Data extractions were performed between November 18, 
2018 and August 16, 2019. Supplemental Table S8.1 provides detailed data specifications.

Analyses
After extraction and cleaning of data, records of patients in the extractions were matched to 
patients in the reference standard (PREZIES database). If available, matching was performed 
using a pseudonymised surveillance identification number. Else, matching was performed 
for the following patient characteristics: date of birth, sex, date of index surgery, date of 
admission, and type of procedure. For each hospital, the method of automated selection 
of index surgeries was described as well as the completeness of the surveillance population 
(denominator) compared to the reference population reported manually to PREZIES. 
Subsequently, the algorithm was applied, and patients who underwent THA or TKA surgeries 
were classified as high- or low probability of having had a deep SSI (Supplemental Table 
S8.2). Patients were classified as high probability for deep SSI according to the algorithm if 
they met ≥ 3 of the four criteria (Table 8.1). 



Chapter 8

154

For each hospital, the allocation of patients with low or high probability by the algorithm was 
compared to the outcome (deep SSI) as reported in the reference standard. Subsequently, sensitivity, 
PPV and workload reduction (defined as difference between the total number of surgeries in 
surveillance and the proportion of surgeries requiring manual review after algorithm application) 
were calculated with corresponding confidence intervals.23 For semi-automated surveillance, we 
considered sensitivity to be the most important characteristic because any false-positive cases are 
corrected during subsequent chart review, whereas false-negative cases may remain unnoticed. 
Analyses were performed using SAS version 9.4 software (SAS Institute, Cary, NC).

Discrepancy analyses and validation of the reference standard
Exploratory discrepancy analyses were performed to evaluate and understand possible 
underlying causes of misclassification by the algorithm. In addition, for each hospital, an on-
site visit took place to validate the conventional surveillance (i.e. reference standard PREZIES). 
This validation was executed by two experienced surveillance advisors of PREZIES, and they 
were blinded for the outcomes both of the reference standard and the algorithm. For the 
validation of the conventional surveillance, a maximum of 28 records were selected containing 
all presumed false positives and false negatives, complemented with a random sample of true 
positives and true negatives. At least 50% of the reported superficial SSIs in the true-negative 
group were included in the validation sample. The maximum number was selected for logistic 
reasons and the time capacity of the validation team. 

RESULTS
Overall, four hospitals met the inclusion criteria and were willing to participate in this study: 
the Beatrix Hospital in Gorinchem, Haaglanden Medical Centre in The Hague (3 locations), 
Meander Medical Centre in Amersfoort, and Sint Antonius Hospital in Nieuwegein and 
Utrecht (3 locations). Hospitals were randomly assigned the letters A, B, C, and D. The 
remaining hospitals were not able to participate for the following reasons: inability to extract 
historical data due to a transition of EHR (n = 1); inability to extract microbiology results or 
antibiotic use from historical data in a structured format (n = 3); no approval of the hospital’s 
board to share pseudonymised patient data (n = 1) or no capacity of human resources (ICPs, 
information technology personnel, and data managers) (n = 1).

Completeness of surveillance population
The four participating hospitals extracted 9,554 THA and TKA procedures performed 
between 2012 and 2018 along with data required for application of the algorithm 
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(Supplemental Table S8.1). Hospital B used inclusion in conventional surveillance as a 
selection criterion for the selection of index surgeries and extraction of the data required for 
the algorithm. These extracted records could be matched using a pseudonymised surveillance 
identification number, which was also available in the reference standard. By definition, this 
procedure resulted in a perfect match; hence, no inferences could be made regarding the 
completeness of the surveillance population when using automated selections, for example, 
using administrative procedure codes. Hospitals A, C and D selected their surveillance 
population automatically using administrative THA and TKA procedure codes. For hospital 
A and D, these records were matched by patient characteristics to the reference standard 
and, for hospital C, by a pseudonymised surveillance identification number. Matching with 
the PREZIES database revealed a mismatch for 1,128 records that could not be linked to 
the reference standard. Manual review of a random sample of these records showed these 
were mainly revision procedures that were excluded from conventional surveillance. Vice 
versa, 103 records were in the reference standard, but could not be linked to the extractions. 
Explanations for this mismatch per hospital are described in Table 8.2. 

Table 8.2. Overview of data extractions and selection of surveillance population.

Hospital A Hospital B Hospital C Hospital D

Time period extractions 
(years)

2012 – 2015 2015 – 2016 2017 – 2018 2012 – 2017a

Total number of THA/TKA in 
extractions (count)

2,604 1,601 1,037 4,311

Matched to PREZIES (count) 2,395 1,601 1,029 3,353
Match made based on Patient 

characteristics
Surveillance 
identification 
number

Surveillance 
identification 
number

Patient 
characteristics

Records in extractions that 
could not be linked to reference 
standard (count (%))b

209 (8.0) NAc 8 (0.8) 958 (22.2)

Records in reference standard 
that could not be linked to 
extractions (count (%))

48 (2.0)d NAc 6 (0.6)e 49 (1.5)f 

a Until September 1, 2017.
b Manual review of a random sample of these records showed these were mainly revision procedures.
c Exploration of automating selecting surveillance population not applicable as hospital collected data 
for the extractions based on the selection of the conventional surveillance.
d Reason for mismatch: typo’s and mistakes in the manual data collection.
e Reason for mismatch: all emergency cases for which data was incomplete. Automated extractions 
therefore not possible.
f Reason for mismatch: a clear cause was not found, although it is suspected data was lost due to the 
merger of hospitals and their electronic health records during the study period. 
Abbreviations: THA = total hip arthroplasty; TKA = total knee arthroplasty; NA = not applicable.
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Algorithm performance
In total, 8,378 primary arthroplasty procedures (4,432 THAs and 3,946 TKAs) in 7,659 
patients and 95 SSIs (1.1%) were uniquely matched with the reference standard and were 
available for analysis of algorithm performance (Table 8.2). The algorithm sensitivity ranged 
from 93.6% to 100.0% and PPV ranged from 55.8% to 72.2% across hospitals (Table 8.3). 
In all hospitals, a workload reduction of ≥ 98.0% was achieved. In hospitals B and D, one 
and two deep SSIs were missed by the algorithm, respectively. Discrepancy analyses revealed 
that one case was reclassified into ‘no deep SSI’, and, hence, was correctly indicated by the 
algorithm. Of the two truly missed cases, one case was missed by incomplete microbiology 
data and the other was missed because of unavailability of data regarding the treating specialty 
of the readmissions, thereby using ward level for the selection of readmissions. Results and 
details of false-negative and false-positive cases are provided in Table 8.4. On-site validation 
visits found six additional deep SSIs, which were missed in the conventional surveillance 
but were correctly classified as potential SSIs by the algorithm. Other findings of the on-site 
validation of the reference standard, but not essential for the assessment of the algorithm, 
were reclassifications of superficial SSIs to no SSI (n = 6), missed superficial SSIs (n = 2) and 
errors in the determination of the infection date (n = 4).

DISCUSSION
This study successfully validated a previously developed algorithm for the surveillance of deep 
SSIs after THA or TKA in four hospitals. The algorithm had a sensitivity ranging from 93.6% 
to 100.0% and achieved a workload reduction of 98.0% or more, which is in line with the 
original study and another international study.20,24 In total, only two SSIs were missed by the 
algorithm; both were the result of limitations of the use of historical data and can be resolved 
with the current EHR. Validation of the reference standard revealed six additional deep SSIs 
that were initially missed by conventional surveillance but classified as high probability of SSI 
by the algorithm; thus, the accuracy of the surveillance improved. For automated selection of 
the surveillance population (i.e., denominator data), hospitals should be able to distinguish 
primary THAs and TKAs from revisions. Our results provide essential information for 
successful implementation of semi-automated surveillance for deep SSIs after THA or TKA 
in Dutch hospitals in the future. 

The results of this study reveal some preconditions that require attention when further 
implementing this algorithm for semi-automated surveillance. First, dialogue between 
information technology personnel, data management, ICPs and microbiologists is essential
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Table 8.4. Overview of discrepancy analysis. 

Hospital A Hospital B Hospital C Hospital D
Number of false negatives (missed deep SSI) 0 1 0 2
Reasons 
Reclassification of reference data (true 
negative)

1

Incorrect selection of readmissiona 1
Microbiological cultures performed in external 
laboratoryb 

1

Number of false positives 10 10 11 23
Reasons 

Reclassification of reference data (true 
positive)

3 3

Incorrect inclusion in surveillance (revision 
procedure)

1 2

Superficial SSI 1 3 4
Other complications 6 10 6 13
Unknown 1 1

a This hospital used data extractions from a previous electronic health record system, where no 
information was stored regarding the specialty of the readmission. Selection of readmission was therefore 
made on ward level, instead of treating specialty. Because this patient was readmitted to another ward 
because of overcapacity of the orthopedic ward, it was missed by the algorithm.  
b Microbiological cultures of this patient were performed in external laboratory and culture results 
were therefore not available in the in-house laboratory information system from which the data were 
extracted to apply the algorithm.
Abbreviations: SSI = surgical site infection.

to identify the correct sources of data for applying the algorithm. In two of four hospitals, 
interim results revealed that data extractions were incomplete due to unawareness in hospitals 
of the existence of registration codes. This finding demonstrates the importance of validating the 
completeness and accuracy of data sources required for the implementation of semi-automated 
surveillance.14,25  Second, successful validation of this algorithm does not guarantee that 
widespread implementation can be taken for granted. It appeared that none of the four hospitals 
could perfectly select the surveillance population using structured routine care data such as 
procedure codes (mismatch ranged from 0.8% – 22.2%). Procedure codes are not developed for 
the purpose of surveillance but for medico-administrative purposes, and they may contain some 
misclassification in distinguishing between primary procedures and procedures that should be 
excluded according to conventional surveillance (e.g. revision procedures).25 For implementation, 
improvement of patient selection is considered to increase comparability. Mismatches between the 
data extractions and reference standard (97 records from the reference standard were not found 
in the hospitals’ extractions) were partly the result of typing errors in the manual surveillance, 
hence, underscoring the vulnerability of traditional manual surveillance. 
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Although superficial SSIs are included within the conventional method of surveillance, this 
algorithm was developed to detect deep SSI only. During initial algorithm development 
superficial SSIs were not taken into account for the following reasons: First, the costs and 
impact on patient and patient-related outcomes are more detrimental after deep SSIs. In 
addition, only 20% of all reported SSIs in THAs and TKAs concern superficial SSIs.4 Third, 
superficial SSIs are mostly scored by clinical symptoms that are often stored in unstructured 
data fields (clinical notes) with a wide variety in expressions.26 These data are complex to use 
in automatisation processes and will complicate widespread implementation.27 Fourth, the 
determination of superficial SSIs requires a subjective interpretation of the definition, making 
them a difficult surveillance target both for manual and automated surveillance. 

Previous studies investigating the use of algorithms in SSI surveillance after orthopaedic 
surgeries achieved a low(er) sensitivity, applied rather complex algorithms, or used 
administrative coding data such as ICD-10 codes for infection.28-30 Although the use of ICD-
10 codes for infection is an easy and straightforward method in some settings, relying solely 
on administrative data is considered inaccurate.25,31-33 In addition, coding practices differ by 
country and results cannot be extrapolated. Thirukumaran et al.27 investigated the use of 
natural language processing in detecting SSIs. Sensitivity and PPV were extremely high in the 
centre under study; however, the performance in other centres was not investigated, and the 
proposed method is rather complex to implement on large scale compared to our method. In 
contrast, Cho et al.34 showed a more pragmatic approach in which one algorithm was used to 
detect SSIs in 38 different procedures, including THAs and TKAs. Although the sensitivity for 
detecting deep SSIs was 100%, a high number of false positives occurred because of the broad 
algorithm, resulting in a nonoptimal workload reduction. 

Strengths and limitations
The strengths of this study are the multicentre aspect and the use of an algorithm that is 
relatively simple to apply. All participating hospitals had previously performed conventional 
surveillance according to a standardised protocol and SSI definitions, enabling optimal 
comparison and generalisability to the Dutch situation. The algorithm could be successfully 
applied despite potential differences in clinical and diagnostic practice, as well as the use 
of different EHRs. Whereas previous studies used complex algorithms and were mostly 
performed in single tertiary-care centres, this study achieved a near-perfect sensitivity and 
high workload reduction in small(er) general hospitals, using an algorithm that is likely 
feasible to implement in these hospitals. 
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This study has several limitations. First, post-discharge surveillance was limited to patient 
encounters in the initial hospital. The algorithm will not detect patients who are treated or 
readmitted in other hospitals, however, this is also the case in conventional surveillance. In 
the Netherlands, most patients return to the operating hospital in cases with complications 
such as deep SSIs, especially if they occur within the 90-day follow-up period. Secondly, in 
this study, we made use of historical data retrieved from the local EHR. Because of shifts in 
hospital information systems and merger of hospitals, historical data were not accessible for 
some hospitals, limiting their participation in this retrospective study. Therefore, we have no 
insight into the feasibility of future large-scale implementation in these hospitals. Lastly, in this 
study, one hospital used the conventional surveillance to identify the surveillance population 
and to perform electronic data extractions. Therefore, for this hospital, we were unable to 
adequately evaluate the quality and completeness of the selected surveillance population if 
they had been using an automated selection procedure. 

In conclusion, a previously developed algorithm for semi-automated surveillance of deep SSI 
after THA and TKA was successfully validated in this multicentre study; a near-perfect sensitivity 
was reached, with a ≥ 98% workload reduction. In addition, semi-automated surveillance not 
only proved to be an efficient method of executing surveillance but also had the potential to 
capture more true deep SSIs compared to conventional (manual) surveillance approaches. For 
successful implementation, hospitals should be able to identify the surveillance population using 
electronically accessible data sources. This study is the first step to broader implementation of 
semi-automated surveillance in the digital infrastructure of hospitals.
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SUPPLEMENTARY MATERIAL

Supplemental Table S8.1. Specifications of data extractions from the electronic health records 
needed for algorithm application.

Data variable Data type Period
PREZIESnumber or anonymous (surveillance) 
study number [1]

Numeric/text NA

Demographics  
Age (in years) or date of birth [1] Numeric/date NA
Sex [1] Numeric NA
Index surgery  
Date of index surgery [1] Date NA
Description procedure; PREZIES code/procedure 
code  (i.e. ICD-9/10/CTG)  [1]

Text NA

Admission of index surgery  
Admission date [1] Date NA
Discharge date [1] Date NA
Readmission(s)  
Admission date [0..*] Date Date of index surgery + 120 days
Discharge date [0..*] Date Date of index surgery + 120 days
Treating specialty [0..*] Text/category Date of index surgery + 120 days
Reoperation  
Date of reoperation [0..*] Date Date of index surgery + 120 days
Procedure code (i.e. ICD-9/10/CTG) [0..*] Text Date of index surgery + 120 days
Description of procedure [0..*] Text Date of index surgery + 120 days
Treating specialty [0..*] Text/category Date of index surgery + 120 days
Microbiology cultures  
Date of culture [0..*] Date Date of index surgery + 120 days
Sample number of culture [0..*] Numeric/text Date of index surgery + 120 days
Cultured material (i.e. wound, blood) [0..*] Text/category Date of index surgery + 120 days
Cultured material open text [0..*] Text Date of index surgery + 120 days
Result (species) [0..*] Text Date of index surgery + 120 days
Assessment positive/negative [0..*] Text/category  Date of index surgery + 120 days
Antibiotic use#  
Code (ATC in categories J01) OR description 
[0..*]

Numeric/Text Date of index surgery + 120 days

Start date [0..*] Date Date of index surgery + 120 days
Stop date [0..*] Date Date of index surgery + 120 days 

[1] = Single record; [0..*] = can appear several times. 
# Regardless of mode of administration. Including outpatient prescriptions.
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General rules for applying the algorithm (data cleaning)
 - Patients can be included several times in the data as they can have TKA/THA at different sites, 

and can have multiple re-admissions, antibiotics or microbiology results.
 - If start- and stop date of antibiotic prescriptions or admission/discharge dates are swapped: 

the number of days is converted from minus to plus. 
 - If a second or subsequent index surgery takes place within the follow-up period of a previous 

index surgery, the follow-up period of the first surgery is censored on the date of surgery of 
the next one (i.e. if a THA takes place within the follow-up period of a previous TKA, the 
follow-up date of TKA will be the date of surgery of the THA). In this way, a subsequent index 
surgery does not count as a reoperation of the first index surgery.  

 - If a person has two index surgeries on the same day, the follow-up period is for both surgeries 
90 days, unless another index surgery takes place in this follow-up period (see rule above). 

 - Microbiology results obtained from 1 culture count as 1 result.
 - In case of various assessments (positive/negative) obtained from 1 culture it is counted as 

positive. 
 - If an algorithm element cannot be computed due to incomplete data, the index surgery is 

flagged positive on that algorithm element. 

Supplemental Table S8.2. Algorithm specifications.

Elements 
algorithm

Criteria (high 
probability  
if >= 3 criteria 
are met)a: 

Specification:

Microbiology
 
 

>= 1 positive 
culture  
OR >= 5 
cultures 
obtained

>= 1 positive microbiological culture or >= 5 cultures obtained from 
potentially relevant body site(s), such as wound 
cultures, pus, joint aspirations, prosthetic material, tissue, blood 
cultures, unspecified material. All cultures are taken into account 
from day 1* until end follow-up. 

Antibiotics
 

>/= 14 days 
of antibiotic 
exposure post-
operative 

All antibiotic orders (ATC J01) prescribed from day 2* until end 
of follow-up, including outpatient prescriptions but excluding ICU 
prescriptions. All antibiotic episodes are summed up; however 
overlapping episodes count as 1 day (e.g. two antibiotic prescriptions, 
one for 4 days and one for 8 days of which 3 days overlap result in a 
total of 9 days of antibiotic exposure).

(Re)
Admissions
 

Length of 
stay of initial 
surgery >= 14 
days OR >= 1 
re-admission

Length of hospital stay of the index admission (i.e., admission during 
which the TKA/THA took place) of >= 14 days ((discharge date – 
date of index surgery) +1)
or 
>= 1 readmission(s) for the relevant specialty (i.e. orthopedics, 
trauma or surgery), after the index surgery but within follow up 

Reoperation
 

>= 1 reoperation 
by orthopedics 

Surgeries performed by the department of orthopedics, after the index 
surgery and within the follow-up period. No further restrictions.

* Date of initial, index surgery = day 0.
a All criteria should be fulfilled within 120 days after the index surgery.
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ABSTRACT
Objective: Automated surveillance methods increasingly replace or support conventional 
(manual) surveillance; the latter is labour-intensive and vulnerable to subjective interpretation. 
We sought to validate two previously developed semi-automated surveillance algorithms to 
identify deep surgical site infections (SSIs) in patients undergoing colorectal surgeries in 
Dutch hospitals. 

Design: Multicentre retrospective cohort study.

Methods: From four hospitals, we selected colorectal surgery patients between 2018 and 2019 
based on procedure codes, and we extracted routine care data from electronic health records. 
Per hospital, a classification model and regression model were applied independently to 
classify patients into low- or high probability of having developed deep SSI. High-probability 
patients need manual SSI confirmation; low-probability records are classified as no deep 
SSI. Sensitivity, positive predictive value (PPV), and workload reduction were calculated 
compared to conventional surveillance.

Results: In total, 672 colorectal surgery patients were included, of whom 28 (4.1%) developed 
deep SSI. Both surveillance models achieved good performance. After adaptation to clinical 
practice, the classification model had 100% sensitivity and PPV ranged from 11.1% to 45.8% 
between hospitals. The regression model had 100% sensitivity and 9.0% – 14.9% PPV. With 
both models, < 25% of records needed review to confirm SSI. The regression model requires 
more complex data management skills, partly due to incomplete data.

Conclusions: In this independent external validation, both surveillance models performed 
well. The classification model is preferred above the regression model because of source-data 
availability and less complex data-management requirements. The next step is implementation 
in infection prevention practices and workflow processes. 
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INTRODUCTION
Surgical site infections (SSIs) are amongst the most common healthcare-associated 
infections (HAIs) and result in increased costs, morbidity, post-operative length of stay, and 
mortality1-4 Reported SSI rates after colorectal surgery range from 5% to 30%, making them 
high-incidence procedures.5-8 Colorectal surgeries are therefore incorporated in most SSI 
surveillance programmes. 

In most hospitals, surveillance is performed manually. However, this is experienced as labour-
intensive, and possibly inaccurate and is prone to subjectivity and low interrater agreement, 
thus limiting comparisons between hospitals.9-11 The increasing availability of data stored 
in the electronic health records (EHRs) offers opportunities for (partially) automating SSI 
surveillance, thereby reducing the workload and supporting standardisation of the surveillance 
process. To date, several studies have published (semi-)automated methods to automate SSI 
surveillance after colorectal surgery. Unfortunately, most of these are not feasible for Dutch 
hospitals 1) because they include elements that are not representative of the Dutch clinical 
setting and practice; 2) because they have insufficient algorithm performance; 3) because 
processing time is delayed; or 4) because they are too complex for application in real life.12-18 

Two published semi-automated surveillance algorithms targeting deep SSI after colorectal 
surgery may be feasible for the Dutch setting: a classification algorithm19 and a multivariable 
regression model.20 The classification algorithm was pre-emptively designed based on clinical 
and surveillance practices from a French, a Spanish and a Dutch hospital. The sensitivity 
was 93.3% – 100% compared to manual surveillance, and the algorithm yielded a workload 
reduction of 73% – 82%. The regression model was developed using data from a Dutch 
teaching hospital; we used it to predict the probability of deep SSI for each individual patient. 
This 5-predictor model had a sensitivity of 98.5% and a workload reduction of 63.3%.20 

External validation or actual implementation studies of new methods for automated 
surveillance (AS) are scarce.21,22 As reported by two systematic reviews, only 23% of the 
included studies used a separate validation cohort 23 and only 25% of AS were used in clinical 
routine.24 Hence, knowledge about generalisability of AS models is limited, and information 
about the path toward actual implementation is needed.22,25,26 

In this study, we present an independent and external validation of the previously developed 
classification and regression model in new cohorts of patients that underwent colorectal 
surgeries in different types of Dutch hospitals.21 We investigated the feasibility of data 
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requirements for both algorithms. If feasible and externally valid, these models can be 
implemented in SSI surveillance practices and workflow processes. 

METHODS
Study design 
In this retrospective cohort study, four Dutch hospitals (academic (n = 1); teaching (n = 2); 
general (n = 1)), each with different, or different versions of, EHR systems, extracted the 
data needed for algorithm application. To obtain insights in hospitals’ clinical practice and 
patient care, a questionnaire adapted from a previous study19 was filled in by the hospital 
staff at the start of the study (Supplemental File S9.1). Feasibility of the data collection 
(a precondition for implementation) was evaluated by assessing the completeness of the 
surveillance population (denominator) and the ability of the hospitals to automatically collect 
case-mix variables from their EHR. Thereafter, we applied the two surveillance algorithms to 
the extracted data. Model results were compared with conventional (i.e. manually annotated) 
surveillance.11 Approval for this study was obtained from the institutional review board at 
University Medical Centre Utrecht (reference no. 20-503/C) and from the local boards of 
directors of each participating site. Informed consent was waived given the observational and 
retrospective nature of this study.

Surveillance population and data collection
The hospitals identified patients aged > 1 year undergoing primary colorectal resections in 
2018 and/or 2019 based on procedure codes in EHR data. Hospitals could use other data 
sources to establish inclusion rules to construct the surveillance population and to distinguish 
secondary procedures or re-surgeries. For the patients included in the surveillance population, 
structured data were extracted from the EHR including demographics, microbiological culture 
results, admissions (i.e. prolonged length of stay or readmission), resurgeries, radiology 
orders, antibiotic prescriptions, and variables for case-mix correction (see Supplemental 
Table S9.1). 

Outcome
The outcome of interest was a deep SSI (deep incisional or organ-space) within 30 days after 
surgery according to the Dutch surveillance protocol.27 In short, patients having purulent 
drainage from the deep incision or from a drain that is placed through the wound, or having 
an abscess, a positive culture from the organ/space, or signs and symptoms of infection 
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in combination with wound dehiscence and a positive culture of deep soft tissue, or other 
evidence of infection by direct examination were considered deep SSIs. The criterion of a 
positive culture is not applicable in case of anastomotic leakage or perforation following the 
surgery. In each hospital, infection control practitioners (ICPs) manually screened patients to 
identify deep SSI. This manual surveillance was considered the reference standard. All ICPs 
performing manual chart review received training to ensure the quality of data collection 
and case ascertainment.11 Moreover, all hospitals participated in an on-site visit to validate 
the conventional surveillance. Details about this on-site validation visit are described below. 

Feasibility of data collection
To evaluate the feasibility of the data collection, we evaluated the completeness of the 
surveillance population (denominator data) by comparing the patients selected by procedure 
codes with patients included in the reference standard. Additionally, we compared agreement 
between the case-mix variables (i.e. risk factors: age, sex, ASA classification, wound class, 
stoma creation, malignancy and anastomotic leakage) that were extracted from the EHR with 
the case-mix variables that were collected during conventional surveillance.

Algorithm validation
Model validation of the classification model
The classification algorithm was based on the development study, using 5 elements: antibiotics, 
radiology orders, (re)admissions (i.e. prolonged length of stay, readmissions or death), 
resurgeries and microbiological cultures (Figure 9.1-A and Supplemental Table S9.2). All 
extracted data were limited to 45 days following the colorectal surgery to enable the algorithm 
to capture deep SSIs that developed at the end of the 30-day follow-up period. In accordance 
with the development study,19 patients were classified into low probability of having had a deep 
SSI (≤ 1 element excluding microbiology, or 2 – 3 elements and no microbiology) and high 
probability of having had a deep SSI (4 elements excluding microbiology, or 2 – 3 elements 
and microbiology). High-probability patients required manual SSI confirmation, and low-
probability patients were assumed free of deep SSI. If discrepancies were found between 
the clinical practice reported in the questionnaire and the algorithm, we evaluated whether 
an adaptation of the classification algorithm could have improved performance. When an 
algorithm element could not be computed due to incomplete data (e.g. discharge date is 
missing so length of stay cannot be computed) the patient scored positive on that element.
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Radiology Antibiotics

Admissions Resurgery

2 – 4 components

Low SSI 
probability

High SSI 
probability

≤ 1 component

Radiology Antibiotics

Admissions Resurgery

2 – 3 components 4 components

Low SSI 
probability

High SSI 
probability

≤ 1 component

MicrobiologyNo Yes

A B

Figure 9.1. Classifi cation model. 
(A) Previously developed classifi cation algorithm to classify patients with high or low probability of having 
had a deep surgical site infection aft er colorectal surgery. Figure originally published in van Rooden et al. 
and used with permission.
(B) Modifi ed classifi cation algorithm.
Explanation algorithm elements, for details please see Supplemental Table S9.2. 
Radiology: ordering CT scan; Antibiotics: ≥ 3 consecutive days of antibiotics post-operative; Admissions: 
length of stay ≥ 14 days or ≥ 1 readmission or death; Resurgery: ≥ 1 reoperation; Microbiology: ≥ 1 culture.
Abbreviations: SSI = surgical site infection.

Model validation of the regression model 
Th e regression model utilises wound class, hospital readmission, resurgery, postoperative 
length of stay and death to calculate the probability of deep SSI. Coeffi  cients estimated in the 
development setting20 were multiplied with the predictor values of this validation cohort to 
estimate SSI probability (Figure 9.2 and Supplemental Table S9.3). In accordance with the 
cutoff  point in the development study, patients were classifi ed into low probability of deep 
SSI (≤ 0.015) and high probability of deep SSI (> 0.015). High-probability patients required 
manual SSI confi rmation, whereas low-probability patients were assumed free of deep SSI. In 
case a predictor could not be automatically extracted by the hospital or had missing values, 
the predictor collected by the manual surveillance was used to be able to evaluate algorithm 
performance.

 

P(DSSI) =
1

1 + 𝑒𝑒𝑒𝑒−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
 

 
LP= -5.234 + 0.890 * contaminated wound (class 3) + 3.037 * re-surgery + 1.489 * 
readmission + 0.085 * number of postoperative days admitted to the hospital + 1.127 
*  mortality 

Figure 9.2. Previously derived prediction rule for deep surgical site infection (DSSI) aft er colorectal 
surgery. For each individual patient, the regression model returns a predicted probability of SSI which 
can be used to classify patients. 
Abbreviations: P(DSSI) = probability of deep surgical site infection; LP = linear predictor.
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On-site visit
All hospitals participated in an on-site visit to validate the conventional surveillance . This was 
executed by two experienced surveillance advisors of the Dutch national HAI surveillance 
network who were blinded for the outcomes of both the reference standard and the algorithms. 
For each hospital, a sample of 20 patients was taken from the data according to the hierarchical 
rules (Figure 9.3). All false-negative results were included, to confirm their deep SSI status. 
Additionally, records from every other group (false-positive, true-positive, and true-negative 
results) were included until 20 were gathered. The group size of 20 patients was based on the 
time capacity of the validation team.

 

 
 
 
 
 
 

 
Figure 9.3. Hierarchic rules for sample selection for on-site validation of reference standard.

Statistical analyses
After data linkage, descriptive statistics were generated. To evaluate data feasibility, missing 
data patterns were described, and no techniques such as multiple imputation were performed 
to complete the data. Both models were applied to the data extractions, and results were 
compared with the reference standard. Sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and workload reduction were calculated overall and were 
stratified per hospital. Workload reduction was defined as the proportion of colorectal 
surgeries no longer requiring manual review after algorithm application. A discrepancy 
analysis was performed in case of any false-negative results (i.e. missed deep SSI); the 
algorithm elements were checked in the original data . Data cleaning and statistical analyses 
for the classification model were carried out in SAS version 9.4 software (SAS Institute, Cary, 
NC). For the regression model, we used R version 3.6.1 software (R Foundation for Statistical 
Computing, Vienna, Austria).
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RESULTS
Feasibility of data collection
Completeness of the surveillance population
The exact surveillance population could not be reconstructed, because there were no separate 
procedure codes or potential inclusion rules to reliably distinguish secondary procedures or 
resurgeries from primary procedures (range 8.7% – 22.0%, Table 9.1). Vice versa, 0 – 25% of 
patients in the reference standard were not identified when using inclusion rules based on 
procedure codes (details in Table 9.1). Thus, 672 colorectal surgery patients were included in 
this study, and 28 had deep SSIs (4.1%). 

Table 9.1. Overview of data collection and selection of surveillance population.

Hospital A Hospital B Hospital C Hospital D
Time period extractions (years) 2019 2018 – 2019* 2019 2019*
Total number of colorectal surgeries in 
reference standard (count)

205 167 221 142

Total number of colorectal surgeries 
extracted automatically (count)

228 159 236 148

Number of matched records (count) 205 124 212 131
Total number of deep SSI in matched 
records (count (%))

7 (3.4) 3 (2.4) 7 (3.3) 11 (8.3)

Records in extractions that could not be 
linked to reference standard (count (%))#

23 (10.1) 35 (22.0) 24 (10.2) 17 (11.4)

Records in reference standard that could not 
be linked to extractions (count (%))§

0 (0.0) 43 (25.7) 9 (4.1) 11 (7.7)

* until July 1st, 2019.
# Explanation of mismatch: manual review of a random sample of these records showed these were 
mainly revision/secondary procedures, and for hospital C surgeries performed at another hospital 
location that are excluded from manual surveillance.
§ Explanation of mismatch:
Hospital B: incorrect inclusions in reference standard as they did not meet inclusion criteria (no primary 
procedure). 
Hospital C: These surgeries were registered as executed by internal medicine department, while for the 
extractions only resections performed by surgery department were selected.
Hospital D: According to the national surveillance protocol the resection with the highest risk is to be 
registered in case of  more resections during the same surgery. Hospital included the wrong procedure 
in these cases.  
Abbreviations: SSI = surgical site infection.

Completeness data collection 
Electronic collection of the minimum required dataset from the EHR was feasible for all 
variables except wound class. Hospital A used text mining to establish the wound class. For 
hospitals B and C, wound class as collected during manual surveillance (reference standard) 
was used. For hospital D, wound class information was not available in source data. 
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Figure 9.4 shows the percentage of agreement between the case-mix variables extracted from 
the EHR and those collected manually. Disagreement was mostly related to incomplete data, 
either variables were not registered in the original source or were not available from source 
data at all. 

 

0 10 20 30 40 50 60 70 80 90 100

Open/Closed procedure

Anastomotic leakage

Malignancy

Stoma creation

ASA classification

Wound class

BMI

Duration of surgery

Sex

Age
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Hospital D

Figure 9.4. Percentage agreement of risk factors extracted automatically compared to manual 
annotation. 
Abbreviations: BMI = body mass index; ASA = American Society of Anesthesiologists.

Algorithm validation
The original classification model had an overall sensitivity of 85.7% (95% CI 67.3 – 96.0%), 
ranging from 72.7% to 100% between hospitals, a specificity of 92.1% (95% CI 89.7 – 94.0%), 
PPV of 32.0% (95% CI 21.7 – 43.8% ) and an NPV of 99.3% (95% CI 98.3 – 99.8%). For 
the performance per hospital see Table 9.2. Only 8% – 13% of the records required manual 
review after algorithm application. In hospitals C and D, respectively, one and three deep SSIs 
were missed by the algorithm (Table 9.3). In contrast to hospitals A and B, both hospitals 
had reported in the questionnaires that microbiological cultures were not consistently taken 
in case of suspected infection, and this was reflected in the percentage of patients meeting 
the microbiology element. Therefore, we adapted the algorithm and classified patients with 
one element (i.e. radiology order, antibiotics, readmission, or resurgery) as low probability 
(Figure 9.1-B). This model resulted in higher sensitivity (overall sensitivity = 100%; 95% CI 
87.7% – 100.0%) but at the cost of lower PPV and less workload reduction (Table 9.2). 

The regression model could only be validated for hospitals A – C because wound class was 
not available for hospital D. Similar to the development study, patients with infected wounds 
(wound class 4) were excluded, leaving respectively 187, 116, and 207 records from hospitals
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Table 9.2. Algorithm performance (% (95% confidence interval), unless specified other).

Sensitivity Specificity Positive 
predictive 
value

Negative 
predictive value

% red.

Classification model
Hospital A 100

(59.0 – 100.0)
90.4
(85.4 – 94.1)

26.9
(11.6 – 47.8)

100
(97.9 – 100.0)

87.4

Hospital B 100
(29.2 – 100.0)

89.3
(82.3 – 100.0)

18.8
(4.0 – 45.6)

100
(96.6 – 100.0)

87.2

Hospital C 85.7
(42.1 – 99.6)

92.2
(87.6 – 95.5)

27.3
(10.7 – 50.2)

99.5
(97.1 – 99.9)

89.7

Hospital D 72.7
(39.0 – 93.9)

97.5
(92.9 – 99.5)

72.7
(39.0 – 93.9)

97.5
(92.9 – 99.5)

91.6

Regression model
Hospital A 100

(39.8 – 100.0)
78.1
(71.4 – 83.9)

9.0
(2.5 – 21.8)

100
(97.5 – 100.0)

76.5

Hospital B 100
(29.2 – 100.0)

78.9
(70.1 – 85.9)

11.1
(2.3 – 29.2)

100
(95.9 – 100.0)

76.8

Hospital C 100
(59.0 – 100.0)

80.0
(73.8 – 85.3)

14.9
(6.2 – 28.3)

100
(97.7 – 100.0)

77.3

Hospital D NA NA NA NA NA
Modified classification 
model
Hospital A 100

(59.0 – 100.0)
77.8
(71.3 – 83.4)

13.7
(5.7 – 26.3)

100
(97.6 – 100.0)

75.2

Hospital B 100
(29.2 – 100.0)

80.1
(71.9 – 86.9)

11.1
(2.3 – 29.2)

100
(96.3 – 100.0)

78.3

Hospital C 100
(59.0 – 100.0)

77.6
(71.2 – 83.1)

13.2
(5.4 – 25.3)

100
(97.7 – 100.0)

75.0

Hospital D 100
(71.5 – 100.0)

89.2
(82.2 – 94.1)

45.8
(25.6 – 67.2)

100
(96.6 – 100.0)

81.7

Abbreviations: NA = not applicable; % red. = percentage of workload reduction in number of medical 
records to review.
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Table 9.3. Discrepancy analyses and explanation for deep SSIs not detected by original classification 
algorithm (false negatives).

False negatives Number of 
algorithm 
elements#

Missing 
elements

Explanation

Patient 1 – Hospital C 3 Microbiology*
Resurgery

Treatment differed from regular treatment 
strategies as no reoperation was performed. 
Thereby, the deep SSI was scored manually 
based on one short clinical note stating that 
pus from the drain was observed. 

Patient 1 – Hospital D 2 Microbiology*
Resurgery 
Antibiotics

No reoperation was performed. The antibiotic 
treatment was not identified by the algorithm 
as these were home-administered antibiotics 
which were not included in the data selection.

Patient 2 – Hospital D 3 Microbiology*
Readmission

Reoperation took place 3 days after surgery, 
during the hospitalisation of the index 
surgery: no readmission needed.

Patient 3 – Hospital D 3 Microbiology*
Resurgery

Patient had an endo-sponge placement; 
however, this reintervention is not registered 
as resurgery and performed as outpatient 
treatment by an internist, gastro-enterologist 
or endoscopist from the gastrointestinal and 
liver diseases specialty while for the data 
extractions only resurgeries performed by 
same specialty as index surgery were selected.

# Algorithm elements are radiology orders, antibiotics, (re)admissions, resurgeries and microbiology. 
Patients needed 4 elements excluding microbiology, or 2 – 3 elements and microbiology to be classified 
as high probability by the algorithm. See also Figure 9.1 and  Supplemental Table S9.2.
* Both hospitals had reported in the questionnaires that cultures were not consistently taken in case of 
suspected infection.

A – C for analyses, including 4, 3 and 7 deep SSIs. For this model, overall sensitivity was 
100% (95% CI 76.8% – 100%); the specificity was 76.9% (95% CI 73.0% – 80.5%); the PPV 
was 11.9% (95% CI 6.6% – 19.1%) and the NPV was 100% (95% CI 99.0 – 100%). With this 
algorithm only 22.7% – 23.5% records required manual review. The results per hospital are 
shown in Table 9.2. Due to the small sample size and low number of deep SSIs, discrimination 
and calibration were not evaluated.

No discrepancies were found during the on-site validation visit in hospital D. In the other three 
hospitals, on-site validation revealed five additional deep SSIs: two were overlooked in the 
conventional surveillance and three were initially classified as superficial SSI. All additional deep 
SSIs were classified correctly as high probability by both the (modified) classification model and 
the regression model. Other findings of the on-site validation of the reference standard, though 
not essential for the assessment of the algorithms, were reclassifications of superficial SSIs to no 
SSI (n = 1), missed superficial SSIs (n = 2), and incorrect inclusions (n = 8).
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DISCUSSION
This study demonstrated the external validity, both temporal and geographical, of two 
surveillance algorithms that identify patients with a high probability of deep SSI after colorectal 
surgery. Both had a high detection rate for deep SSI and can be used for semi-automated 
surveillance and, thus, to further improve efficiency and quality of SSI surveillance. 

Both the classification model, especially when adapted to local practices, as well as the 
regression model, performed very well. To select a model for use within an organisation, we 
considered other aspects of implementation. First, in case of incomplete data, the original 
development study of the regression model used multiple imputation techniques. For the 
classification model, the patient scored positive on the algorithm element that could not 
be computed due to incomplete data. This was a more convenient method for which no 
complex data management techniques were required. Second, according to the original study, 
patients with a dirty-infected wound (i.e. wound class 4) were excluded from the cohort of 
the regression model. However, according to the national surveillance protocol, these cases 
should have been included in the surveillance. In addition, in two hospitals, wound class was 
not available in a structured format for automated extraction hindering algorithm application. 
Third, the classification model was easily be adapted to local practices. For the regression 
model, a sufficient sample size was required for redevelopment or recalibration in case of low 
predictive accuracy. This aspect may be challenging for hospitals performing few colorectal 
resections. Therefore, the (modified) classification model is more feasible and sustainable for 
real-life implementation within hospitals, improving standardisation and benchmarking. We 
know from a previous study that the classification model has also been successful in other 
European countries and in low-risk surgeries such as hip- and knee arthroplasties.19,28 

For both algorithms, however, several hurdles remain for implementation. The exact 
surveillance population could not be automatically selected by procedure codes, but a change 
in the current inclusion criteria or target population could be considered. In this study, 10% – 
22% of surgeries detected by procedure codes did not concern a resection, were not the main 
indication for surgery (but performed concomitant to other intra-abdominal surgeries), or 
were not the first colon resection for that patient. Also, the variables necessary for case-mix-
adjustment are sometimes difficult to extract automatically. Although the search for a proper 
case-mix correction is ongoing,14,29-32 automated extraction of a minimal set of risk factors 
is necessary to interpret the surveillance results and to maintain the workload reduction 
delivered by (semi-)automated surveillance. 
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Two findings in this study emphasize that close monitoring, validation of algorithm 
components, and future maintenance are important to maintaining alignment with clinical 
practice and guarantee high-quality surveillance. First, as appeared from the questionnaire, 
two hospitals did not consistently obtain microbiological cultures in case of suspected deep 
SSI. We advise researchers to first verify whether algorithms align with clinical practice and 
consider adapting algorithms to differences subsequently.23,33-35 Secondly, new treatment 
techniques should also be evaluated regularly and algorithms adapted accordingly. Endo-
sponge therapy is increasingly used after anastomotic leakage, however, this intervention 
is often not registered or is regarded as resurgery but as outpatient treatment performed 
by a different specialty than the initial colorectal surgery. Each hospital should therefore 
periodically evaluate care practices and algorithm elements to select the appropriate 
resurgeries or to include recently introduced interventions, such as endo-sponge therapy, 
within the resurgery element in the surveillance algorithm. 

Strengths and limitations
This study had several strengths. We performed an independent external validation in 
independent patient data from different types of hospitals, as well as a temporal validation. 
Apart from algorithm performance, automated selection of patients and case-mix variables 
were investigated as well, which are prerequisites for actual implementation.

This study also had several limitations. First, both algorithms targeted deep SSIs only, but 
in colorectal surgeries 20% – 50% of SSIs are superficial.6,36 Debate continues regarding the 
inclusion of superficial SSI in surveillance programmes given their subjective criteria and 
limited clinical implications.28,37,38 Second, we aimed to validate all published AS systems that 
appeared applicable to Dutch practice, however, AS systems may have been developed by 
commercial companies that were not published in scientific literature and were therefore 
not included. Third, the small sample size and low number of deep SSIs resulted in large 
confidence intervals for the individual hospitals and impeded the evaluation of discrimination 
and calibration.39,40 Although a larger validation cohort is preferred, the numbers used in 
this study reflect the reality of surveillance practices. Although underpowered, the overall 
sensitivity and hospitals’ individual point estimates were satisfying, and this study provided 
valuable insights into implementation. Fourth, for both manual- and semi-automated 
surveillance, post-discharge surveillance was limited to the initial hospital. In the Dutch 
setting, patients return to the operating hospital in case of complications, so this will likely 
not lead to underestimation of SSI rates. SSI benchmarking or widespread implementation of 
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this semi-automated algorithm may be hampered for countries without this follow-up. Last, 
as actual widespread implementation of AS is still limited,24-26 this study provides insights into 
validity and data requirements needed for implementation of semi-automated SSI surveillance 
after colorectal surgery. However, this study did not include a full feasibility study including 
economic, legal, and operational assessments. We emphasize that successful implementation 
also depends on organisational support, information technology knowledge, staff acceptance, 
change management, and possibilities for integration in workflows. 

Conclusion
In this independent external validation both approaches to semi-automated surveillance 
of deep SSI after colorectal surgery performed well. However, the classification model was 
proven preferable to the regression model because of source data availability and less complex 
data-management requirements. Our results have revealed several hurdles when automating 
surveillance. The targeted surveillance population could not be automatically selected by 
procedure codes, and not all risk factors were complete or available for case-mix correction. 
The next step is implementation in infection prevention practices and workflow processes to 
automatically identify patients at increased risk of deep SSI. 
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SUPPLEMENTARY MATERIAL
Supplemental File S9.1. Questionnaire classification model (to be filled in by 
each hospital).
A . Automated selection of the patients in the study population 

1. What data sources are used to select patients that should be in the surveillance?
Examples are operating records, nursing notes, administrative data or special modules of the 
electronic health record. 

2. Can you provide details?
incl. specific codes used, in- and exclusion criteria, persons performing the selection etc… 

3. Are you able to distinguish primary operations from reoperations or non-primary 
operations? And if so, how do you make this distinction?
e.g. specific codes used, criteria, persons performing the selection…

4. Are you able to distinguish resections (removing a part of the large bowel) from other 
surgeries of the colon (like colostomies)? 

5. What challenges do you encounter by selecting primary resections?  
Have you validated your selection? Do you miss certain patients or wrongfully include a 
fraction of your patients?

B. Clinical practice in all patients suspected for a surgical site infection 
Please describe below how patients suspected of SSI are usually diagnosed/treated in your centre

Microbiology
1. Are cultures (almost) always obtained when a patient –after colorectal surgery- is 

suspected of SSI? 
2. What sites/materials are cultured? 
3. How often are cultures obtained under antibiotics?

Antibiotics
4. What is the empiric treatment regimen when an SSI is suspected (agent + duration)?
5. If an infection if proven, how long is the patient typically treated with the antibiotics?

Readmissions
6. By what specialty are patients re-admitted because of a suspected SSI? What are the 

codings for the wards or specialties? 
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Reoperations
7. Are patients re-operated when an SSI is suspected? 
8. What procedure is typically performed (description or operating codes)?
9. By what specialty are reoperations performed? What are the codings for the wards? 

Radiology

10. Will there be a radiology order for patients suspected for SSI? If yes: which? 
(description/codes)?

11. If there is anastomotic leakage, what will be (in most times) the treatment? 

C. Information about risk factors

Please indicate in the table below in what way variables can be extracted.  

No Yes, Extracted from another 
source then the built-in SSI 
surveillance module, namely….

Yes, however this information is 
filled in manually by performing 
manual surveillance and is 
extracted from the built-in SSI 
surveillance module

Age
Sex
BMI

Duration of surgery

Wound class

ASA classification

Colostomy

Surgery because of 
malignancy
Anastomotic leakage
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Background information of the surveillance algorithms 
Supplemental Table S9.1. Minimum required dataset to apply classification model and/or regression 
model.

Theme Variable1 Format
Identifier Identification number numeric/text
Demographics Age numeric/text

Sex numeric/text
Index surgery (Colorectal surgery) Date of surgery date

Description surgery (e.g. ICD-9/10 /CTG) text
Treating specialty text
Surgical technique text
Date of admission date
Date of discharge date
Treating specialty text
Wound class# numeric/text

Readmission(s)* Date of admission date
Date of discharge date
Treating specialty text

Resurgery* Date of reoperation date
Procedure code (e.g. ICD-9/10/CTG) text
Description surgery text
Treating specialty text

Microbiology*§ Date of culture taken date
Sample number numeric/text
Sample material (e.g. blood, tissue) text
Sample material additional text text
Result text
Conclusion/quantity text

Antibiotics* Code (ATC in categories J01)/description text
Start date date
Stop date date

Radiology*§ Date of radiology order date

Procedure numeric/text
Description text
Treating specialty text

Mortality 30-day mortality date
1 All data until 45 days post-surgery for the classification model, 30 days post-surgery for the regression 
model.
* Data may contain more than 1 record per patient.
# Only required for the regression model.
§ Only required for the classification model.
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Supplemental Table S9.2. Algorithm specifications classification model.

Elements algorithm Criteriaa Specification

(Re)Admissions
 

Length of stay of 
index admission ≥ 
14 days  
OR  
≥ 1 re-admission 
OR 
Death

Length of hospital stay of the index admission (i.e., 
admission during which the colorectal surgery took 
place) of ≥ 14 days ((discharge date – date of index 
surgery) +1)
OR
≥ 1 readmission(s) for the relevant specialty (i.e. 
specialty surgery or gastrointestinal oncology surgery), 
after the index surgery but within FU time 
OR
Mortality within FU time

Resurgery
 

≥1 reoperation by 
original surgery 
specialty 

Surgeries performed by the department of surgery or 
gastrointestinal oncology surgery, after the index surgery 
and within FU time. No further restrictions.

Antibiotics
 

≥3 consecutive days 
of antibiotics (ATC 
J01) post-operative, 
starting from day 2

All antibiotic orders (ATC J01) prescribed from day 
2* until end of FU, including outpatient prescriptions 
but excluding ICU prescriptions. Overlapping episodes 
count as 1 day (e.g. two antibiotic prescriptions, one for 
4 days and one for 2 days of which 1 days overlap result 
in a total of 5 consecutive days of antibiotic exposure).

Radiology Ordering CT scan CT scan order within FU time

Microbiology$

 
≥1 culture taken 
from relevant body 
sites

≥ 1 culture obtained from potentially relevant body 
site(s), such as wound cultures, purulent, fluid, drain, 
tissue, unspecified material. All cultures are taken into 
account from day 1* until end FU. 

* Date of initial, index surgery = day 0.
a All criteria should be fulfilled within 45 days after the index surgery (FU time=45 days).
$ Microbiology element only applied if 2 or 3 criteria from above are met.
Abbreviations: FU = follow-up.

 General rules for applying the classification model (data cleaning)
 - A patient can only be included in the surveillance once, as only primary resections are 

included in the surveillance. Secondary colorectal resections are excluded from the 
surveillance population.

 - If a patient has more index colorectal resection procedures during the same surgery, the 
resection with the highest risk is included in the surveillance. The highest risk is defined 
as the procedure in which the lowest part of the colon is removed. 

 - Patients can be included several times in the admission, antibiotic or microbiology data 
as they can have can have multiple readmissions, antibiotics or microbiology results.

 - If start- and stop date of antibiotic prescriptions or admission/discharge dates are 
swapped: the number of days is converted from minus to plus. 

 - Microbiology results obtained from 1 culture count as 1 result.
 - If an algorithm element cannot be computed due to incomplete data, the index surgery is 

flagged positive on that algorithm element. 
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Supplemental Table S9.3. Algorithm specifications prediction model.

Elements algorithm Criteriaa Coefficient
Post-operative length 
of stay

Length of stay of initial surgery in days  0.085

Resurgery ≥ 1 reoperation by original surgery specialty 3.037
Readmission ≥ 1 readmission(s) for the relevant specialty (i.e. specialty 

surgery or gastrointestinal oncology surgery), after the index 
surgery but within FU time 

1.489

Wound class Wound class 2 or wound class 3 0.890
Death Mortality within FU time 1.127

a All criteria should be fulfilled within 30 days after the index surgery (FU time=30 days).  Date of initial, 
index surgery = day 0. Intercept=-5.234.
Abbreviations: FU = follow-up.
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ABSTRACT
Background: In patients who underwent colorectal surgery, a semi-automated surveillance 
algorithm based on structured data achieves high sensitivity in detecting deep surgical site 
infections (SSIs), however, generates a significant number of false positives. The inclusion 
of unstructured, clinical narratives to the algorithm may decrease the number of patients 
requiring manual chart review. 

Aim: To investigate the performance of a semi-automated surveillance algorithm augmented 
with an NLP component to improve positive predictive value (PPV) and thus workload 
reduction (WR). 

Methods: Retrospective, observational cohort study in patients who underwent colorectal 
surgery from January 1, 2015 through September 30, 2020. The previously developed semi-
automated surveillance algorithm was validated. Subsequently, natural language processing 
(NLP) was used to detect keyword counts in clinical notes. Several NLP-algorithms were 
developed with different count input types and classifiers, and added as component to the 
original semi-automated algorithm. Traditional manual surveillance was compared with 
the NLP-augmented surveillance algorithms and sensitivity, specificity, PPV and WR were 
calculated.

Findings: The original (structured data) algorithm had 97.6% sensitivity (95% confidence 
interval (95% CI) 87.1 – 100%) and 57.3% WR. From the NLP-augmented models, the 
decision tree models with discretised counts or binary counts had the best performance 
(sensitivity = 95.1%; 95% CI 83.5 – 99.4%; WR = 60.9%) and improved PPV by only 2.6% 
compared to the original algorithm.

Conclusion: The original semi-automated algorithm achieved near-perfect sensitivity and 
substantial WR. The addition of an NLP component to this algorithm had modest effect on 
WR (decrease of 1.4 – 12.5%), at the cost of sensitivity. For future implementation it will be 
a trade-off between optimal case finding techniques versus practical considerations such as 
acceptability and availability of resources. 



The augmented value of clinical notes 

10

193   

INTRODUCTION
Approximately 5% to 30% of colorectal surgery patients develop a surgical site infection (SSI). 
SSIs result in morbidity, mortality, longer hospital stays and extra costs.1-3 Monitoring SSIs 
is an essential policy strategy and has been proven effective in reducing these infections.4,5 
Several (local and national) surveillance programmes target SSI after colorectal surgery; 
patient records are retrospectively reviewed and manually annotated by infection control 
practitioners (ICPs) according to surveillance case definitions for SSI.6-8 This traditional way 
of performing surveillance is labour-intensive, prone to subjective interpretation, and poor 
interrater agreement has been reported.9-11 In the past years, automated surveillance methods 
that re-use data stored in electronic health records (EHRs) are increasingly developed to 
reduce workload, and to objectify and align surveillance methods. They are considered an 
attractive alternative to manual surveillance.12 

For most automated surveillance algorithms targeting SSI after colorectal surgery, no satisfying 
results have been reported so far: the methods described are not applicable to different settings, 
are very complex, have insufficient performance, and are mostly limited to the use of structured 
data as these are relatively easy to obtain and to process.13-17 There has been one semi-automated 
algorithm described and validated in multiple (Dutch) hospitals with promising results.18 With 
the use of structured data from radiology orders, admission- and discharge dates, antibiotic 
prescriptions, and reoperations, the algorithm classifies patients into high- or low probability of 
having had a deep SSI according to pre-specified rules (Supplemental Table S10.1). Only the 
high-probability records need manual confirmation.19 Despite high to perfect sensitivity, the 
workload reduction achieved was not optimal given the large number of false positives. 

As the diagnosis of an SSI is mainly dependent on physical examinations and observations 
that are described in clinical notes, the inclusion of unstructured, free-text information to 
this algorithm may improve the method by reducing the number of false positives. Natural 
language processing (NLP) is a technique that processes, learns and understands human 
language content, and can be used in analysing these unstructured data.20 Experiences with 
NLP-supported surveillance algorithms are limited: there are some studies, however, with 
varying and often inconclusive results.21-24 Also, the combination of using both structured 
and unstructured data for surveillance algorithms has not been extensively researched so far, 
but it is known that in general, the use of more heterogeneous data types result in better 
performance and case finding.25,26 The aim of this study was to investigate the performance of 
the original semi-automated surveillance algorithm augmented with an NLP component to 
improve positive predictive value (PPV) and to reduce the workload. 
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METHODS
Study design, setting and study population
Th is is a retrospective, observational cohort study including patients undergoing colorectal 
surgery (i.e. primary or secondary colorectal resections, incisions or anastomosis) performed 
at the Karolinska University Hospital (KUH) Sweden, between January 2015 and September 
2020. Prior to developing the NLP component, the original semi-automated algorithm – 
based on structured data – was validated in KUH. Th e NLP algorithms were subsequently 
developed as an ‘add-on’ component and designed as an additional step following the existing 
semi-automated algorithm, aiming to eliminate false-positive signals whilst maintaining 
sensitivity. Th is sequential design will arguably lower implementation thresholds in the future: 
hospitals can already start implementing the semi-automated algorithm with structured data 
and may later add the (more advanced and challenging) NLP component (Figure 10.1 and 
Supplemental Table S10.1). Model results were compared with the reference standard, which 
is the traditional manually annotated surveillance. Review and approval for this study was 
obtained from the Regional Ethical Review Board in Stockholm, Sweden (2018/1030-31). 

Radiology Antibiotics

High 
probability 

deep SSI 

Clinical notes

Probable 
deep SSI

No deep 
SSI

Low 
probability 

deep SSI 

Resurgery Admissions

Deep SSI

Manual review

No probable 
deep SSI

Figure 10.1. Schematic overview of the original semi-automated algorithm comprised of structured 
data, augmented with unstructured data (clinical notes, in blue frame).

Outcome 
Th e key outcome was a binary indicator of a deep SSI or organ/space SSI, hereinaft er 
referred to as deep SSI, versus no deep SSI (i.e. no SSI or superfi cial SSI) within 30 days 
aft er the colorectal procedure. Th e outcome was recorded during manual annotation by two 
experienced infection control practitioners (ICPs) according to the European Centre for 
Disease Prevention and Control (ECDC) SSI defi nition and guidelines.6
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Data sources
In 2020, the Stockholm Proactive Adverse Events REsearch (2SPARE) database was created. 
2SPARE is an SQL-based relational database and a duplicate of the data recorded in the EHR 
system of the KUH, currently containing all patient records over the period January 2010 
–August 2021 including data on patient characteristics, hospital admission and discharge 
records, outpatient records, physiological parameters, medication orders, microbiology-, 
clinical chemistry-, radiology results, and clinical notes. The clinical notes data includes 
unstructured, free-text notes such as progress notes, discharge summaries, history and 
physical examination notes, and telephone encounter notes, all written in Swedish language. 
We limited the notes to those written by physicians, residents, surgery assistants, and nurses, 
and to those written within 1 – 30 days post-surgery as these are most likely to contain SSI-
relevant information.

Validation of the original semi-automated algorithm
Firstly, prior to developing NLP components, the original semi-automated algorithm based 
on structured data only was validated. From the 2SPARE database, a random selection of 225 
patients undergoing colorectal surgery during the study period (41 deep SSI) were selected 
as validation cohort to apply the original algorithm on. Model performance results were 
compared to the reference standard (i.e. manual SSI-ascertainment) (Figure 10.2).  For the 
manual SSI-ascertainment, both raters were blinded for the algorithm outcomes and twenty 
cases of the validation cohort were reviewed in overlap resulting in almost perfect agreement 
(95%) between them, with a Cohen’s Kappa of 0.87 for SSI classification.

Development and validation of the NLP-augmented models
The original semi-automated algorithm was subsequently applied to the remaining colorectal 
patients in 2SPARE. Next, a random selection of 250 high-probability records were extracted 
for the development cohort and annotated resulting in 92 deep SSIs. Several NLP components 
were developed using this development cohort consisting of high-probability individuals. 
The final NLP-augmented algorithms were validated using the validation cohort as described 
above (Figure 10.2). 

Pre-processing of linguistic variables
A list of keywords was compiled by reviewing clinical literature and local case reports, and 
by expert consultation in the Netherlands and Sweden (i.e. colorectal surgeons, medical 
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microbiologists, ICPs, infectious disease consultants) (Figure 10.3). Next, from the keywords 
we created a list of lemmatised versions and applied part-of-speech tagging to capture 
differences in grammatical and spelling versions of the words. This resulted in the overall 
lexicon list. The keywords given by Dutch experts were translated to Swedish to be able to 
apply them on Swedish notes, and all keywords were translated to English for the purpose of 
reporting results. 

2SPARE database, Karolinska Institutet/Karolinska University Hospital (KUH)

Colorectal surgeries between 2015 and 
Sept 2020 at KUH, 

n = 3,064

Random selection from high SSI probability surgeries 
for development cohort, n = 250

Random selection from all colorectal 
surgeries for 

validation cohort, n = 225

Annotation of data
- Fulfilling SSI definitions of ECDC (manual record 

review)
- Relevant SSI key words/phrases in free text medical 

notes

Data split in training & testing data

Developed NLP algorithms

Application of NLP-augmented models

Annotation of data
- Fulfilling SSI definitions of ECDC 

(manual record review)

Annotated validation dataset

Performance estimates
Sensitivity, specificity, positive predictive 

value, negative predictive value, and 
workload reduction

2,675 available colorectal surgeries

Application of original 
semi-automated algorithm

Exclusion:
- No ECDC colorectal procedure, n = 353
- Resurgeries related to complications, n = 36

2,450 colorectal surgeries:
- High SSI probability, n = 901

- Low SSI probability, n = 1,549

Figure 10.2. Flow chart of the study.
Abbreviations: KUH = Karolinska University Hospital; ECDC = European Centre for Disease Prevention 
and Control; NLP = natural language processing; SSI = surgical site infection.

Feature selection and algorithm development 
The original keywords and their lemmatised versions can be considered as ‘features’. All text 
from the clinical notes were matched with the lexicon list and each feature match was counted. 
Negation detection using the NegEx algorithm was applied to filter out negated mentions.27  
For example, in case ‘no signs of infection’ is written down, the keyword ‘infection’ is negated 
and not counted as a keyword match. Subsequently, three input types were considered: a count 
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per keyword, a discretised count with four bins, and a binary model indicating the presence 
or absence of a keyword. Each input type has its pros and cons: a binary representation 
benefits from its simplicity, however, cannot capture the case when several mentions of the 
same keyword corresponds to a stronger deep SSI signal. The count per keyword, on the 
other hand, captures the number of times each keyword is mentioned, but is more sensitive 
to writing styles and will have fewer examples of each distinct keyword count in the training 
data. The discretised count can be viewed as a compromise between the binary model and the 
counts model, since three of the bins represented a count below, within, or above the expected 
(interquartile) range, and the fourth bin represented no occurrences. 

During development, we split the development cohort consisting of high-probability records 
as classified by the original algorithm into training (80%) and testing data sets (20%) to 
evaluate parameters of the learning algorithms. Two tree-based classification algorithms, a 
single decision tree (DT) and a random forest (RF) with 500 trees,28 were evaluated for their 
ability to separate between the two classes, deep SSI and no deep SSI.29,30 A DT has the benefit 
of being interpretable, since the tree can be understood as one set of rules for classifying 
future patients as belonging to either class. An RF, on the other hand, is a more complex 
model with multiple sets of rules and therefore lacks in interpretability, but often outperforms 
a DT. Each of the classifiers, DT and RF, was applied to each feature representation (raw 
counts, discretised counts, or binary counts) resulting in six tree-based models.

For application in semi-automated surveillance, a near-perfect sensitivity is required as false-
positive cases are corrected during subsequent chart review, whereas false-negative cases 
will remain unnoticed. To increase the sensitivity when using the DT classifier, ten small 
decision trees with slightly different characteristics were inferred from the development data. 
Subsequently, in the validation cohort, a patient was classified as deep SSI if any of these 
trees classified the patient as such. This ensemble of DT classifiers could be considered as a 
miniature forest with a decision threshold of 0.1. Within an RF, each tree classifies each patient 
in the data set. Generally, for an RF with two classes, a majority decision determined class 
membership, i.e. the class assigned by a majority of the trees will be assigned to the patient. 
This corresponds to a decision threshold of 0.5, meaning that 50% of the trees are required 
to consider a patient as belonging to the class deep SSI for the RF to classify it as such. To 
increase the sensitivity of the RF the conventional decision threshold of 0.5 was lowered, 
meaning that fewer trees are required to classify a patient as deep SSI, which will however 
reduce PPV. Multiple decision thresholds were explored using the development cohort, and 
the thresholds of 0.3 (for model using raw or discretised counts) and 0.35 (model using binary 
counts) were selected to ensure a high sensitivity (> 0.95 in the development cohort). 
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Rule-based NLP component
Furthermore, a rule-based NLP component was developed based on keywords reflecting 
the deep SSI definition (Supplemental Figure S10.1). This NLP component is more 
straightforward as no DT or RF techniques are used: if a keyword match was present for 
a patient according to the OR/AND-rules as specified in Supplemental Figure S10.1, the 
patient was classified as probable deep SSI by the algorithm (Figure 10.1). 

Analysis
In total, eight surveillance models were investigated as described above: the original semi-
automated model composed of structured data only (model 1); model 1 augmented with 
the NLP component developed with DT using either raw counts (model 2), discretised 
counts (model 3) or binary counts (model 4); model 1 augmented with the NLP component 
developed with RF using either raw counts (model 5), discretised counts (model 6) or binary 
counts (model 7); and model 1 augmented with the rule-based component (model 8). First, 
the original semi-automated model (model 1) was applied to the validation cohort and the 
performance measures sensitivity, specificity, PPV, negative predictive value (NPV) and 
workload reduction (WR) were calculated as compared to the reference standard. WR was 
defined as the difference between the total number of surgeries under surveillance and the 
proportion of surgeries requiring manual review after algorithm application. 

Baseline characteristics were compared between the high probability groups – as defined by 
the original algorithm – of the development and validation cohorts. Heat maps were created 
from the development cohort to visualise the presence of keywords between the deep SSI 
group and the group without. The NLP-augmented models (models 2 – 8) were applied to the 
validation cohort and for each model sensitivity (recall), specificity, PPV (precision), NPV, 
and WR was calculated with corresponding 95% confidence intervals (95% CI). 2SPARE data 
acquisition, management and analysis were performed using R statistical software (version 
3.6.1) and Python (version 3.7), and in accordance with current regulations concerning 
privacy and ethics.

RESULTS
The mean age of the validation cohort was 62.6 year (standard deviation 17.2) and 48.9% (n 
= 110) were female (Table 10.1). The majority of patients had a primary surgery (63.6%; n = 
143) and most surgeries were open (77.3%; n = 174). In 41.8% (n = 94) of patients a stoma 
was created.
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Table 10.1. Baseline characteristics of the validation cohort of this study.

Patients in validation cohort (n = 225)
Age in years (mean (SD)) 62.6 (17.2)
Sex (n (%))
Male
Female

115 (51.1)
110 (48.9)

BMI (mean (SD))
Missing (n (%))

26.1 (5.4) 
2 (0.9)

ASA grade (n (%))
Grade I 
Grade II 
Grade III 
Grade IV 
Grade V 
Missing

25 (11.1)
96 (42.7)
78 (34.7)
4 (1.8)
0 (0)
22 (9.8)

Surgical approach (n (%)) 
Closed 
Open

51 (22.7)
174 (77.3)

Duration of surgery in minutes (mean (SD))
Missing (n (%))

330.6 (154.0)
65 (28.9)

Wound class (n (%)) 
Clean-contaminated (class 2) 
Contaminated (class 3) 
Dirty-infected (class 4)

171 (76.0)
42 (18.7)
12 (5.3)

Stoma (n (%)) 
Yes 
No

94 (41.8)
131 (58.2)

30-day mortality (n (%)) 

Yes 
No

5 (2.2)
220 (97.8)

Malignancy (n (%)) 
Yes 
No

173 (76.9)
52 (23.1)

Primary procedure (n (%))
Yes 
No

143 (63.6)
82 (36.4)

Surgical site infection (n (%))
No 
Yes 
- Superficial 
- Deep

165 (73.3)
60 (26.7)
19 (31.7)
41 (68.3)

Anastomotic leakage (n (%))* 
Yes
No

13 (31.7)
28 (68.3)

* Only registered in case of deep surgical site infection.
Abbreviations:  n = number; SD = standard deviation;  BMI = body mass index; ASA =  American 
Society of Anesthesiologists.
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Validation of the original semi-automated algorithm with structured data only
The original semi-automated algorithm (model 1) was applied to the validation cohort. A 
requested radiology consult and receiving antibiotic therapy for ≥ 3 days were the most 
common criteria present in patients (Table 10.2). Of the 41 patients with a deep SSI, 40 were 
classified correctly by the algorithm as high probability (sensitivity = 97.6%; 95% CI 87.1% – 
100%) (Table 10.3). The patient with a deep SSI that was missed by the algorithm had none 
of the four algorithm components during the follow-up period: the deep SSI was manually 
ascertained based on a clinical note describing pus from the rectal stump. 

Table 10.2. Number of patients per algorithm component (model 1).

Components of model 1 Number of patients (n (%))
Augmented stay 87 (38.7)
Reintervention 40 (17.8)
Radiology 107 (47.6)
Antibiotics 93 (41.3)

Table 10.3. Performance characteristics of the different surveillance models.
Sensitivity  
(% (95% CI))

Specificity  
(% (95% CI))

PPV  
(% (95% CI))

NPV  
(% (95% CI))

Workload 
reduction (%)

model 1 97.6 (87.1 – 100.0) 69.6 (62.4 – 76.1) 41.7 (31.7 – 52.2) 99.2 (95.7 – 100.0) 57.3
model 2 87.8 (73.8 – 95.9) 79.9 (73.4 – 85.4) 49.3 (37.4 – 61.3) 96.7 (92.5 – 98.9) 67.5
model 3 95.1 (83.5 – 99.4) 73.4 (66.4 – 79.6) 44.3 (33.7 – 55.3) 98.5 (94.8 – 99.8) 60.9
model 4 95.1 (83.5 – 99.4) 73.4 (66.4 – 79.6) 44.3 (33.7 – 55.3) 98.5 (94.8 – 99.8) 60.9
model 5 92.7 (80.0 – 98.5) 77.72 (71.0 – 83.5) 48.1 (36.7 – 59.6) 97.9 (94.1 – 99.6) 64.9
model 6 95.1 (83.5 – 99.4) 70.6 (63.5 – 77.1) 41.9 (31.8 – 52.6) 98.5 (94.6 – 99.8) 58.7
model 7 92.7 (80.1 – 98.5) 79.3 (72.8 – 84.9) 50.0 (38.3 – 61.7) 97.9 (94.2 – 99.6) 66.2
model 8 85.4 (70.8 – 94.4) 82.1 (75.8 – 87.3) 51.5 (39.0 – 63.8) 96.2 (91.8 – 98.6) 69.8

Model 1: original algorithm with structured data only.
Model 2: model 1 augmented with the NLP component developed using decision tree and raw counts.
Model 3: model 1 augmented with the NLP component developed using decision tree and discretised 
counts.
Model 4: model 1 augmented with the NLP component developed using decision tree and binary counts.
Model 5: model 1 augmented with the NLP component developed using random forest and raw counts.
Model 6: model 1 augmented with the NLP component developed using random forest and discretised 
counts.
Model 7: model 1 augmented with the NLP component developed using random forest and binary 
counts.
Model 8: Model 1 augmented with a rule-based component.
Abbreviations: 95% CI = 95% confidence interval; PPV = positive predictive value; NPV = negative 
predictive value; NLP = natural language processing.
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Model performance of the semi-automated algorithm augmented with an NLP 
component 
Baseline characteristics between the high-probability patients of the development cohort (n 
= 250) and the validation cohort (n = 96) were similar, albeit somewhat lower frequency of 
primary procedures, 55.2% versus 64.8%, and higher frequency of SSIs, 54.2% versus 46.4%, 
(Supplemental Table S10.2). 

The distribution of keywords among patients with deep SSI versus no deep SSI differed with 
regards to frequency and timing (Figure 10.3). The keywords ‘abscess’, ‘anastomotic leakage’, 
‘drainage’ and antibiotic names appeared more frequently in the clinical notes from deep SSI 
cases. The other keywords were present in both groups, however more often in the group of 
patients with deep SSI and between day 15 – 30 post-surgery. 

For each NLP-augmented surveillance model, performances are shown in Table 10.3. Model 
3 and 4 had sensitivity above 95% and 3.6% less records to review manually as compared to 
the original algorithm based of structured data (model 1). Keywords incorporated in model 3 
were: the antibiotic names, ‘abscess’, ‘anastomotic leakage’, ‘subfebrile’, ‘fluid’, ‘intestinal content’, 
‘drainage’, ‘leakage’, ‘antibiotics’, and ‘drained’. For model 4 also the following keywords were 
included: ‘intestinal content’, ‘serous’, and ‘echo’. The rule-based component (model 8) had 
lowest sensitivity. Overall, the models with discretised or binary count input types had better 
performance estimates than raw counts.

DISCUSSION
In this study, the original semi-automated algorithm achieved 97.6% sensitivity and 57.3% 
WR. When adding an NLP-component to this algorithm, the number of records to assess 
manually was decreased by 1.4% – 12.5% at the cost of sensitivity. The NLP component 
with the best performance yielded seven (3.6%) fewer patients to review manually, thereby 
lowering the sensitivity with 2.5% (one extra deep SSI missed). 

Although the original semi-automated algorithm was developed and validated in other 
countries than Sweden, also within this country the sensitivity was high. These results confirm 
the potential of large-scale implementation of this algorithm within Europe and its robustness 
and adaptability in different clinical settings. The NLP component lowered the number of false 
positives and thus resulted in WR, however this added value was minimal. These findings are 
similar to a study of Grundmeier and colleagues,31 who used a data-driven selection of pre-
specified keywords related to SSI from clinical narratives after ambulatory paediatric surgery. 
By using regular expression matching, keyword occurrence was counted and combined within 
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an RF model. High sensitivity (90%) was obtained, but the PPV was 23%, which is lower 
compared to 44.3 – 51.5% for model 2 – 8 in our study. A study who successfully succeeded to 
discriminate between SSI groups is from Thirukumaran and colleagues.21 They demonstrated 
high sensitivity and PPV in a model that combined administrative data (age, sex, race, clinical 
comorbidities, year of procedure and Clinical Classification diagnosis categories) with clinical 
notes to detect SSIs after orthopaedic surgery. Although they applied a comparable NLP technique 
as this current study, it remains uncertain what the value of NLP was in case similar structured 
clinical care data was used as in this current study. Thereby, SSI diagnosis after abdominal surgeries 
are more complex compared to the more ‘straightforward’ orthopaedic surgeries.

Other attempts of NLP surveillance systems from Tvardik et al.,32 Fitzhenry et al.,33 Branch-
Elliman et al.22 and Murff et al.34 had modest performance results with sensitivities reported 
between 33% and 87%. All these studies used different NLP techniques, different patient 
populations and had various targets (other post-operative complications or catheter-related 
urinary tract infections) complicating direct comparisons, and reflects the numerous techniques 
available that can be applied to process unstructured clinical notes and to build an algorithm. 

There may be several reasons for the limited benefit obtained in this study by adding an NLP 
component. First, the NLP component tries to find the patients with deep SSI in an already 
pre-selected high-risk group identified by the four components of the original algorithm. 
These patients have either reoperations, antibiotics, radiology or prolonged hospital stays 
and certain keywords are therefore expected in all these patients given their clinical course 
and complications. The lexicon list was developed for distinguishing deep SSI from non-deep 
SSI by consulting various clinical specialties, however, maybe other keywords and language 
patterns are required to identify the deep SSI cases in the high-probability group. Second, on 
practical ground, we have chosen to add the NLP component as the last step in the algorithm. 
Including the NLP component in the first steps of the algorithm, as often seen in rule-based 
algorithms that combine structured and unstructured data, may achieve better results.26 Third, 
all studies mentioned above used different techniques to process and analyse clinical notes. 
We did not attempt all possible options because we investigated NLP in semi-automation 
setting, thereby prioritising sensitivity. Using clinical notes may be more valuable in fully-
automated surveillance, in which sensitivity and specificity are balanced instead of focusing 
on high sensitivity only. However, expectations are tempered as the studies applying other 
techniques also had modest results. Last, the development of an (NLP) algorithm requires an 
excellent reference standard of sufficient size to ensure correct classification of patients.10,11,22 
Although the agreement between our raters was good, the sample size for developing the NLP 
components might have been too small.  
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Clinical notes are a rich data source, useful for post-discharge surveillance and an extremely 
important data source in the detection and manual ascertainment of SSI by ICPs.35 It is therefore 
a logical step to incorporate this data source in surveillance algorithms. However, aside from 
the limited incremental benefit in this study, several drawbacks of using this data source for 
automated surveillance exist. First, medical personnel often describe terms indirectly related to 
SSI (e.g. dehiscence, opening incision, removing sutures, rupture) or describe their observations 
in terms of smell, colour or shape (e.g., yellow substance, smelly, not flexible, etc.) making it 
difficult to catch important vocabulary. Lexicon libraries with medical synonyms, such as the 
Unified Medical Language System from the National Library of Medicine, can help to connect 
alternate names for the same concept or keywords, however are not available for all languages 
(yet).36 Second, the frequency of reporting and the vocabulary used varies between individual 
practitioners, centres and between countries. There is no information available about the 
generalisability of such algorithms when applied to other languages, and little is known about 
their robustness – especially when using the count input type – against (local) reporting habits. 
Third, to the best of our knowledge, there is limited experience with using NLP-augmented 
surveillance algorithms in daily routines. Given the small benefit that NLP provides in this 
study, one may wonder whether its development, implementation and maintenance will be 
cost-effective.22 Although the digital infrastructure can be expanded to other (post-operative) 
complications, developing and building NLP models require substantial effort of information 
technology experts. Last, techniques to build NLP-augmented algorithms are mostly complex 
and less transparent, lowering the chance of understanding and acceptance of clinicians and 
hospital staff. We used two methods for feature classification: a DT has the benefit of being 
interpretable, since the tree can be understood as a set of rules for classifying future patients 
as belonging to either class. An RF, on the other hand, is more complex and therefore lacks 
in interpretability, but such classifiers are usually more accurate and less likely to over fit data 
compared to a DT.29 For future implementation, there will be a trade-off between optimal case 
finding techniques versus practical considerations such as acceptability and resources.

To summarise, the original algorithm comprised of structured data only had near-perfect 
sensitivity, but high number of false positives (i.e. low PPV). Adding an NLP component 
to incorporate clinical notes as extra data source lowered the number of false positives, 
however the benefit was minor: the number of records to review manually was reduced by 
only 1.4% –12.5%. Given the complexity of such systems and the resource-intensive nature 
of developing NLP, large-scale implementation seems unlikely. However, further research is 
needed to evaluate whether NLP technology is an appropriate tool for helping to detect deep 
SSI in semi-automated surveillance systems or their utility in fully automated surveillance.  
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SUPPLEMENTARY MATERIAL

Supplemental Table S10.1. Details semi-automated algorithm composed of structured data.
Elements algorithm Criteriaa Specification
(Re)Admissions
 

Length of stay of index 
admission ≥ 14 days  
OR  
≥ 1 re-admission 
OR 
death

Length of hospital stay of the index admission (i.e., 
admission during which the colorectal surgery took 
place) of ≥ 14 days ((discharge date – date of index 
surgery) +1)
OR
≥ 1 readmission(s) for the relevant specialty (i.e. 
specialty surgery or gastrointestinal oncology surgery), 
after the index surgery but within FU time 
OR
Mortality within FU time

Resurgery
 

≥ 1 reoperation by 
original surgery 
specialty 

Surgeries performed by the department of surgery 
or gastrointestinal oncology surgery, after the index 
surgery and within FU time. No further restrictions.

Antibiotics
 

≥ 3 consecutive days 
of antibiotics (ATC 
J01) post-operative, 
starting from day 2

All antibiotic orders (ATC J01) prescribed from day 
2* until end of FU, including outpatient prescriptions 
but excluding ICU prescriptions. Overlapping episodes 
count as 1 day (e.g. two antibiotic prescriptions, one for 
4 days and one for 2 days of which 1 days overlap result 
in a total of 5 consecutive days of antibiotic exposure).

Radiology Ordering CT scan CT scan order within FU time

* Date of initial, index surgery = day 0.
a All criteria should be fulfilled within 45 days after the index surgery (FU time = 45 days).
Abbreviations: FU = follow-up; ICU = intensive care unit.

Pus or Purulent
OR
Dehiscence or remove sutures AND fever or pain or tenderness
OR
Abscess
OR

Supplemental Figure S10.1. Rule-based component.
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Supplemental Table S10.2. Baseline characteristics of high-probability patients in the development 
and validation cohort.

High-probability patients 
development cohort (n = 250)

High-probability patients  
validation cohort (n = 96)

Age in years (mean (SD)) 61.2 (15.4) 64.2 (16.8)
Sex (n (%))
Male
Female

158 (63.2)
92 (36.8)

59 (61.5)
37 (38.5)

BMI (mean (SD))
Missing (n (%))

25.9 (5.1)
0 (0.0)

26.3 (5.5) 
1 (1.0)

ASA grade (n (%))
Grade I 
Grade II 
Grade III 
Grade IV 
Grade V 
Missing

 
17 (6.8) 
125 (50.0) 
83 (33.2) 
4 (1.6) 
0 (0) 
21 (8.4)

 
9 (9.4) 
35 (36.5) 
42 (43.8) 
2 (2.1) 
0 (0) 
8 (8.3)

Surgical approach (n (%)) 
Closed 
Open

37 (14.8)
213 (85.2)

12 (12.5)
84 (87.5)

Duration of surgery in minutes 
(mean (SD))
Missing (n (%))

401.4 (176.0) 
70 (28.0)

377.5 (165.5) 
21 (21.9)

Wound class (n (%)) 
Clean-Contaminated (class 2) 
Contaminated (class 3) 
Dirty-infected (class 4)

 
184 (73.6) 
50 (20.0) 
16 (6.4)

 
74 (77.1) 
16 (16.7) 
6 (6.3)

Stoma (n (%)) 
Yes 
No

 
139 (55.6) 
111 (44.4)

 
54 (56.3) 
42 (43.8)

30-day mortality (n (%)) 

Yes 
No

6 (2.4)
244 (97.6)

3 (3.1)
93 (96.9)

Malignancy (n (%)) 
Yes 
No

191 (76.4)
59 (23.6)

77 (80.2)
19 (19.8)

Primary procedure (n (%))
Yes 
No

162 (64.8)
88 (35.2)

53 (55.2)
43 (44.8)

Surgical site infection (n (%))
No 
Yes 
 - Superficial 
 - Deep

132 (52.8)
118 (46.4)
26 (22.0)
92 (78.0)

44 (45.8)
52 (54.2)
12 (23.1)
40 (76.9)

Anastomotic leakage (n (%))* 
Yes
No

36 (39.1)
56 (60.9)

13 (32.5)
27 (67.5)

* Only registered in case of deep surgical site infection.
Abbreviations: SD = standard deviation; n = number.
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GENERAL DISCUSSION
Although surveillance is a means, in this thesis it is actually the end. The aim of this thesis was 
to evaluate current traditional surveillance methods of healthcare-associated infections (HAIs) 
and to explore the feasibility and generalisability of automated surveillance (AS) methods in 
different hospitals. We focused on the robustness of semi-automated classification algorithms 
in different settings with variability in clinical practice, patient populations, electronic health 
record (EHR) systems and data management skills. The knowledge gained can help in 
improving AS and will facilitate implementation. This chapter starts with a general discussion 
on (automated) surveillance of HAIs, based on results obtained within this thesis and findings 
reported by other studies. Subsequently, the lessons we learned and the remaining challenges 
are described, followed by considerations regarding AS in the future. 

The value of surveillance
HAI surveillance is a means that can be used for two intended purposes: it serves either as 
a cornerstone of within-hospital infection prevention and patient safety programmes, or 
can be used as a quality metric.1,2 For the first purpose, its effectiveness has been generally 
acknowledged worldwide, as several studies demonstrated that surveillance, or participation 
in surveillance networks, result in a reduction of HAIs.3-6 Surveillance increases awareness, 
provides information for action and targeted interventions can be implemented.7 Additionally, 
surveillance results can be used for evaluating interventions (Chapter 2) or for monitoring 
the number of HAIs during unexpected circumstances (Chapter 3). Surveillance of infections 
has not only been proven effective within individual hospitals, but also on the public health 
level. The recent COVID-19 pandemic illustrated the importance of monitoring infection 
rates and to share and report data on local, national and international level.8 

The second purpose, using HAI rates for benchmarking and public reporting, has been 
applied and mandated increasingly over the past years in several countries.2,9-11 Nevertheless, 
there is criticism and attention regarding the methodology, and the accuracy and reliability of 
traditional surveillance – manual chart review using standardised case definitions – has been 
questioned by many.11-14 This criticism concerns subjectivity in case definitions, inter-rater 
variation, and ‘the-more-you-look-the-more-you-find principle’, affecting reliable comparability 
(Chapter 4 & 5).15-17 Apart from these methodological issues, in Chapter 4 limitations were 
reported regarding practical aspects of surveillance of catheter-related bloodstream infections 
(CRBSIs). Examples are the yield of surveillance given low incidences, the lack of resources and 
organisational support, the high workload, and information technology (IT) problems.18 These 
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practical aspects are often overlooked, as the evaluation of surveillance programmes is mostly 
limited to investigating the effectiveness of a programme to reduce HAIs. These methodological 
and practical issues motivate to look for alternative ways to conduct surveillance.

The value of automated surveillance 
Automated surveillance is considered a possible solution to overcome many of the drawbacks 
of traditional manual surveillance. It aims to improve efficiency by reducing the number of 
charts for manual review (in case of semi-automated surveillance, Chapter 8 – 10) or by 
ascertaining the HAI status without any human involvement (in case of fully automated 
surveillance).19-25 Especially when HAI incidences are low, time and effort of infection control 
practitioners (ICPs) can be saved and re-allocated.26 Second, another main advantage in 
automation is that (a part of) the surveillance process is standardised by algorithms. If the 
algorithms are applied correctly, this will increase reliable comparisons between centres. 
Several studies, including studies in this thesis, showed that automation is even superior to 
traditional methods as more HAIs are found by using algorithms (Chapter 8 & 9).25,27-31 

In this thesis, we focused mainly on semi-automated surveillance, in particular semi-automated 
classification models composed of rule-based components. This type of model is considered 
relatively easy to apply, adjustable to clinical variations, and is understandable for clinicians which 
will increase acceptance.2,27,32 Hence, they have the potential for large-scale implementation. 
Although the final ascertainment still requires human interpretation and thus runs the risk of 
subjectivity, the selection of high-risk cases is a standardised process and decreases the chance of 
missing a HAI.32 Complex models, such as machine learning or natural language processing, are 
increasingly presented given the increased availability of data sources and techniques. However, 
how these algorithms work is difficult for clinicians to understand and implementation is 
hampered as a high level of programming and IT expertise is required (Chapter 10). 

As we focused in this thesis on semi-automated surveillance, we prioritised sensitivity as most 
important performance outcome, as false-positive cases will be corrected during subsequent 
chart review, while false-negative cases will remain unnoticed. However, the intended purpose 
of the AS system decides which performance outcome, sensitivity, specificity, or positive 
predictive value will be important: in fully automated surveillance there is usually a trade-off 
between sensitivity and specificity, while for semi-automated surveillance the main focus is on 
sensitivity.32 In addition, in this thesis the large-scale potential of semi-automated surveillance 
of one of the most common HAI, namely surgical site infections (SSIs), was investigated. 
Although our findings will generally hold true for semi-automated surveillance of other HAI 
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targets as well, for every new HAI target or new surveillance population there probably will be 
additional exceptions or quintessential features, as well as for fully AS methods.

Lessons learned and hurdles to take towards large scale implementation 
Many algorithm types are developed, both for semi- and fully automated surveillance, with 
overall satisfying performances.20-24,33-35 Despite these promising results, the studies presenting 
these algorithms are mainly development studies, performed in single (often academic) 
centres. External validations or actual implementation studies on AS systems are scarce.36,37 As 
reported by two systematic reviews, only 23% of the included studies used a separate validation 
cohort and only 25% of automated methods were used in daily clinical routine.29,38 Hence, 
knowledge about generalisability or prerequisites of AS models is limited, and information 
about the path toward actual implementation is strongly needed. The chapters in this thesis 
showed that high algorithm performance or successful validation does not guarantee wide-
spread implementation. The points raised below provide a summary of why AS has not been  
implemented on large scale in the Netherlands as of yet, and what hurdles there are to tackle. 

First, the automated selection of the population under surveillance, in other words the 
denominator, is difficult. The current inclusion rules for SSI surveillance are a challenge to 
automate: uniform selection of the denominator by all hospitals fails by differences in coding 
systems, or data needed for denominator selection is currently not recorded in structured 
format in EHRs (Chapter 8 & 9).39 For example, the inclusion rule ‘a primary surgery’ could 
not be fulfilled as automatically distinguishing primary surgeries from revision procedures 
was not possible with current procedure codes. If we consider changing inclusion rules, there 
is the risk of a break in trend line and incomparability because of unequal distributions of 
primary and revision surgeries between centres. A change in procedure coding systems is not 
desired and difficult to achieve. Also for the CRBSI surveillance, the total number of catheter 
days (the denominator) cannot be computed automatically as the removal date is often not 
registered systematically in the EHR systems (Chapter 4). Second, organisational aspects hinder 
implementation. Either because of a lack of support from local boards or governmental bodies, 
or because of limited knowledge in AS or implementation strategies (Chapter 7). Full feasibility 
or implementation studies are therefore strongly recommended. In addition, organisations need 
to invest IT capacity and ensure access to programming skills. Especially if implementation 
of complex models using both structured and unstructured data, which require high level 
programming and technologic support, is preferred (Chapter 10). Third, information about 
input source data and algorithm specifications in scientific papers is often not detailed enough 
or non-transparent, making it difficult for others who would like to validate, replicate and 
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implement this within their own institute. Therefore, in Chapter 7, a list of items to report in 
(scientific) publications of AS is provided. It would be helpful if an organisation such as the 
EQUATOR (Enhancing the QUAlity and Transparency Of health Research) Network, known 
from the STROBE, CONSORT and PRISMA guidelines, could provide a guideline for reporting 
on automated solutions in healthcare, including the items as suggested in Chapter 7. Fourth, 
meaningful comparison of surveillance results – either manually or automatically generated 
– requires risk-adjustment.40,41 Several models for risk-adjustment have been developed 
and refined last years, however, the search for a proper case-mix correction is still ongoing 
and debated.11,42-46 In case of AS, data required for risk-adjustment should be obtained in an 
automated way as well to maintain the benefit of workload reduction gained by AS. However, 
obtaining variables needed for case-mix automatically is not self-explanatory (Chapter 9). 
Last, in the Dutch setting, patients usually return to the same hospital in case of complications. 
Follow-up information of HAIs or algorithm data components are therefore available and 
accessible. HAI detection or wide-spread implementation of AS may be hampered in case 
follow-up visits and treatments are not in the same hospital. Moreover, in recent years, more and 
more centres differentiate into highly specialised care centres in one domain, such as oncology, 
cardiovascular diseases or pulmonology, delivering specialised complex care to patients from all 
over the country.47 The lower complexity care and rehabilitation for these patients is provided 
by local healthcare facilities nearby. This so-called ‘shared care’ will, most likely, increase in the 
future. Linking data and EHR systems across healthcare providers will overcome the problem 
of loss to follow-up, however is not applicable in most countries and complicated by strict data 
protection regulations (Chapter 7). Furthermore, in the context of benchmarking and quality 
improvement, these developments may hamper correct adjudication of the healthcare facility 
where a certain infection has been acquired. 

Workload reduction and standardisation are mostly brought forward as the advantages of AS. 
However, these concepts should be discussed and clarified in a broader context. The workload 
reduction is often expressed in outcomes such as the reduction in number of records to review 
manually or in time savings of ICPs.21,35 Automation yields considerable benefits in the data 
collection and manual case ascertainment by ICPs, however also requires time in terms 
of efforts for development, validation, implementation and maintenance of AS systems.26 
Therefore, workload reduction as an outcome of AS effectiveness may be misleading and 
may not be representative as time indicator for applying AS as a whole: the work will be 
(partly) shifted from ICPs to IT personnel and ICPs’ time savings are spend on validation 
and interpretation.37,48 Integrating systems, developing data warehouses and establishing 
an IT infrastructure takes approximately two years, as reported by Apte et al.49, Wisniewski 
et al.50, and in Chapter 7 of this thesis.27,37 However, once the infrastructure is established 
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and the algorithms implemented, the time investment will be largely reduced and limited 
to maintenance and validation only. Moreover, new algorithms to be implemented, or AS 
of other outcomes (e.g. complications) will benefit from the already existing infrastructure. 
Information about time needed for maintenance, running and adaptation of AS systems is 
unknown and not reported so far for any of the AS methods. Since setting up AS requires 
a significant time investment, it is valuable to also consider options to reduce the workload 
of the current traditional surveillance on the short term. In Chapter 6 we concluded that 
two out of three investigated variables appeared irrelevant to be collected for surveillance 
and not essential to report. As collecting information through manual surveillance is time-
consuming, the relevance in terms of data interpretation or risk-adjustment of each of the 
variables required for surveillance should be clear and regularly evaluated. 

Standardisation is considered the other main advantage of automation. Uniform methods, 
and standardised case definitions are needed for meaningful comparison of HAI rates (e.g. 
high accuracy and discriminative power), together with a proper case-mix correction.32,51 One 
may question the uniformity of AS methods if hospitals use different types of surveillance 
algorithms for the same HAI target, if hospitals slightly modify case definitions of the 
targeted HAIs for fully automation purposes, or when different input source data is used.52,53 
In the Netherlands, hospitals have different types of EHR systems applying different coding 
systems.52,54 The wide landscape of systems used in (Dutch) hospitals and the variety in 
documenting and structuring information in EHRs results in large variations of input source 
data for algorithms. We demonstrated that determining clear data specifications and thorough 
validation largely prevents variations in applying semi-automated surveillance. However, be 
aware that as long data input or algorithm types are not aligned between hospitals or countries, 
it is not guaranteed that algorithms will work for every institution, and that meaningful 
outcomes can be generated and compared. 

In this thesis we demonstrated automation benefits over traditional surveillance regarding 
ICP time, sensitivity and standardisation, however we also conclude that it will not take away 
current controversies and issues regarding differences in methods and data collection.9 

What is needed to scale-up? Considerations for future automated surveillance
From all studies published so far, we can conclude that the focus has been on algorithm 
development and accuracy to detect HAIs. Current efforts are directed towards implementation  
and use of algorithms with satisfying performance on large scale. To scale up, we need 
more knowledge in how to organise this, and what aspects deserve extra attention before 
implementation. We think that the following points – either for within-hospital surveillance 
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purpose or for benchmarking and public reporting – are desired to guide and ensure quality 
of large scale use of AS systems: 1) commitment and resources of all stakeholders involved; 2)  
guidance in how to organise AS regarding responsibilities and regulations on local and (inter)
national level; 3) AS system requirements; and 4) data standardisation and interoperability. 
Each of these points is explained in more detail below.

Commitment and resources
In Chapter 7 of this thesis determinants of successful implementation of AS systems were 
investigated. The support from hospital management, and commitment and involvement 
of healthcare workers were considered key for implementation. A study of Grota et al.36 
concluded that ‘in hospitals with strong leadership and engagement with patient safety, 
ICPs in general may feel more supported in implementing AS and overcoming barriers’. 
Involvement, support and commitment of all stakeholders – from legal specialists, data 
protection officers to hospital management – is paramount for successful implementation 
and use of AS.32 Additionally, also alignment and collaboration with parties outside the 
healthcare facility is important, for example with national medical specialty societies, e-health 
initiatives or relevant governmental bodies. AS is a continuous effort, as local IT systems, 
legislations, clinical practice, and organisation of care are continuously changing. Resources 
and (financial) commitment are therefore needed for the long term to guarantee quality and 
reliability of surveillance results.48 

Responsibilities, regulations, and organisation of automated surveillance 
AS systems can be organised and implemented within an individual healthcare facility, or in a 
network context. If a healthcare facility implements AS individually, it has full responsibility for 
methods, finance, performance and maintenance of the system and there is no coordinating party 
such as a network involved. The disadvantage of this individual approach is that algorithm types, 
surveillance populations, or case definitions for HAI targets may differ between centres, limiting 
comparability. Therefore, one may wonder whether HAI rates obtained by local, individual AS 
systems can be accepted as a quality metric or for benchmarking, and participation in a (inter)
national network will perhaps be rejected. In addition, this individual implementation approach 
will probably not lead to large scale implementation of the same AS system in other centres, 
knowledge building, or financial support from third parties. 

The recently established PRAISE network32 (Providing a Roadmap for Automated Infection 
Surveillance in Europe) aims to support the transition of AS from the research setting to 
large-scale implementation and has written a roadmap with comprehensive information how 
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to achieve this. In this roadmap, two organisational approaches are described in case AS will 
be implemented within a surveillance network of participating healthcare facilities: this can 
be either organised locally or centrally. In locally implemented surveillance, the healthcare 
facility collects the source data and applies the algorithm, utilising specifications and 
guidance from the coordinating centre. Subsequently, the surveillance results are shared with 
the central body or institute who coordinates the trend analyses, monitors the quality of the 
data and ensures periodic validations.32 Using this approach, hospitals can adapt algorithms 
to their local situation, as long as they meet the requirements and surveillance protocol. 
For centrally implemented AS, individual healthcare facilities send their source data to the 
coordinating centre or institute that applies the algorithms and reports back the results. For 
hospitals without sufficient resources or knowledge in AS this approach is more accessible, 
and funding may be easier arranged in a network context. 

For both organisational approaches, governance aspects such as legislation, responsibilities 
of stakeholders, and alignment with local and (inter)national regulatory policies should be 
agreed upon and documented. For centrally implemented AS it will be more complex to set up 
an organisational structure and to obtain consensus on the methods and surveillance protocol 
given the many partners and institutions involved. In addition, a technological solution such 
as AS brings concerns about data security, proper handling, sharing, and privacy, and the 
laws on data regulation and protection should be adopted in the implementation strategy.55 
Transparency and clarity in tasks, responsibilities, organisational structure, governance and 
activities in implementing and running AS systems is needed to enhance and set up large 
scale implementation.55 

Requirements for automated surveillance systems 
Apart from the organisational and governance aspects as described above, guidance in system 
requirements is a particular point of attention to prevent meaningless data that cannot be 
compared between healthcare facilities. A broad variety of surveillance algorithms and 
methods have been developed and there is large heterogeneity in the degree of automation of 
the surveillance process (semi- versus fully AS) and in algorithm types (classification models, 
machine learning, or simple rule-based models mimicking the case definition). For individual, 
within-hospital surveillance this may not be a problem, but in case of a network context and 
benchmarking, there is a need for an AS protocol with clear guidelines and requirements for 
AS systems to comply with. In both approaches, locally or centrally implemented AS, the 
coordinating centre or institute is most likely to be responsible for the AS design, protocol, 
and coordination.32 This ensures quality, validity and comparability of outcomes generated by 
AS, and separates the wheat from the chaff. Examples are requirements for the algorithm (the 
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performance such as sensitivity, case definitions, reference standard and requirements for data 
validation and algorithm validation), or requirements for the system itself, such as technical- 
and end-user requirements. An example of a technical requirement is that the system should 
be able to select the surveillance population (the denominator) in an automated way. The 
flexibility to add or remove records by hand is an example of end-user requirements.

Data standardisation and interoperability
Numerous studies investigated which data sources are most accurate to use in AS 
algorithms.29,56-60 Administrative data are easy to collect and therefore widely used, however 
several studies confirmed their limited quality and validity.56-58 Clinical routine care data, 
such as diagnostic testing results, narrative clinical notes, or medico-administrative data 
on treatments and interventions, are increasingly used for algorithm development, as they 
provide valuable information necessary to detect HAIs. These data reside in different (sub)
systems of a hospitals’ IT infrastructure and are often linked together and stored within a 
clinical data warehouse. The added value of unstructured clinical notes has not yet been 
firmly established.61,62 In Chapter 10 we concluded that the added value of clinical notes to the 
semi-automated classification algorithm was limited. Given the complexity of such systems, 
the resource-intensive nature of developing algorithms using natural language processing, 
and the dependence on reporting habits of clinicians, large-scale implementation of this 
algorithm seems unlikely. However, the use of clinical notes in AS needs more study, as its 
utility for both semi- and fully AS is to date still inconclusive.

No studies systematically investigated to what extent data sources needed for automated 
denominator selection, algorithm application, or case-mix correction are actually available, 
or available in the same format in healthcare facilities in the same region, nation or even 
internationally. Large scale implementation starts with standardised data that is uniform and 
available in hospitals. In addition, AS systems requiring a minimum data set are most likely 
to succeed.32  

As described earlier, the lack of standardisation of input source data between healthcare 
facilities impedes uniform AS implementation, especially when aiming for fully automated 
surveillance.37,52,63,64 Each healthcare facility documents information in its own coding language 
and its own IT (sub)system. For within hospital surveillance this will not be a problem – except 
for difficulties in linking and aligning data between subsystems – but for sharing (source) data 
with others, comparability and benchmarking it is. A uniform coding standard will lead to 
increased standardisation and more easier data exchange. Thereby, universal scripts or solutions 
may be possible, and standardisation creates opportunities for surveillance of other endpoints 
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(e.g. complications), near real-time surveillance, outbreak surveillance or prediction. Also 
from a broader healthcare perspective than surveillance only, there is an increasing demand 
for standardisation to facilitate information exchange between healthcare providers within 
the healthcare supply chain and to decrease the burden of registration. Several local, regional 
and (inter)national initiatives are undertaken to increase standardisation and data exchange in 
healthcare, each focusing on a different perspective and goal. For example, Santeon, a Dutch 
network of seven teaching hospitals realised the Health Intelligence Platform Santeon to quickly 
exchange and compare data65; the ‘Samenwerkende Algemene Ziekenhuizen’ (SAZ), a network 
of 28 general hospitals started a collaborative centre of expertise in algorithms and artificial 
intelligence (AI)66; the Dutch non-profit foundation Health-RI tries to build an integrated 
health data research infrastructure67; Nictiz is an independent competence centre for electronic 
information exchange in healthcare that develops, provides and manages standards that can 
be implemented in the healthcare supply chain68; and the European eHealth interoperability 
roadmap published by the European Committee provides what input and governance processes 
are needed for decision making in support of eHealth.69 Also during the COVID-19 pandemic, 
new attention has emerged to the utility of using and exchanging EHR data rapidly for infection 
prevention purposes, and the pandemic triggered new collaborative informatics infrastructures.70 

Ideally, information is documented according to a uniform standard at the earliest point of data 
creation.54 In most healthcare facilities, this means that information is registered according 
to a uniform standard in the EHR directly. However, EHR systems have many functionalities 
(e.g. order and result management, administrative processes, invoicing and internal 
logistics). With redesigning EHR systems, the vision and functions of such systems should 
be reconsidered. Alternatively, instead of demanding EHR systems to document information 
according to a standard, each healthcare facility can also link the uniform standard afterwards 
to their own source data structure. Some initiatives for a dictionary with structured terms 
for data exchange are already there, such as SNOMED CT or LOINC, which are suitable 
for automation processes.54,71 However, mapping source data to standardised concepts will 
costs time, is error prone, and should be repeated for each new application or target.54 Apart 
from standardisation of source data or standardisation in delivery output, another option, 
and perhaps the easiest, is to translate algorithm specifications and data requirements to own 
source data. Although this option is least standardised because differences in input source 
data remain, this is perhaps the fastest and most cost-effective approach.

There are also drawbacks of using a highly standardised IT approach. It is hard to create 
a standard that everyone approves, and there is often no room for exceptions or unique 
circumstances. Thereby, one party should be responsible for maintaining and updating the 
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standards and should provide guidance and support in implementation in hospitals’ IT 
systems. Moreover, the use of a uniform standard requires decision-making and consensus on 
different levels than the standard itself, such as which standard(s) to use, how to use it, where 
in the care supply chain it is required, and responsibilities and implementation for actual 
use. All relevant stakeholders are needed to shape such a change, thereby taking into account 
legislation and political strategies. To ensure that healthcare facilities definitely switch to an 
(internationally) accepted standard, mandatory rules and systematic funding by political 
legislators will speed up the development and implementation of a standardised digital health 
IT structure.54 This also prevents fragmented initiatives and prevents the development and 
interchangeable use of multiple standards at the same time.

CONCLUDING REMARKS
Semi-automated classification models with rule-based components are applicable and 
effective in Dutch and European hospitals. The ability to adapt an algorithm to local clinical 
practice is essential for successful algorithm performance. Automated surveillance should not 
be evaluated in terms of workload reduction or sensitivity and specificity only, but also on the 
feasibility and potential for actual use. The whole process – from denominator selection to 
interpretation of surveillance results – should be taken into account. 

The healthcare landscape changes continuously. Treatments, pathogens, resistance patterns, 
diseases, or patients, but also organisation of delivery of care, legislations, technologic support 
and IT systems will change all the time. Ongoing maintenance, validation and updates in AS 
will always remain a continuing process. Although automation has benefits over the traditional 
surveillance, it will not take away current controversies and issues regarding differences in 
methods and data collection. There is a need for guidance and collaboration in how to organise 
and use AS on large scale to retain quality of surveillance data and surveillance networks. 
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NEDERLANDSE SAMENVATTING
Zorggerelateerde infecties, kortweg zorginfecties genoemd, zijn infecties die ontstaan tijdens 
een opname of medische behandeling in een zorginstelling. Zorginfecties leiden tot extra 
opnameduur, ziektelast en kosten. Elke dag hebben in Europa 3,5% – 10,5% van de patiënten 
in een zorginstelling een zorginfectie. Dit resulteert in ongeveer vier miljoen patiënten met 
een zorginfectie en 37.000 sterfgevallen per jaar. Surveillance (een doorlopende, systematische 
verzameling, analyse, en interpretatie van data) speelt een belangrijke rol bij de preventie en 
bestrijding van zorginfecties. In de meeste ziekenhuizen wordt de surveillance handmatig 
uitgevoerd: een deskundige infectiepreventie (DI) bekijkt handmatig elk patiëntendossier om 
te beoordelen of de patiënt voldoet aan de infectiedefinitie. Dit wordt uitgevoerd volgens een 
nationaal surveillanceprotocol met vooraf vastgestelde inclusie-eisen en infectiedefinities. 
Hoewel deze traditionele manier van surveillance wordt gezien als de referentiestandaard, 
wordt het uitvoeren van de surveillance ervaren als arbeidsintensief, zijn de definities 
subjectief te interpreteren, en is er bewijs voor matige betrouwbaarheid en overeenstemming 
tussen verschillende beoordelaars. Automatisering wordt gezien als een mogelijke oplossing 
voor deze nadelen, aangezien bij een geautomatiseerde surveillance een algoritme het 
selectie- en beoordelingsproces standaardiseert en zo de variabiliteit en subjectiviteit doet 
verminderen. Daarnaast hoeft de DI minder tijd te besteden aan het handmatig beoordelen van 
patiëntendossiers omdat het surveillance algoritme bepaalt welke patiënten een zorginfectie 
hebben (in het geval van volledig geautomatiseerde surveillance) of het algoritme een selectie 
maakt van patiënten met een hoge kans een zorginfectie te hebben ontwikkeld (in het geval 
van semi-geautomatiseerde surveillance). In dit laatste geval hoeven alleen nog de patiënten 
met een hoge kans handmatig door de DI te worden beoordeeld. 

De studies in dit proefschrift evalueren de huidige traditionele surveillancemethoden en 
onderzoeken de haalbaarheid en toepasbaarheid van (semi-)geautomatiseerde surveillance 
in verschillende ziekenhuizen. 

Deel I: Praktijkvoorbeelden van het gebruik van surveillancegegevens 
Het eerste deel van dit proefschrift beschrijft twee praktijkvoorbeelden waarin 
surveillancedata van zorginfecties worden gebruikt. Hoofdstuk 2 laat zien dat het gebruik 
van externe ventriculaire drains (EVD’s) met een antibioticacoating geen beschermend effect 
heeft op ventriculostomie-gerelateerde infecties bij neurochirurgische patiënten vergeleken 
met reguliere EVD’s. Hoofdstuk 3 geeft een overzicht van trends in zorginfecties tijdens 
de COVID-19-pandemie in vergelijking met pre-pandemische gegevens. De incidentie van 
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lijnsepsis, beademing-gerelateerde pneumonieën, en infecties aan het gastro-intestinale 
stelsel en centrale zenuwstelsel was toegenomen tijdens het eerste jaar van de pandemie. In 
zowel intensive-care (IC-) patiënten met COVID-19 als zonder COVID-19 was een toename 
in de lijnsepsisincidentie ten opzichte van pre-pandemische gegevens. Mogelijke oorzaken 
van deze toename in zorginfecties zijn een veranderd infectiepreventiebeleid, andere 
patiëntenpopulatie, de hoge werkdruk, of de inzet van minder ervaren personeel. Wat de 
daadwerkelijke factoren zijn die deze toename hebben veroorzaakt moet verder onderzocht 
worden.  

Deel II: Evaluatie van huidige surveillance activiteiten
In Hoofdstuk 4 wordt de huidige surveillance van lijnsepsis geëvalueerd. Met behulp 
van focusgroepdiscussies en interviews zijn ervaringen en suggesties voor verbeteringen 
onderzocht. Het nut van de surveillance werd betwijfeld gezien de tijd die men erin steekt 
terwijl de lijnsepsisincidentie laag is. Daarnaast wordt de uitvoering bemoeilijkt door 
automatiseringsproblemen en gebrek aan ondersteuning hierin. Ook gaf men aan dat  
betrokkenheid en leiderschap wordt gemist in de uitvoering van de surveillance en dat de 
definities om een lijnsepsis te kunnen scoren niet altijd toepasbaar zijn op alle patiënten. 
Suggesties voor verbeteringen waren onder andere het versimpelen van inclusiecriteria en 
infectiedefinities, het langer opvolgen van de patiënten met katheters (ook in de thuiszorg), 
het aanpassen van de definities voor specifieke patiëntengroepen, en meer gebruik te maken 
van automatisering. 

Waar in hoofdstuk 4 de focus lag op de uitvoering, is in Hoofdstuk 5 de betrouwbaarheid 
van de surveillancemethode onderzocht. In deze prospectieve cohortstudie studie voerden 
zeven Nederlandse ziekenhuizen surveillance uit van postoperatieve wondinfecties (POWI) 
bij patiënten die een colorectale resectie hebben ondergaan. Voorafgaand aan de uitvoering 
volgden alle veertien DI’s een training om het toepassen van het protocol en de definities te 
oefenen, en om overeenstemming in niveau en uitvoering te bereiken. Tijdens de uitvoering 
van de surveillance werden verschillende metingen gedaan waarbij DI’s individueel casuïstiek 
beoordeelden en hierop de infectiedefinitie toepasten: dit waren zowel casussen uit het 
eigen ziekenhuis als vooraf opgezette casuïstiek. Deze beoordelingen werden met elkaar 
vergeleken. Het bleek dat DI’s consistent waren in het toepassen van de infectiedefinitie (hoge 
betrouwbaarheid), maar niet altijd de juiste beoordeling gaven (lage validiteit). Hieruit werd 
geconcludeerd dat de POWI-cijfers reproduceerbaar zijn en dus geschikt voor het volgen van 
trends binnen het eigen ziekenhuis, maar niet altijd correct en daarom minder geschikt voor 
een betrouwbare vergelijking tussen de verschillende ziekenhuizen.
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Omdat het opzetten, valideren, en implementeren van geautomatiseerde surveillance tijd 
kost, is het waardevol om op de korte termijn al aanpassingen te doen om de werklast van 
traditionele surveillance te verminderen. In Hoofdstuk 6 is onderzocht of drie variabelen het 
risico op het ontwikkelen van een POWI vergroten, en dus essentieel zijn om te verzamelen 
voor surveillancedoeleinden. Deze variabelen betreffen een operatie voorafgaand aan de 
ingreep die wordt gesurveilleerd, een vervolgoperatie tijdens de follow-up periode, of een 
tweede ingreep tijdens dezelfde operatiesessie als de ingreep die wordt gesurveilleerd. Uit 
analyse van 115.943 operaties uitgevoerd tussen 2012 – 2015 door 85 ziekenhuizen bleek enkel 
een vervolgoperatie het risico op het ontwikkelen van een POWI te verhogen. De overige 
twee variabelen hoeven dus niet meer verzameld en gerapporteerd te worden. Aangezien deze 
informatie vaak handmatig opgezocht moet worden levert dit tijdswinst op. 

Deel III: Op weg naar (semi-)geautomatiseerde surveillance van zorginfecties
In het laatste gedeelte van dit proefschrift is onderzocht of semi-automatische surveillance 
haalbaar en toepasbaar is binnen (Nederlandse) ziekenhuizen, en welke factoren implementatie 
bevorderen of belemmeren. In Hoofdstuk 7 is met behulp van een online vragenlijst 
de huidige stand van geautomatiseerde surveillance in Europa onderzocht. Negentien 
respondenten uit elf verschillende Europese landen vulden de vragenlijst in. Twaalf (63%) 
respondenten rapporteerden een geautomatiseerd surveillancesysteem in gebruik te hebben: 
vier een volledig geautomatiseerd systeem en zeven een semi-geautomatiseerd systeem. 
Voor één respondent was het type systeem onbekend. Classificatiemodellen waren het meest 
gebruikte type algoritme (n = 8), gevolgd door ‘machine learning’ en regressiemodellen 
(elk n = 1). Twee respondenten konden geen details geven over het type algoritme. Naast 
het gebruik van verschillende algoritmen is er ook grote variabiliteit in brondata en in type 
zorginfecties die worden gesurveilleerd. Implementatie wordt bevorderd door steun en 
betrokkenheid van zorgprofessionals en directies, en door een goede samenwerking met de 
informatie technologie (IT) afdeling. De beschikbaarheid van een data warehouse werd ook 
genoemd als bevorderend voor implementatie. Factoren die implementatie bemoeilijken zijn 
de wetgeving rondom beveiliging en bescherming van (persoons-)gegevens en het opzetten 
en onderhouden van geavanceerde IT-infrastructuren.

Hoofdstuk 8 beschrijft de validatie van een semi-automatisch surveillancemodel om 
patiënten met een hoge kans op een diepe POWI na implantatie van een primaire totale heup- 
of knieprothese te detecteren. Naast de validatie van het algoritme werd ook onderzocht of 
de surveillancepopulatie op automatische wijze geselecteerd kon worden. Het algoritme werd 
toegepast op 9.554 ingrepen uitgevoerd tussen 2012 – 2018 in vier Nederlandse ziekenhuizen, 
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en algoritme-resultaten werden vergeleken met handmatige surveillance. Alle gevallen van 
diepe POWI werden door het model geïdentificeerd, met een positief voorspellende waarde 
tussen de 55.8% – 72.2%. Er werden tevens vijf extra diepe POWI gevonden die bij de 
handmatige surveillance waren gemist. De surveillancepopulatie kon echter niet automatisch 
worden geselecteerd: 0.8% – 22.2% van de ingrepen bleek een revisie te betreffen in plaats van 
een primaire heup- of knieprothese.

In Hoofdstuk 9 worden twee verschillende surveillancemodellen gevalideerd, een 
classificatiemodel en een regressiemodel, die colorectale chirurgische patiënten detecteren 
met een hoge kans op een diepe POWI. Daarnaast wordt beschreven of en hoe ziekenhuizen 
de surveillancepopulatie automatisch kunnen selecteren, en of ze in staat zijn om casemix 
variabelen te extraheren uit hun ziekenhuisinformatiesysteem. Het kunnen verzamelen 
en extraheren van deze gegevens is een voorwaarde voor succesvolle implementatie van 
semi-automatische surveillance. Beide surveillancemodellen identificeerden alle diepe 
POWI’s, maar het classificatiealgoritme moest worden aangepast omdat bleek dat twee van 
de vier ziekenhuizen niet structureel een microbiologische kweek afnemen bij patiënten 
met verdenking op een diepe POWI. Net als in hoofdstuk 8 bleek ook bij colorectale 
chirurgie de exacte surveillancepopulatie niet automatisch te selecteren en waren niet alle 
variabelen benodigd voor casemixcorrectie op automatische wijze beschikbaar. Omdat 
het classificatiemodel makkelijker aan te passen is aan klinische praktijkvariatie en 
minder ingewikkelde datamanagementtechnieken vereist is dit model meer geschikt voor 
grootschalige implementatie vergeleken met het regressiemodel. 

In klinische aantekeningen (ongestructureerde data) staat vaak waardevolle (klinische) 
informatie die gebruikt wordt door DI’s om een POWI te kunnen scoren. Het originele 
classificatiemodel zoals beschreven in Hoofdstuk 9 gebruikt enkel gegevens die zijn vastgelegd 
in gestructureerde velden, maar dit geeft relatief veel vals-positieve resultaten. De hypothese 
was dat het gebruik van klinische aantekeningen de selectie hoog-risico patiënten kan 
verfijnen en zo meer werklastreductie kan opleveren. In Hoofdstuk 10 worden met behulp 
van ‘natural language processing’ de klinische aantekeningen geanalyseerd en als algoritme-
element toegevoegd aan het originele classificatiemodel. Dit resulteerde in 3.7% minder vals-
positieve resultaten, maar er miste daardoor één diepe POWI. Aangezien het opnemen van 
ongestructureerde data in algoritmes complex en arbeidsintensief is hebben we geconcludeerd 
dat het voor deze toepassing niet opweegt tegen het geringe voordeel dat het oplevert. 
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CONCLUSIE
In Hoofdstuk 11 worden de resultaten van de studies uit dit proefschrift samengevat en 
in context geplaatst. De studies uit dit proefschrift ondersteunen het standpunt dat semi-
geautomatiseerde classificatiemodellen toepasbaar en effectief zijn voor de surveillance van 
zorginfecties in Nederlandse en Europese ziekenhuizen. De mogelijkheid om een   algoritme 
aan te passen aan de lokale klinische praktijk is essentieel voor succesvolle algoritmeprestaties. 
Geautomatiseerde surveillance moet niet alleen worden beoordeeld op vermindering van de 
werklast of sensitiviteit en specificiteit, maar ook op de haalbaarheid en het potentieel voor 
daadwerkelijk gebruik en implementatie. Het hele surveillanceproces – van automatische 
patiëntenselectie tot interpretatie van surveillanceresultaten – moet daarbij worden 
meegenomen. 

Het zorglandschap verandert continu. Behandelingen, ziekteverwekkers, resistentie, ziekten of 
patiënten, maar ook de organisatie van zorgverlening, wetgeving, technologische ondersteuning 
en IT-systemen zullen voortdurend veranderen. Doorlopend onderhoud, validatie en updates 
in geautomatiseerde surveillance zullen altijd nodig zijn en een continu proces blijven. Hoewel 
automatisering voordelen heeft ten opzichte van traditionele surveillance, neemt het de 
huidige controverses en problemen rondom verschillen in methoden (verschillende soorten 
algoritmen of infectiedefinities) en gegevensverzameling (verschillen in brondata) niet weg. 
Er is daarom behoefte aan sturing en samenwerking om geautomatiseerde surveillance op 
grote schaal te gebruiken, om de kwaliteit van surveillancegegevens te garanderen.
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DANKWOORD
Ik was in mijn element: het was een feestje! Natuurlijk heeft elk PhD-traject zijn pieken en 
dalen, maar over het algemeen heb ik vooral genoten. Ik ben dan ook gezegend met een 
ijzersterk promotieteam en vele enthousiaste collega’s om mij heen die dit werk en boekje 
mede mogelijk maakten. Ik mag nu eindelijk een hoofdstuk schrijven dat niet formeel, bondig 
en objectief hoeft te worden geformuleerd (én ik hoef me niet te houden aan een maximum 
aantal woorden), dus houd je vast! 

Beste promotor, beste Marc. Ik wilde promoveren, en ik wilde bij jóu promoveren. Ietwat 
zenuwachtig ben ik dit bij je op kantoor komen vertellen en gelukkig is het gelukt een traject 
samen te stellen en mogelijk te maken. Ik heb bewondering voor je kennis en leiderschap, 
hoe je iedereen kansen biedt en gunt, en altijd het geduld hebt om dingen uit te leggen. Je liet 
me altijd mijn gang gaan en gaf ruimte, maar tegelijkertijd was je op de hoogte en bereikbaar 
voor een beslissing, voor hulp, of om mee te denken. Hartelijk dank voor je nuchtere kijk op 
zaken, humor en adviezen. 

Beste Maaike, onze overleggen waren inhoudelijk diepgaand, effectief, snel, als een soort 
pingpongbal die alle kanten op werd geslagen. Ik moest, vooral aan het begin van dit 
traject, soms echt even bijkomen na een overleg om alle gespreksstof te verwerken. Je 
verantwoordelijkheidsgevoel, netwerk, kennis en kunde zijn de drijfveer achter dit proefschrift. 
Dank voor jouw altijd snelle feedback, back-up, support, en dat jij mijn co-promotor wilde zijn.  

Sabine, ik heb bewondering voor je nimmer-aflatende enthousiasme en enorm positieve 
instelling, wat erg aanstekelijk werkt overigens! Onze overleggen begon je altijd met ‘Kan ik 
iets voor je doen?’ en ik denk dat deze quote heel mooi illustreert hoe je altijd voor mij klaar 
staat. Onze gesprekken gingen vaak over andere dingen dan werk en in sommige opzichten 
lijken we erg op elkaar (vooral onze bloedfanatieke inzet bij spelletjes!). Ik heb daardoor erg 
veel van je kunnen leren, ook op persoonlijk vlak, waarvoor ik jou, als co-promotor, graag 
voor wil bedanken.  

Beste Stephanie, ik leerde je kennen als postdoc bij het UMCU, en gelukkig bleef je mijn 
collega toen je vervolgens bij het RIVM ging werken! Ik bewonder de rust en kalmte die je 
altijd uitstraalt. Jouw kennis, betrokkenheid, en interesse, ook in mij als persoon, was groot 
en ik wil je hiervoor hartelijk bedanken. Ik wil graag ook de andere leden van het PREZIES 
team bedanken, Anja, Kati, Naomi, Nynke, Tjallie, Titia, en oud-PREZIES’ers (Anouk, 
Emma, Jan, Mayke, Wilma) voor de fijne samenwerking. Titia, dank voor je engelengeduld 
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en je altijd vriendelijk antwoord op alle honderdduizend vragen van mij over definities, 
protocollen en regels. Je bent een wandelende encyclopedie en een ontzettend fijn mens om 
mee samen te werken! Tjallie, hartelijk dank voor je hulp en inzet bij RED LINE, COLON2 en 
PREZIES&CO. Fijn je altijd te hebben mogen bestoken met mijn vragen. 

Dear Pontus, Suzanne, Rebecka and Aron, thank you for the nice collaboration regarding 
the COLON3-project. It is so nice to work towards the same goal to establish automated 
surveillance systems. Jag uppskattade Stockholm och tiden jag fick spendera på ert sjukhus. 
Tack för att jag fick komma till er!

Geachte leden van de beoordelingscommissie, prof. dr. O.L. Cremer, prof. dr. M.C.J.M. 
Sturkenboom, prof. dr. J.H.H.M. van de Wijgert, prof. dr. S.E. Geerlings en prof. dr. J.T. 
van Dissel, dank dat u de tijd heeft genomen om mijn proefschrift te beoordelen.

Beste collega’s van het regionaal Zorgnetwerk Antibiotica Resistentie Utrecht: Gert Jan, 
Heine, Marjolein, ik ben zeer blij met de financiering en ondersteuning vanuit het netwerk 
om deze prachtige studies te hebben kunnen uitvoeren!

Aan deze projecten hebben ontzettend veel ziekenhuizen meegewerkt en deelgenomen. 
Zonder hen was het niet gelukt, en waren we niet achter de pro’s en con’s van automatisering 
gekomen: dankjulliewel! Ik wil in het bijzonder de collega’s van het Haaglanden Medisch 
Centrum bedanken:  David, Désirée, Fabio en Wilma. Jullie hebben zo ongeveer aan de helft 
van de hoofdstukken uit dit boekje bijgedragen wat ik enorm bijzonder vind en waar ik jullie 
ontzettend dankbaar voor ben!

Mijn paranimfen, Annabel en Axel, hartelijk dank dat jullie deze rol hebben aangenomen. 
Annabel, ik heb genoten van onze corona-wandelingetjes, drankjes, en chill-momentjes. 
Je bent zo’n oprecht, lief, en attent persoon, een collega waar iedereen jaloers op mag zijn! 
Axel, jij was de eerste die ik op de afdeling medische microbiologie (MMB) leerde kennen 
toen ik dwalend door de gangen zwierf op zoek naar het juiste kamernummer. Je hebt me 
ontzettend geholpen, en mede dankzij jou voelde ik mij – als niet werkzaam op het lab –  ook 
een volwaardige MMB’er. Ik ben heel blij dat je jouw stek in Zwitserland even wil verlaten om 
naast mijn zijde te staan als paranimf!

Daarnaast heel véél dank aan andere collega’s van het RIVM en UMCU. Lieve (oud)-RIVM’ers 
en collega’s van de derde verdieping in Bilthoven (oftewel de ‘macumba’s’): Bernice, Daphne, 
Irene, Iris, Joram, Loes, Maarten, Maartje, Marit, Pim, Tom en Petra. Dank voor alle leuke 
praatjes, borrels en uitjes. Lieve Daphne, vers van de uni leerden wij elkaar als groentjes 
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kennen bij onze eerste baan op het RIVM: jij als PhD’er, ik als junior. Wat hebben we een 
lol gehad op ons kantoor, gereisd, geborreld en geroddeld. Ik startte later mijn PhD, en heb 
dus een goed voorbeeld gehad van hoe het moest! Bedankt voor je vertrouwen, interesse, 
eerlijkheid en de leuke tijd samen.

Ook dank aan alle collega’s van het UMCU medische microbiologie. Als enige EPI-OIO kwam 
ik op een afdeling met meer laboratoriumruimte dan bureau-werkplekken. Dankzij jullie is 
mijn (moleculaire) kennis over membranen, cellijnen, en bacteriën ook enigszins opgekrikt. 
Alhoewel het voor de meesten totaal onduidelijk was wat ik nu de hele dag aan het doen was, 
betrokken jullie me altijd bij alle koffie’s, uitjes en bezigheden. Ik heb goede herinneringen 
aan alle borrels en ICEA activiteiten!

Alle collega’s van de eXtreme-Early-Wednesday-Morning-Meetings (XEWMM) die elke 
woensdag weer vroeg uit de veren moesten wil ik bedanken voor het meedenken met logistieke 
en epidemiologische vraagstukken, en de gezelligheid tijdens borrels en uitjes. Extra dank aan 
Ilse, Marieke en Patricia: wat leuk dat ik kon bijspringen bij de Coronathuis-studie in de piek 
van een pandemie. Het ging gesmeerd en ik heb de samenwerking als erg prettig ervaren.

Beste afdeling UMCU Infectiepreventie, in het bijzonder Annet, Herman, Hetty, Ilanit,  Lia, 
Manon en Margreta, dank voor jullie hulp bij de dataverzameling en het meedenken in de 
uitvoering van de registratie. Suzan, jij bent de onmisbare schakel die mij vervolgens aan de 
juiste data kon helpen in de krochten van de wereld achter het ziekenhuisinformatiesysteem. 
Dankjewel! 

Wat had ik moeten doen zonder de ondersteuning van de secretaresses binnen het UMCU 
en het RIVM: Jolanda, Nora, Ilse en Saskia wat ben ik jullie dankbaar voor alle hulp bij het 
boeken van reizen, het verwerken van facturen en onderzoekscontracten, en het beantwoorden 
van praktische vragen. 

Naast mensen op de werkvloer, hebben ook ontzettend veel vrienden en familie mij de 
afgelopen vier jaar aangemoedigd. Lieve Anemoon, jij kent me zo door en door en voelt 
altijd aan wat mijn stemming of situatie is. Op elk moment sta je klaar met een goed advies of 
bedenken we weer iets waar we jaren later nog steeds met plezier op terug kunnen kijken (weet 
je nog die keer dat ik jouw haar knalroze had geverfd? Of dat ik tijdens onze vakantie het hele 
zwembad heb vermaakt met mijn gekluns om op een grote opblaas-tompouce te klimmen die 
ik van jou had gekregen en er telkens vanaf viel?). Samen met Dieuwertje, Kitty, en Minke, 
aka de ‘Spice Girls’, waren onze jaarlijkse uitjes, borrelavonden, etentjes en activiteiten een 
fijne onderbreking van werk. We hebben avonden na avonden tranen met tuiten gelachen en 
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de meest rare quizzen gespeeld. Vijf totaal verschillende karakters, interesses en gedachten 
maar wat zijn we een prachtige match van verschillende spices! Dankjulliewel! Om lekker bij 
te kletsen met een bakkie thee belde ik jou, lieve Lisette. Onze vriendschap staat als een huis 
en het is ontzettend fijn altijd alles tegen elkaar kunnen zeggen. Dankjewel voor je luisterende 
oor en interesse! Lieve vrienden, Annabel, Femke, Geeske, Loes, Mike, ook jullie wil ik graag 
bedanken voor mooie momenten die een fijne afleiding waren van werk!

Lieve Aris, Freek, Hannah, Jolanda, Lia en Ton. Wat een geluk heb ik met zo’n schoonfamilie! 
Bedankt voor de interesse en betrokkenheid in mijn werk en de altijd bemoedigende woorden. 

Lieve Oma Vonk, ik vind het echt fantastisch dat jij op 88-jarige leeftijd met veel interesse de 
samenvatting van dit boekje leest en dan ook nog eens kritische vragen weet te stellen. Ik vind 
het heerlijk om samen te rommelen en te keuvelen en ik kom graag nog heel veel jaren bij je 
over de vloer. 

Thuis aan de keukentafel in Culemborg voeren we de beste discussies. Lieve Margot, Bas, 
Fabian, Aimée en Moïse: bedankt dat jullie vol interesse mijn verhalen aan hoorden en altijd 
klaar staan voor een mening, advies of goed gesprek. Dankzij jullie verbleef ik niet in mijn 
bubbel of (medische) tunnelvisie: de combinatie psychologie, filosofie, politiek, onderwijs, 
sport en epidemiologie zorgden voor goede discussies vanuit verschillende invalshoeken!

Papa en mama, wat fijn dat jullie mij altijd vrij lieten in (studie)keuzes en interesses. Jullie 
zijn een vangnet waar ik onvoorwaardelijk altijd bij mag aankloppen, dankjewel! Papa, je 
doorzettingsvermogen, moed, het nimmer klagen en altijd positieve instelling vind ik 
bewonderingswaardig. Als ik ook maar de helft daarvan van je heb overgenomen dan mag 
ik mijzelf al gelukkig prijzen. Mama, je grote organisatietalent om de zaken goed op orde te 
hebben zijn dingen die ik van jou heb geleerd en erg goed van pas kwamen bij het coördineren 
van studies. Daarnaast blijf ik mij verbazen hoe je toch van iedereen precies bijhoudt wat er 
speelt en draait: je bent zorgzaam, betrokken, en staat altijd voor anderen klaar! 

Tot slot, mijn laatste en zeker grootste dank gaat uit naar mijn grote liefde, Thomas. Je ‘er-
kan-maar-1-ding-echt-prioriteit-zijn’ hebben mijn to-do-lijstjes vaak overzichtelijker en 
efficiënter gemaakt, en mijn gemoedsrust weer teruggebracht. Jij maakt me relaxed, jij maakt 
me blij, je maakt me gelukkig. Elke dag weer. Ik heb zin in alles wat er nog komen gaat, als jij 
er maar bij bent!
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(PS: dit boekje is geschreven zonder ook maar één druppel koffie. Daarentegen zijn er wel 
aardig wat bitterballen en broodjes kroket doorheen gegaan om successen te vieren en verdriet 
weg te eten. Uiteraard met een flinke toevoeging van mayonaise. Gelukkig zijn er veel collega’s 
die deze strategie met mij mee deden of deelden, heel erg bedankt daarvoor!) 
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