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Chapter 1

Missing data is one of the most universal dilemmas in research using clinical healthcare data

Abroken scale or an older patient’s refusal to have a lab-value measured or answer any clinical
questions (e.g., about income or weight) can already have tremendous impact on the ease and
validity of any research making use of these healthcare data. As a result, Rubin, who initiated the
inception of classical missing data theory, and many others studied and published thoroughly

about the proper handling of missing data

Historically, methods for handling missing data either (i) delete cases (e.g., patients) or columns
(i.e., variables) with missing data, often referred to as complete-case analysis (CCA), (i) include
a missing indicator (i.e., a dummy variable denoting whether the variable is missing or not) in
the prediction model or (3) estimate a plausible substitution value (i.e., imputation) for each
missing predictorvalue “ . Under most circumstances, It is recommended to generate multiple

imputations for valid statistical inference

A field which makes use of these clinical healthcare data and is well-known for its clashes with
missing data is prediction research. Missing data frequently frustrates the development and
validation of clinical - diagnostic and prognostic - prediction models . Briefly, clinical
prediction models combine patient and disease characteristics to estimate an individual’s
absolute risk of a pre-specified outcome (e.g., heart disease) with a fixed time window

Examples of these predictions models can be found in the field of cardiovascular disease; models
such as the Framingham heart score (FHS) and HEART-SCORE are widely applied in medical
practice ***. When developing or validating a risk prediction model, existing epidemiological
reporting guidelines, congruent with the increasing amount of supportive literature, usually also

recommend the use of multiple imputation

When a prediction model is applied in daily practice to an individual, however, multiple imputation
is mostly infeasible due to its computational time and required access to raw patient data. Hence,
the actual, real-time, use of a risk prediction model, even when properly developed and validated,
is limited in daily medical practice as risk prediction models usually have no direct, built-in
problem-solving ability in case a predictor value of the individual is missing **. This is evident
in the fields where prediction models are already being applied, such as in the cardiovascular
domain, and studies have shown that the adoption of risk prediction models is severely hampered
by missing predictor values . This real-time aspect is unique to the application of risk
prediction models in daily medical practice and seems to be underexposed in the literature,
as evident by the variety of available solutions to deal with missing data when developing or

validating a prediction model and the very limited guidance on dealing with missing data when



General Introduction

applying them . Clearly, simply ignoring the predictor from the prediction model which data

is not observed is not a logical solution.

Lately, prediction research in medicine considers machine learning (ML) based risk prediction
more often . These ML-based methods allow for more flexibility, handle multi-dimensional
complex data, and may circumvent the necessity for substituting missing values completely

. By changing their risk estimation to account for missing predictor values, these ML-based
approaches do not require the previously explained imputation methods. Rather, they are risk
prediction models capable of handling missing data as they occur in medical practice with built-in
mechanisms that account for the missing predictors. An example are the so-called surrogate splits,
which form an extension to the well-known decision trees ** **. Decision trees are one of the more
common instances of ML based prediction that are used in clinical practice. As the name suggests,
decision trees use a tree like structure to find the optimal cut-off point which partitions the data
for optimal predictive performance. Based on the values of the pre-defined predictor variables,
each branch in the tree represents a possible direction or decision ****. Surrogate splits try and
preserve these splits by learning from missing predictor values in the training data and adjusting
the partitioning to resemble the original split in the tree as good as possible in the presence of

missing predictor values

In this thesis we evaluated traditional statistical and modern machine learning strategies for
handling of missing predictor data when applying prediction models in real-time medical settings.
We focus on strategies that do not require continuous access to raw patient data sets, that are
computationally efficient and can, if desired, provide direct access to the imputed predictor
value . Since these imputation strategies allow existing prediction models to keep their current
format and assigned weights, they provide an elegant and useful approach for enabling existing

prediction models directly in medical practice.

In chapter 2 we provide a review evaluating the extent to which prediction model studies that
use ML based techniques report on the presence and nature of missing data, which included the
common methods used or handling missing data during model development, validation, and

implementation.

Existing strategies to impute missing data are not applicable in implementation settings. In
Chapter 3 we expand on two well-known methods that make real-time imputation of missing

predictor values possible and compare their imputation accuracy with mean imputation. In
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Chapter 4 we further evaluate the impact of two of these imputation strategies on a prediction

model’s performance.

Intuitive alternatives exist to real-time imputation and are characterized by their ability to solve
missingness inside the prediction model instead of in the data. In Chapter 5 we compare various
real-time missing data handling approaches other than imputation when implementing specific

modeling techniques in clinical practice.

In addition to reporting on missing data, prediction model studies should report on many other
aspects to ensure potential sources of bias have been handled appropriately. In Chapter 6 we
assess the methodological quality and risk of bias of supervised ML-based prediction model

studies.

The use of imputation and risk prediction in clinical care will likely rely upon using large datasets
from the electronic health record (EHR) or multi-centre studies, though complex strategies may
be required to develop generalizable clinical prediction models. In Chapter 7 we illustrate how
advanced evidence synthesis methods can be used to evaluate this need in large population-

level datasets.

The thesis ends with a general discussion.
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Chapter2

Objectives - Missing data is a common problem during the development, evaluation, and
implementation of prediction models. Although machine learning (ML) methods are often said
to be capable of circumventing missing data, it is unclear how these methods are used in medical
research. We aim to find out if and how well prediction model studies using machine learning

report on their handling of missing data.

Study design and Setting - We systematically searched the literature on published papers
between 2018 and 2019 about primary studies developing and/or validating clinical prediction
models using any supervised ML methodology across medical fields. From the retrieved studies
information about the amount and nature (e.g., missing completely at random, potential reasons

for missingness) of missing data and the way they were handled were extracted.

Results - We identified 152 machine learning-based clinical prediction model studies. A
substantial amount of these 152 papers did not report anything on missing data (n =56/152).
A majority (n=96/152) reported details on the handling of missing data (e.g., methods used),
though many of these (n=46/96) did not report the amount of the missingness in the data. In
these 96 papers the authors only sometimes reported possible reasons for missingness (n = 7/96)
and information about missing data mechanisms (n=8/96). The most common approach
for handling missing data was deletion (n =65/96), mostly via complete-case analysis (CCA)
(n=43/96). Very few studies used multiple imputation (n=8/96) or built-in mechanisms such as
surrogate splits (n = 7/96) that directly address missing data during the development, validation,

or implementation of the prediction model.

Conclusion - Though missing values are highly common in any type of medical research and
certainly in the research based on routine healthcare data, a majority of the prediction model
studies using machine learning does not report sufficient information on the presence and
handling of missing data. Strategies in which patient data are simply omitted are unfortunately
the most often used methods, even though it is generally advised against and well known that
it likely causes bias and loss of analytical power in prediction model development and in the
predictive accuracy estimates. Prediction model researchers should be much more aware of

alternative methodologies to address missing data.



Missing data is poorly handled in prediction model studies using ML

Prediction model studies that adopt machine learning (ML) methods rarely report the
presence and handling of missing data.

Although many types of machine learning methods offer built-in capabilities for handling
missing values, these strategies are rarely used. Instead, most ML-based prediction model

studies resort to complete case analysis or mean imputation.

Missing data are often poorly handled and reported, even when adopting advanced machine

learning methods for which advanced imputation procedures are available.

The handling and reporting of missing data in prediction model studies should be improved.
A general recommendation to avoid bias is to use multiple imputation. It is also possible
to consider machine learning methods with built-in capabilities for handling missing data
(e.g., decision trees with surrogate splits, use of pattern submodels, or incorporation of
autoencoders).

Authors should take note of and appreciate the existing reporting guidelines (notably, TRIPOD
and STROBE) when publishing ML-based prediction model studies. These guidelines offer a
minimal set of reporting items that help to improve the interpretation and reproducibility of

research findings.
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Thorough contemplation about the handling and reporting of missing data is an integral part
of any research addressing and using clinical data, including clinical prediction model research

. Clinical prediction models use multiple input variables (i.e., covariates, predictors)
to calculate the absolute risk of a specific outcome presence (diagnostic models) or incidence
(prognostic models). In the medical literature, most diagnostic and prognostic prediction
models are derived or validated using regression modelling strategies. When missing values are
presentin the model development or validation sample, additional efforts preparatory to model

development are required.

The most common approach is to adopt a complete-case analysis (CCA), wherein individuals
with missing data on any of the predictor or outcomes variables are (automatically) deleted from
the analysis “**. Although this strategy is (only) valid under very stringent circumstances, it is
generally inefficient and can lead to severe bias in estimates of the estimated model parameters
(e.g., regression coefficients) and thus in the model’s predictive performance .Forexample,

removingincomplete cases could lead to loss of a significant number of informative observations.

Forthisreason, it is generally recommended to implement multivariable imputation models that
generate multiple imputations conditionally on other (observed) patient characteristics
When multiple imputation is used during prediction model development, multiple completed
versions of the incomplete datasets are generated in which the prediction model coefficients are
estimated separately. The model coefficients from each imputed dataset are then pooled using
Rubin’s rules, and subsequently used for calculating absolute risk probabilities in new patients
. Although multiple imputation strategies are consequently applied to an entire prediction
model development or validation dataset, it is possible to generate imputations tailored to
individual patients “**. This also makes it possible use multiple imputation techniques when
actually implementing and applying prediction models in electronic healthcare software in daily

clinical practice

Yet another approach is to address missing data directly during the prediction model development,
validation, or application. This strategy can, for instance, be achieved by including missing
indicator variables, by adopting pattern-mixture models, tree-based ensembles, or other machine

learning (ML) methods that circumvent the use of missing data imputation (Box 1)
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Prediction with built-in missing data handling

For each variable in the model a dichotomous dummy variable (0/1) is added to indicate
whether that variable is missing or not . These dummy variables are then included in the statistical (i.e.,
risk prediction) model as separate predictors. The original, missing, predictor variable is usually set to 0. Missing
indicators may contain relevant information for predictions, but are susceptible to so-called feedback loops;
as soon as a clinician is aware of the informative missingness in certain predictors, their predictive value
changes . Additionally, other issues may arise in the application of missing indicators as the manner of
data collection between different practices s likely to vary

Preserves the partitioning of each original splitas good as possible in the presence of missing
predictor values ** . Accordingly, the model, whenever it encounters a missing predictor value, will use the
surrogate variable (rather than the missing predictor variable) to decide upon the split direction.

A default direction is added for each tree node in a decision tree (e.g., XGBoost)
Whenever a missing predictor value is encountered, the instance is classified into the pre-specified default
direction. The optimal default direction, and thus best direction to handle missing data, is learnt from the data.

For each pattern of missing data, a separate risk prediction model is made
and included in the pattern-mixture model *°. Then, when applied to a new (out-of-sample) individual the
corresponding (i.e., matching the missing data pattern in the individual) prediction model is used.

Existing prediction model reporting guidelines (TRIPOD), congruent with the increasing amount
of supportive literature, recommend to at least report whether prediction model development
sets and validation setsindeed suffered the presence of missing data and to what extent, and how
such missing data were addressed in the analysis . So far, adherence to these reporting
guidelines seems to be limited in applied prediction research. Even in prediction model studies
that adopt more traditional (regression-based) methods, many reviews have found that missing

data is often inadequately handled or completely ignored

With the emergence of ML methods for prediction modeling, which may circumvent the need
for imputation (e.g., random forests with surrogate splits), it becomes less evident whether and
how missing data is handled during model development or validation. The question remains how
often researchers adopting these ML methods make use of alternative and proper strategies and
in what way. The objective of this study is, therefore, to investigate how well prediction model
studies that used ML based techniques reported on the presence, nature, and extent of missing
data in the used data sets, and which methods were commonly used for handling missing data

during prediction model development, validation, or (if done) implementation.
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Inclusion flow continuation after systematic review

Inclusion flow
Andaur Navarro et. al.
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In a recent review by Andaur Navarro et. al. we systematically searched the medical literature
for primary studies developing and/or validating prediction models using any supervised ML
methodology, published between January 2018 and December 2019 *"**. The protocol of which was
registered and published (PROSPERO, CRD42019161764) **. The search initially yielded 24.814 results,
from which 10 random sets of 249 articles were sampled. From the sampled 2.482 publications,
152 were included in the review. The present review uses the same data set of this review (Figure 1).
Similarly for the present review, articles were eligible for inclusion when a primary study described
the development or validation of a multivariable prediction model using any kind of supervised
ML methodology. We defined a study using supervised ML as the use of algorithmic approaches to
develop or validate a prediction model (e.g., any tree-based methods, neural networks, or support
vector machines). We excluded studies that adopted common statistical techniques such as linear
regression, logistic regression, lasso regression, ridge regression, or elastic net. Also, studies were
excluded when only a single variable was studied. All human medical fields, with the notable exception
of medical imaging, were included. To address the aim of the present review, first, a list of key reporting
items that may facilitate the interpretation of prediction model studies in the presence of missing data,

were defined (Table 1). These items were based on prevailing reporting guidelines and consider:

1. Information on the presence, amount, and distribution of missingness on the study variables,
including reasons for the missing data and assumptions about the missing data mechanism.

2. Methods for missing data handling, including the type (e.g., imputation, missing indicator,
surrogate splits).

3. Implementation details of the missing data method, including total number of imputed
datasets and (auxiliary, i.e., not part of the prediction model) variables used in the imputation
models (Table 1).

Existing machine learning reporting guidelines sparsely refer to the need to report on missing data
details . As a consequence, items specifically about the ML modeling techniques were based on key
characteristics of known ML methods with built-in strategies to handle missing data .Subsequently,
we reviewed each eligible study and assessed whether missing data was present. For studies that
reported the presence of missing data, we evaluated the level of reporting of the items listed in Table
1. If applicable, data extraction was done both for the prediction model development and validation.
When a sensitivity analysis was utilized, applied methods for handling missing data in these sensitivity
analyses were also assessed separately. Supplementary material was considered when available.
Ten percent of the total set was reviewed first by two reviewers (SN, AL), in which disagreements

were resolved for mutual learning by discussing the found discrepancies. The two reviewers then

19
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independently reviewed fifty percent of all studies respectively. Unresolved disagreements were
resolved through consensus with a third reviewer (TD). All items used in the data extraction can be
found in the Appendix. For the data extraction some reporting items (e.g., ltem 2.1) about identifying

and handling missing data from Table 1 were split up into several separate data extraction items.

After screening, 152 eligible articles were available for the present study (Figure 1). A total of
56 (37%) prediction model studies did not report on missing data and could not be analyzed
further. We included 96 (63%) studies which reported on the handling of missing data. Across

the 96 studies, 46 (48%) did not include information on the amount or nature of the missing data.

Papers that reported on the amount of missing data most often (n =31/50 [62%]) reported the
overall number or frequency of missingness (e.g., the total number of patients or variables with
one or more missing values). For these papers, the overall median percentage of missingness
was 4.7% (IQR 1.85-28). In most other cases it was unclear how many values were missing. It was
often unclear which variables exactly were missing (n = 39/50 [78%)). In 7 papers it was explicitly
stated that the outcome was missing [14%]. Only a small proportion of papers provided possible
reasons for missingness of predictor values (n =7/50 [14%]) or compared the characteristics of
patients with and without any missing values (n=5/50 [10%)]). Additionally, a statement about

the (potential) mechanism by which the data were missing was seldom reported (n = 8/50 [16%)]).

From the 96 papers reporting on missing data handling, the most common approach was deletion
(n=65/96 [68%]), with the majority using complete case analysis (CCA) (n =43/65 [66%]). About
a third of papers reporting on missing data handling, used imputation (n=36/96 [38%)]), most
often single imputation (23/36 [61%)]) with the mean (12/23 [52%)]). Only a handful used the
recommended multiple imputation (n =8/36 [22%)]). Of these eight papers, important details
such as the number of imputed datasets, whether predictor and outcome variables were included
in the imputation models, exact imputation method applied, or whether auxiliary variables were
used, was only rarely reported (1-3 papers). Missing indicators were used by some authors (n = 8/96
[8%]), most often in combination with any deletion or imputation method (n = 6/8 [75%]). Many
studies used a type of prediction model development or validation (e.g., random forest) capable
of handling missing data via built-in mechanisms (n = 77/152 [51%)]). Few articles explicitly stated
that the machine learning method could handle missing data via built-in mechanisms (n = 13/77

[17%)), this concerned almost exclusively tree-based models.
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There were many studies (n =23/96 [24%]) where a combination of missing data handling methods
was used, most often combining deletion practices with imputation methods (n = 15/23 [65%)]).
Only sometimes were these reported as sensitivity analyses (n = 3/23 [13%)]). There were no studies

in which a submodel approach was used.

A complete overview of the extracted data can be found in the Appendix.

This work comprised a comprehensive review of 152 Ml-based clinical prediction model
development or validation studies, to evaluate the reporting and methodological quality with
regards to the presence, amount, and handling of missing data in such studies. Consistent with
similar reviews on the reporting of prediction models or missing data, the quality of reporting in
ML-based prediction model studies with regards to missing data was generally poor. This makes
the judgement of the validity of the reported prediction models or their predictive accuracy
difficult or even impossible ***. Examples of common pitfalls in the handling of missing data
largely match that of similar reviews which analyzed studies reporting on prevailing statistical
models: the exclusion of study participants with any missing data and a lack of primary details on

the amount or nature of the missing data, and the imputation methods used, if done (Figure 2).

Methods such as CCA and single imputation, often via mean imputation (52%), were highly
common in the ML studies included in this review. It can seem efficient to apply methods such
as mean imputation or CCA, but itis generally expected that these ad-hoc methods are unfit for
working with healthcare data . Only under stringent circumstances to which healthcare
data, and certainly not routine healthcare data, usually do not abide, mean imputation and CCA
could provide unbiased estimates. Similarly, there are strong recommendations to avoid the use
of missing indicators, for example because it may alter the way clinicians approach the use of
a predictive model, given that the model suggests missing data may also be informative

Likewise, missing indicators require continued monitoring and dynamic revision for the various
different missing data circumstances upon which they may be used, which is incredibly convoluted
when applied in a medical decision-making context . Surprisingly, this method is often used
by studies using a non-imputation-based approach (53%). This tendency in combination with
frequent absence of explicit motivations for choosing certain missing data handling strategies
and sparse reference to missing data in existing machine learning reporting guidelines, illustrate
an overall lack of appreciation about the severe consequences of improper handling of missing

datain prediction model studies and also in clinical decision making based on prediction models.
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Overall, there s clearly room for improvement in the strategies for handling missing values of the
prediction model studies adopting state-of-the-art ML methods. Although multiple imputation
is currently considered the gold standard, it is only rarely implemented in these published
studies (8/152 [5%)]). In addition, several alternative strategies (e.g., pattern-mixture models,
surrogate splits, etc.) are available that circumvent the need for imputation. These strategies
may be particularly appealing to enhance the development, validation and implementation of
developed prediction models, as they offer a unified approach to generate predictions in the
presence of missing data. Still, among these approaches, it is yet unclear which is to be preferred,
and consensus about their effectivity when compared with, more classical, missing data handling

methods is lacking; more research on this is warranted

The level of reporting is arguably just as important as the quality of an imputation model.
Sufficient detail to be able to replicate the study is a key obligation of scientific research and
reporting. Almost all studies that used multiple imputation lacked sufficient detail on which
variables were included, the conditional imputation models used, and the number of multiple
imputed datasets. Also, the limited utilization of sensitivity analyses suggests that authors did not
consider the potential consequences of handling missing data much. Further, the lack of detail on
which variables were included in the imputation model suggests that known extensions that can
improve the accuracy of the imputation model (e.g., use of auxiliary variables) are unexploited

. To promote good missing-data-handling-practice, we echo previous recommendations to
acknowledge sufficient reporting on missing data and any applied missing data handling method,
to allow others to interpret the quality of the results, to allow for their replication and to enhance
the application of the prediction model . Furthermore, journals are encouraged to ask for

these details to be published in the original text or as supplementary files.

Many included papers used prediction models based on decision trees or random forests, for
which built-in capabilities exist for handling missing data during its development, validation and
implementation . Most authors, however, did not clarify whether and how these were used.
Itis possible that many authors used the default way of handling missing data as programmed
for these models, i.e, usually CCA. However, due to the limited inclusion of programming details
(i.e., code, libraries and packages) it remains largely uncertain how often these methods were
used. The implementation of automated or built-in missing data handling methods is rare in
software packages, which may explain their underreported use. Another possibility is that these
built-in methods are taken for granted, which again suggests that there may be an overall lack
of knowledge about the consequences of improper missing data handling. There is generally no

consensus on how well these built-in methods work with regards to clinical prediction model
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development, validation or implementation, which warrants additional research and caution

when using them in the presence of missing data

Alimitation of our review may be related to the restricted search strategy from the original review,
as only articles published in PubMed over a time span of two years (between January 2018 and
December 2019) were considered and only a subsample (n=2.482) from the initial search results
(n=24.814) was screened *". However, we believe that even with these restrictions the final study
sample remains representative of the current status in the field, since no recent reporting or

methods guideline were likely issues that may have caused any improvements since then.

To our knowledge, this is the first comprehensive review evaluating the level of reporting and
handling of missing data in ML-based clinical prediction model studies. We believe this review
of a representative sample of model development and validation prediction model studies in
healthcare has highlighted severe issues with the general conduct and reporting of missing data
in ML-based prediction model studies. It is well known that inappropriate handling of missing
data can greatly reduce the validity and generalizability of predictions and corresponding
estimates of prediction model performance ****. An improved understanding about the negative
consequences of inappropriate handling of missing data and effective ways to remedy these issues
through improved conduct and reporting is warranted. We recommend authors to take note of
and appreciate the existing reporting guidelines (notably, TRIPOD and STROBE) when publishing
ML-based prediction model studies. These guidelines include a minimal set of reporting items

that help to improve the interpretation and reproducibility of research findings.
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Appendix

Appendix A. Details of missingness (n=152)

# Item Total (%)

1.1 How was missing data presented in the paper?

Not summarized 102 (67%)
Overall 31(20%)
By all candidate predictors 8 (5%)
By all final predictors 3(2%)
Other 8 (5%)
1.2 Were reasons for the presence of missing data explicitly reported?
Yes 7 (5%)
No 142 (93%)
Unclear 3(2%)

1.3 Was guidance provided on how to handle ‘live’ MD? (i.e., how to apply the prediction
models in new patients with MD)

Yes, explicitly 7 (5%)
Yes, implicitly (e.g., mean imputation) 61 (40%)
No 82 (5%)
Unclear 2 (19%)

1.4 Was a comparison of patient characteristics for patients without any missing values, and
patients with one or more missing values made?

Yes 5 (3%)
No 147 (97%)

Legend: MD: missing data, CCA: complete-case-analysis.

Appendix B. Details of missing data handling (n=152)

# Item Total (%)

2.1 Was the type of method used to account for MD reported?

Yes 89 (59%)
2.2 If yes, what was the method being used?

Deletion (i.e., CCA) 44 (47%)
Imputation-based 16 (17%)

Non-imputation-based 7 (7%)
A combination of the above 23 (25%)
A combination of deletion and imputation 15 (65%)
A combination of deletion and non-imputation 3(13%)

A combination of imputation and non-imputation 2 (9%)
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Appendix B. (continued)

# Item Total (%)
Acombination of all three methods 3(13%)
Unclear 4 (4%)
No 58 (38%)
Unclear 5(3%)
2.3 Is there evidence to suggest the developed prediction model can handle the presence of

missing data?

Yes / probably yes 13 (9%)
No / probably no 75 (49%)
Unclear 64 (42%)

2.4 Was an explicit mention of any missing data mechanisms given?

Yes 8 (5%)
2.5 Was a motivation for the assumptions made provided? (i.e., missing data mechanisms)
Yes 7 (88%)
Unclear 1(13%)
No 144 (95%)

Appendix C. Reported details on deletion (n=65)

# Item Total (%)

3.1 Were results of a CCA presented?

Yes 44 (68%)
3.2 Was the CCA considered as the main analysis, or as a sensitivity analysis?
Main analysis 42 (96%)
Sensitivity analysis 2 (5%)
No 18 (28%)
Unclear 3(5%)

iG8s Was a diagram or figure used to depict the number of individuals excluded (e.g.,
participant flow diagram)?
Yes 3(5%)
No 62 (95%)
3.4 Was an explicit rationale for exclusion of participants reported?
Yes 17 (26%)
No 48 (74%)
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Appendix D. Reported details on imputation (n=36)

# Item Total (%)
4.1 Was the type of imputation-based approach reported?

Yes 32 (89%)
4.2 What was the imputation method being used?
Single imputation 23 (72%)
Multiple imputation 8 (25%)
Unclear 1 (3%)
No 2 (6%)
Unclear 2 (6%)
4.3 Was a sensitivity analysis performed?
Yes 3(8%)
No 27 (75%)
Unclear 6 (17%)
4.4 Were statistical interactions assessed and adjusted for in the imputation model?
Yes 2 (6%)
No 21 (58%)
Unclear 13 (36%)
4.5 Were non-linear terms assessed and adjusted for in the imputation model?
Yes 1(3%)
No (non-linear terms were assessed in the main analysis, but not adjusted for during 2(6%)
imputation)
No (nonjlmearterms were not assessed in the main analysis and not adjusted for during 17 (47%
imputation)
Unclear 16 (44%)
4.6 Was clustering assessed and adjusted for in the imputation model?
Yes 1(3%)
No 20 (56%)
Unclear 15 (42%)
4.7 Did the variables imputed include continuous variables?
Yes / probably yes 21 (58%)
4.8 Was it described how these were modelled?
Linear 1 (5%)
Non-linear 3(14%)
Categorized 2 (10%)
Not reported 15 (71%)
No 3(8%)
Unclear 12 (33%)
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Appendix D. (continued)

# Item Total (%)

4.9 Was any other preprocessing performed?

Standardization / normalization 10 (28%)

Outlier removal 2 (6%)

Not reported 2 (6%)

Unclear 16 (44%)

No 6 (17%)
4.10 Were details of the variables included in the imputation procedure presented?

Yes 3(8%)
4.11 Was a motivation for the inclusion of variables in the imputation procedure provided?

No 3(100%)

No 31(86%)

Unclear 2 (6%)
4.12 Wasthe outcomeincluded as a variable in the imputation procedure?

Yes 1(3%)

No / probably no 19 (53%)

Unclear 16 (44%)
4.13 Were auxiliary variables included in the imputation procedure?

Yes 3(8%)
4.14 Were any details on auxiliary variables used presented?

No 3(100%)
No / probably no 11(31%)
Unclear 22 (61%)
Appendix E. Reported details on single imputation (n=23)

# Item Total (%)
5.1 What is the single imputation method being used?

Mean / median imputation 12 (52%)

K-nearest neighbor imputation 3(13%)

Combination of imputation methods 2 (9%)

Regression method 1 (4%)

Random forest imputation 1 (4%)

Last observation carried forward 1(4%)

Unclear 2 (9%)
5.2 Does the method take into account noise or impute a fixed value?

Fixed value 21 (91%)

Unclear 2 (9%)
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Appendix F. Reported details on multiple imputation (n=8)

6.0  Multiple imputation details

6.1  Whatis the multiple imputation method being used?

Predictive mean matching 2 (25%)
MissForest 2 (25%)
Full conditional specification 1(13%)

Which conditional models were used?

Unclear 1(100%)
Bayesian ridge regression 1(13%)
Unclear 2 (25%)

6.2  Wasthe number of imputed datasets reported?
Yes 1(13%)
No 7 (88%)
6.3  Were details on the convergence of the imputation model presented?

No 8(100%)

Appendix G. Reported details on non-imputation-based approaches (n=15)

# Item Total (%)

7.1  Was the non-imputation-based method implicitly or explicitly reported as capable of handling MD?

Explicit 11 (73%)
Implicit 4 (27%)
7.2  Whatis the non-imputation-based method being used?
Missing indicator method 8(53%)
7.3 Were details on how missing indicators were included in the prediction model reported?
Yes 5(63%)
No 3(38%)
Machine learning method 7 (47%)
7.4 What was the type of ML method used?
Tree-based (e.g., random forest) 6 (86%)
Bayesian network 1(14%)
7.10 Are details provided on how MD are handled via the ML method? (e.g., Imputation)
Yes 3 (43%)
No 4(57%)
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CHAPTER 3

Risk of bias in studies on prediction models
developed using supervised Machine Learning
techniques: A systematic review




Objective. To assess the methodological quality of machine learning (ML)-based prediction

model studies across all medical fields.

Design. Systematic review.

Data sources. PubMed from 1 January 2018 to 31 December 2019.

Eligibility criteria. We included articles reporting on the development or development with
external validation of a multivariable prediction model (either diagnostic or prognostic) developed
using supervised ML for individualized predictions. No restrictions were made based on study

design, data source, or predicted patient-related health outcomes.

Review methods. To determine the methodological quality of the ML-based prediction model
studies, we evaluated the risk of bias (RoB) using the Prediction Risk Of Bias ASsessment Tool
(PROBAST). We measured RoB per domain (participants, predictors, outcome, and analysis) and

per study (overall).

Results. We included 152 studies, 58 (38.2%) diagnostic and 94 (61.8%) prognostic studies. We
applied PROBAST to 152 developed models and 19 external validations. Out of these 171 analyses,
148 (86.5%, 95% confidence interval 80.6% to 90.9%) were rated at high RoB. The Analysis domain
was the most frequently rated at high RoB. We observed 85/152 (55.9%, 48.0% to 63.6%) models
developed with an inadequate number of events per candidate predictor, 62 with poor handling
of missing data (40.8%, 33.3% to 48.7%) and 59 with unproper assessment of overfitting (38.8%,
31.4% to 46.7%). Most models used appropriate data sources to develop (73.0%, 65.5% to 79.4%)
and externally validate their ML-based prediction models (73.7%, 51.2% to 88.2%). However,
information about blinding of outcome and blinding of predictors was absent in 60/152 (39.5%,
32.1% to 47.4%) and 79/152 (52.0%, 44.1% to 59.8%) developed models, respectively.

Conclusion. Most ML-based prediction model studies show poor methodological quality and are
at highrisk of bias. Factors contributing to the risk of bias include small study size, poor handling of
missing data, and failure to address overfitting. Efforts to improve the design, conduct, reporting,
and validation of ML-based prediction model studies are necessary to boost its application in

clinical practice.

Systematic review registration PROSPERO, CRD42019161764



Several publications have highlighted the poor methodological quality of regression-based
prediction models studies.

The number of clinical prediction models developed using supervised machine learning is
rapidly increasing, however, evidence about their methodological quality and risk of bias is

scarce.

Prediction model studies developed using supervised machine learning have poor
methodological quality. Limited sample size, poor handling of missing data, and inappropriate
evaluation of overfitting contributed largely to the overall high risk of bias.

Machine learning prediction models often claim superior accuracy compared to regression-
based approaches. However, reported performance may be at high risk of bias based on
the study design and modelling strategies used. Caution is needed when interpreting these
findings.

Future research should improve transparency when reporting and the study designs used to

develop, validate, and compare prediction models to reduce methodological biases.
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A multivariable prediction model is defined as any combination of two or more predictors (i.e.
variables, features) for estimating the probability or risk of an individual to have (diagnosis)
or will develop (prognosis) a particular outcome. Properly conducted and well reported
prediction model studies are essential for a proper implementation in clinical practice. Even
though prediction model studies are abundant in biomedical literature, a limited amount of them
are used in clinical practice. As a result, many published studies contribute to research waste.

We anticipate that the rise of modern data-driven modelling techniques will boost the existing

popularity of prediction model studies in the biomedical literature.

Machine learning (ML), a subset of artificial intelligence (Al), has gained considerable popularity
in recent years. Broadly, machine learning refers to computationally intensive methods that
use data-driven approaches to develop models that require fewer modelling decisions by the
modeler compared to traditional modelling techniques.” ' Within machine learning, there are
two approaches: supervised and unsupervised learning. While supervised learning is defined as
an algorithm that learn to predict using previously labelled outcomes, unsupervised learning
learns to find unexpected patterns using unlabelled outcomes.” Traditional prediction models
in healthcare usually resemble supervised learning: datasets used for development are labelled
and the objective is to predict an outcome in new data. Supervised learning includes tree-based
methods, such as random forests, naive bayes, and gradient boosting machines, support vector
machines, neural networks. Supervised ML-based prediction model studies have shown promising
and even superior predictive performance compared to conventional statistical techniques,
however, recent systematic reviews have shown otherwise. Although several publications
have raised concern about the methodological quality of prediction models developed with
conventional statistical techniques , a formal methodological and risk of bias (RoB)
assessment of supervised ML-based prediction model studies across all medical disciplines has

not yet been carried out.

Shortcomings in study design, methods, conduct, and analysis may set the study at high RoB,
which could lead to deviated estimates of models’ predictive performance.”*** The Prediction
model Risk Of Bias Assessment Tool (PROBAST) was developed to facilitate RoB assessment,
and thus provides a methodological quality assessment of primary studies that report on
development, validation, or update of prediction models, regardless of the clinical domain,
predictors, outcomes, or modelling technique used. Using a prediction model considered
at high RoB, might lead to unnecessary or insufficient interventions, and thus affect patients’

health and health systems. Rigorous RoB evaluation of prediction model studies is, therefore,
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essential to ensure reliability, fast, and valuable application of prediction models. Therefore,
we conducted a systematic review to assess the methodological quality and RoB of supervised
ML-based prediction model studies across all medical fields in a contemporary sample of recent

literature.

Our systematic review was reported following the PRISMA statement.”” The review protocol was
registered (PROSPERO, CRD42019161764) and published.

We searched for eligible studies published in PubMed between 1 January 2018 and 31 December
2019. We restricted the search to obtain a contemporary sample of articles that would reflect
the current practices in prediction modelling using machine learning to date. The search was

performed on 19 December 2019 with a strategy that is provided in Supplemental File 1.

Eligible publications needed to describe the development or validation of at least one multivariable
prediction model using any supervised ML technique aiming for individualized prediction of risk
or patient-related health outcomes. Details about inclusion and exclusion criteria are stated in
our protocol.”” A publication was also eligible if it aimed to develop a prediction model based on
model extension or incremental value of new predictors. No restrictions were made based on
study design, data source, or types of patient-related health outcomes. We defined a publication to
be aninstance of ML when a non-regression statistical technique was used to develop or validate a
prediction model. Hence, studies using only linear regression, logistic regression, lasso regression,
ridge regression, or elastic net were excluded. Publications that report about the association of a
single predictor, test, or biomarker, or its causality with an outcome were excluded. Publications
thataimed to use ML to enhance the reading of images or signals or those where ML models only
used genetic traits or molecular markers as predictors, were also excluded. We also excluded
systematic reviews, methodological articles, conference abstracts, and publications for which
full text was unavailable through our institution. The search was restricted to human subjects

and English-written articles.

Titles and abstracts were screened by two independent reviewers, from a group of seven
(CLAN, TT, SWJUN, PD, JM, RB, JAAD). A third reviewer was involved when required to resolve any
disagreements (JAAD). After selection of potentially eligible studies, full-text articles were retrieved

and two independent researchers reviewed them for eligibility; one researcher (CLAN) screened all
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articles and six researchers (TT, SWJN, PD, JM, RB, JAAD) collectively screened the same articles
for agreement. In case of any disagreement, a third reviewer was asked to read the article in

question and resolve (JAAD).

We developed a data extraction form based on the four-domain structure (participants,
predictors, outcome, and analysis) and 20 signalling questions (SQ) as described in PROBAST.
The Participants domain refers to the selection of the participants and data sources. The
Predictors domain evaluates potential sources of bias by the definition and measurement of the
candidate predictors. The Outcome domain assesses how and when the outcome was defined
and determined. Finally, the Analysis domain examines the statistical methods that the authors
have used to develop and validate the model, including study size, handling of continuous

predictors and missing data, selection of predictors, and model performance measures.

Our extraction form contained 3 sections per domain: two to nine specific signalling questions,
judgement of RoB, and rationale for the judgment. Signalling questions were formulated to be
answered ‘yes/probably yes’, ‘no/probably no’, and ‘no information’. All signalling questions were
phrased so that ‘yes/probably yes’ indicated absence of bias. Likewise, judgement of RoB was
defined as ‘high RoB’, ‘low RoB’, and ‘unclear RoB'. Also, we requested reviewers to provide a

rationale for judgment as free-text comments.

If a study included external validation, we applied the extraction form to both, the development
and external validation of the model. Signalling question 4.5 -was selection of predictors based on
univariable analysis avoided? -, 4.8 -Were model overfitting and optimism in model performance
accounted for? -, and 4.9 -Do predictors and their assigned weights in the final model correspond
to the results from the reported multivariable analysis? - did not apply to external validation.
If a study reported more than one model, we applied PROBAST to the recommended model
defined by the authors in the article. If the authors did not recommend a single model, the model
with highest accuracy (in terms of discrimination) was selected as the recommended model.
The PROBAST tool, its considerations, and related publications are available on the PROBAST
website (www.probast.org). A summary table with the criteria to judge risk of bias is provided in

Supplemental File 2.

Two reviewers independently extracted data from each article using the constructed form. To
accomplish consistent data extraction, the form was piloted on five articles by all reviewers.
During pilot, reviewers clarified differences in interpretation and standardise data extraction. After

the pilot, articles used were randomly assigned and screened again in the main data extraction.
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Oneresearcher (CLAN) extracted data from all articles and six researchers (TT, SWJN, PD, JM, RB,
JAAD) collectively extracted data from the same articles. Any disagreements in data extraction

were settled by consensus among each pair of reviewers.

Prediction model studies were categorized as prognosis or diagnosis and into four types of
prediction models studies: development (with internal validation), development with external
validation (same model), development with external validation (different model), and external
validation only. Model development studies aim to develop a prediction model to be used for
individualized predictions where its predictive performance is directly evaluated using the
same data, either by resampling participant data or random/non-random split sample (internal
validation). Model development studies with external validation (same model) have the same aim
as the previous type, but the development of the model is followed by quantifying the predictive
performance of the model in a different dataset. Model development studies with external
validation (different model) aim to update or adjust an existing model that performs poorly by
recalibrating or extending the model. External validation only studies aim to assess only the
predictive performance of existing prediction models using data external to the development

sample.

Two independent reviewers each assessed signalling question by the degree of compliance with
the PROBAST recommendations. If there was any disagreement, it was discussed until consensus
was reached. The RoB judgement per domain was based on the answers to the signalling
questions. If the answer to all signalling questions was ‘yes/probably yes’, the RoB domain was
judged as ‘low RoB’. If reported information was insufficient to answer the signalling questions,
these were judged as ‘no information’, and the RoB domain scored as ‘unclear RoB’. If any signalling
question was answered as ‘no/probably no’, reviewers applied theirjudgment to rate the domain

as ‘low RoB’, ‘high RoB’, or ‘unclear RoB’.

After judging all the domains, we performed an overall assessment per application of PROBAST.
PROBAST recommends rating the study as ‘low RoB’ if all domains had ‘low RoB’. If at least one
domain had ‘high RoB’, overall judgment should be rated as ‘high RoB’. ‘Unclear RoB’ was assigned
if ‘unclear RoB’ was noted in at least one domain and all other domains had ‘low RoB’. Judgement
rationale was recorded to facilitate discussion among reviewers when solving discrepancies. We
removed signalling question 4.9 -Do predictors and their assigned weights in the final model
correspond to the results from the reported multivariable analysis? - because it is tailored for
regression-based studies. Results were summarized as percentages with 95% confidence intervals

and visual plots. Analyses were performed using R version 3.6.2 (R Core Team, 2020).
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Patient and public involvement
We conducted a methodological appraisal; thus, no patients were involved in setting the
research question, nor were they involved in the design or implementation of the study, or the
interpretation or writing up of results.

Figure 1. Flowchart of included studies
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The search identified 24,814 publications, of which we sampled ten random sets of 249
publications each. Of the 2,482 screened publications, 152 were eligible: 94 (61.8%) prognostic
and 58 (38.2%) diagnostic ML-based prediction model studies (Figure 1). Detailed description of
theincluded studies is provided in Supplemental File 3. We classified publications according to
their research aims: 132 (86.8%) articles were classified as development with internal validation, 19
(12.5%) as development with external validation of the same model, and 1 (0.6%) as development
with external validation of another model (eventually included as development with internal
validation). Across the 152 studies, a total of 1429 Ml-based prediction models were developed
and 219 validated. For our analyses, we selected only the recommended model by the authors
for our RoB assessment. Hence, we applied PROBAST 171 times: in 152 developed models and
19 external validations. The most common ML techniques for the first model reported were
Classification and Regression Tree (CART [10.1%]), Support Vector Machine (SVM [9.4%)]), and
Random Forest (RF [9.4%)]). Detailed list of techniques assessed is provided in Supplemental File
3. The clinical fields with the most publications were oncology (21/152 [13.8%]), surgery (20/152
[13.5%]), and neurology (20/152 [13.5%)).

In total, 36/152 (23.7%) developed models and 3/19 (15.8%) external validations were scored as
high RoB for the Participants domain (Figure 2). Prospective and longitudinal data sources (SQ1.1)
were properly used for model developmentin 111/152 (73.0%) and to externally validate in 14/19
(73.7%). We were unable to evaluate whether the inclusion and exclusion of participants (SQ1.2)
was representative of the target population in 47/152 (30.9%) developed models and in 12/19
(63.1%) external validations (Table 1).

We rated 14/152 (9.2%) developed models and 2/19 (10.5%) external validations to be at high RoB
for the Predictors domain (Figure 2). Candidate predictors were defined and assessed in a similar
way for allincluded participants (SQ2.1) in 109/152 (71.7%) developed models and in 8/19 (42.1%)
external validations. Information on blinding of predictor assessment to outcome data (SQ2.2)
was missing in 60/152 (39.5%) developed models and in 7/19 (36.8%) external validations. All
considered predictors should be available at the time the model is intended to be used (SQ2.3),
which we found appropriate in 116/152 (76.9%) developed models and in 12/19 (63.1%) external
validations (Table 1).
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Risk of bias of included studies (n=152) and stratified by study type
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The domain Outcome was scored as unclear RoB in 65/152 (42.8%) and 12/19 (63.2%) of developed
models and external validations, respectively (Figure 2). We missed information about the
outcome being determined without knowledge of predictors’ information (SQ3.5) in 79/152
(52.0%) developed models and in 14/19 (73.7%) external validations. Predictors were excluded
from the outcome definition (SQ3.3) in 90/152 (59.2%) developed models and in 10/19 (52.6%)
external validations. We considered the time interval between predictor measurement and
outcome determination appropriate (SQ3.6) in 110/152 (72.4%) developed models and in 11/19
(57.9%) external validations. We observed in 114/152 (75%) developed models and in 12/19 (63.1%)
external validations that the outcome was determined using appropriate methods, thus reducing
risk of misclassification (SQ3.1). Similarly, 118/152 (77.6%) developed models and 13/19 (68.4%)
external validations used prespecified, standard or consensus-based definitions to determine
the outcome (SQ3.2). The outcome was defined and measured with the same categories or
thresholds for all included participants (SQ3.4) in 118/152 (77.6%) developed models and 10/19
(52.6%) external validations (Table 1).
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We classified 128/152 (84.2%) developed models and 14/19 (73.7%) external validations as high
RoB in the Analysis domain. We considered that the number of participants with the outcome
(SQ4.1) was insufficient (i.e. event per predictor parameter <10) in 85/152 (55.9%) developed
models and 8/19 (42.1%) external validations (i.e. number of events <100). Information about
methods to handle continuous and categorical predictors (SQ4.2) was missed in 81/152 (53.3%)
developed models and 18/19 (94.7%) external validations. We found that 84/152 (55.3%)
developed models and 10/19 (52.6%) external validation included in their statistical analyses all

enrolled participants (SQ4.3).

Handling of missing data (SQ4.4) was inappropriate (i.e. participants with missing data were
omitted from the analysis or imputation method was flawed) in 62/152 (40.8%) developed
models and in 7/19 (36.8) external validation. We observed that 28/152 (18.4%) developed models
used univariable analyses to select predictors (SQ4.5). We were unable to assess if censoring,
competing risks or sampling of control participants (SQ4.6) were considered in 54/152 (35.5%)
developed models and in 7/19 (36.8%) external validations. Similarly, the reporting of relevant
model performance measures (e.g., both discrimination and calibration) (SQ4.7) was missing in
91/152 (59.9%) developed models, while 13/19 (68.4%) external validations lacked this information
too. 76/152 (50.0%) developed models accounted for model overfitting and optimism (SQ4.8).

Finally, the overall RoB assessed using PROBAST let to 133/152 (87.5%) developed models, and
15/19 (78.9%) external validations being classified as high RoB (Figure 2). Further information
about each signalling question answered as ‘Yes/probably yes’, ‘No/probably no’, and ‘No

information’is provided in Table 1.

Regarding diagnostic versus prognostic prediction models, the Analysis domain is the major
contributor to an overall high RoB in both. We evaluated 56/58 (96.6%) developed models and
7/7 (100%) external validation as high RoB in diagnostic studies, and 77/94 (81.9%) developed
models and 8/13 (66.7%) external validation in prognostic studies (Figure 2). External validations
of both diagnostic and prognostic models suffer from unclear information to judge RoB. While
in diagnostic models, signalling questions in domain Outcome were frequently answered with
‘no information” (Table S2), in prognostic models this was the case for both Outcome and
Analysis domains (Table S3). Further information about each signalling question is provided in

Supplemental file 3.
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We have conducted a detailed assessment of the methodological quality of supervised ML-
based prediction model studies across all clinical fields. Overall, 133/152 (87.5%) developed
models and 15/19 (78.9%) external validations showed high RoB. The Analysis domain was most
commonly rated as high RoB in developed models and external validations, mainly due to a low
number of participants with the outcome (relative to the number of candidate predictors), risk
of overfitting, and inappropriate handling of participants with missing data. Although there are
still no conclusive studies about sample size calculations for developing prediction models using
ML techniques, these usually require (many) more participants and events than conventional
statistical approaches.” " One hundred studies failed to either provide the number of events
or reported an event per candidate predictor (EPV) lower than 10, which historically is a marker
of potentially low sample size. Furthermore, ML studies with a low number of participants with
the outcome are likely to suffer from overfitting, that is the model is too much tailored to the
development dataset. Only half of the included studies examined potential overfitting of
models either by using split data, bootstrapping or cross-validation. Random-split was often relied
on to internally validate models (i.e. validation based on the same participants’ data), whereas

bootstrapping and cross-validation are generally considered more appropriate.

Most studies carried out complete-case analyses or mean/median imputation. Multiple
imputation is generally preferred as it prevents biased model performance due to deletion
or single imputation of participants’ missing data. Unfortunately, multiple imputation is still
unpopular within models developed with ML techniques.” " Some ML techniques have the power
to incorporate this missingness by including a separate category of a predictor variable that has
missing values.”” Therefore, we urge algorithm developers to improve imputation methods and

incorporate informative missingness in their models when possible.

Several signalling questions were scored as ‘No information” making it impossible for us to judge
potential biases. It was often unclear whether all enrolled participants were included in the
analyses, how many participants had missing values, and how missing data were handled. ML
are powerful and automated techniques that will learn from data, however, if there was selection
bias in the dataset, predictions made using the trained ML algorithm will also be biased. Similarly,
several signaling questions in PROBAST are tailored to identify lack of blinding (SQ 2.2, SQ 3.3,
SQ 3.5); however, almost half of included articles failed to report any information for us to assess
blinding. Furthermore, model calibration tables or plots were often not presented, whereas

classification measures (i.e. confusion matrix) were commonly reported with an overreliance on
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accuracy.” Reporting and assessment of discrimination (i.e., ability to discriminate between cases
and non-cases) and calibration (i.e., agreement between predictions and observed outcomes) is

essential to assess a models’ predictive accuracy.

A systematic review of 23 studies about ML for diagnostic and prognostic predictions in
emergency departments shows that analysis was the most poorly rated domain with 20 studies
at high RoB.” This study found deficiencies in how continuous variables and missing data were
handled, and found that model calibration was rarely reported. Another publication about ML
risk prediction models for triage of patients entering the emergency room also considered 22/25
studies considered at high RoB.""" A study assessing the performance of diagnostic deep learning
algorithms for medical imaging reported 58 of 81 studies being classified as overall high RoB.

Similar to our results, major deficiencies were found in the analysis domain including the number
of events per variable, inclusion of enrolled participants in the analysis, reporting of relevant
model performance measures, and overfitting. Recently, a living systematic review about COVID-
19 prediction models indicated that all 57 studies that used ML were at high RoB due to insufficient

sample size, unreported calibration, and internal validation based on training-test split.

We evaluated the risk of bias of supervised ML-based prediction model studies in a broad sample
of articles which included prognostic and diagnostic development only and development with
external validation studies. After using a validated search strategy, we retrieved nearly 25,000
publications which is similar to a previous study. We finally screened the tenth part of the whole
sample; therefore, our results are presented using confidence intervals to extrapolate them to
the whole sample. The present analyses considered results from studies that were published over
one year ago; nevertheless, we expect these findings to be still applicable and relevant for the
clinical prediction field. We adopted PROBAST as the benchmark to evaluate RoB enhancing the
objectivity and consistency, however, this is not without certain limitations. While two signalling
question in PROBAST might become less relevant within the ML context (i.e. selection of predictors
based on univariable analysis and reporting of weighted estimates in the final model correspond
to the results from the reported multivariable analysis), further signalling questions related to

data generation, feature selection, and overfitting might be necessary.

The number of ML-based studies is increasing every year; thus, their identification, reporting and
assessment become even more relevant. [t will remain a challenge to determine the risk of bias if

detailed information about data and modelling approach (including justifications to any decision
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made that may biases estimates) is not clearly reported in articles. To better judge studies, we
recommend researchers to adhere to the Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD) statement (35,36). Though TRIPOD was not
exlicilty developed for machine learning prediction models, all items are applicable. Similarly,
while there is yet no RoB assessment tool available specifically for supervised ML models, we
suggest researchers to follow PROBAST recommendations to reduce potential biases when
planning and modelling primary prediction model studies using either regression or non-
regression models. For example, the adoption of multiple imputation to handle missing value

and cross-validation or bootstrapping to internally validate the developed models.

Currently, extensions of TRIPOD and PROBAST for prediction models developed using machine
learning are under development (TRIPOD-Al, PROBAST-AI). As sample size contributed largely
to the overall high RoB, future methodological research could focus on determine appropriate
sample sizes for each supervised learning technique. Giving the rapid and constant evolution of
machine learning, periodic systematic reviews of prediction model studies need to be conducted.
Although high quality ML-based prediction model studies are scarce, those who stand out need
to be validated, re-calibrated, and promptly implemented in clinical practice."" To avoid research
waste, we suggest peer-reviewers and journal’s editors to promote the adherence to reporting
guidelines. Facilitating the documentation of studies (i.e. supplemental material, data, and
code) and setting unlimited word count may improve methodological quality assessment, as well
asindependent validation (i.e. replication). Likewise, requesting external validation of prediction
models upon submission might help setting minimum standards to ensure generalizability of

supervised ML-based prediction models studies.

Most supervised ML-based prediction model studies show poor methodological quality and are at
high risk of bias. Factors contributing to the risk of bias include the exclusion of participants, small
sample size, poor handling of missing data, and failure to address overfitting. Efforts to improve
the design, conduct, reporting, and validation of supervised ML-based prediction model studies

are necessary to boost its application in clinical practice and avoid research waste.

The study concept and design were conceived by CLAN, JAAD, PD, LH, RDR, GSC, and KGMM. CLAN,
JAAD, TT, SN, PD, JM, and RB conducted article screening and data extraction. CLAN performed
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data analysis and wrote the first draft of this manuscript, which was revised by all authors who
have provided the final approval of this version. CLAN, the corresponding author, is the guarantor
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There is no specific funding for this study. GSC is supported by the National Institute for Health
Research (NIHR) Oxford Biomedical Research Centre (BRC) and by Cancer Research UK program
grant (C49297/A27294). PD is supported by the NIHR Oxford BRC. The views expressed are those
of the authors and not necessarily those of the NHS, NIHR, or Department of Health. None of the
funding sources had a role in the design, conduct, analyses, or reporting of the study or in the

decision to submit the manuscript for publication.

GSC, RDR and KGMM are members of the PROBAST Steering Group. All authors have completed
the Unified Competing Interest form and declare: no support from any organisation for the
submitted work; no financial relationships with any organisations that might have an interest
in the submitted work in the previous three years, no other relationships or activities that could

appear to have influenced the submitted work.

We analysed only published data; therefore, ethics approval was not required.
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We plan to disseminate the findings and conclusions from this study through social media (such as
Twitter), a plain-language summary on www.probast.org, and scientific conferences. In addition,

the findings will provide insights to the development of PROBAST-A.

Twitter: @GSCollins, @SWJNijman, @pauladhiman, @RamBajpai, @Richard_D_Riley, @CarlMoons

> Supplemental file 1. Search Strategy

> Supplemental file 2. Summary table with criteria to judge risk of bias.

> Supplemental file 3. Table S1. Characteristics of included studies (n=152)

> Supplemental file 4. Table S2-S3. Signalling questions for diagnosis and prognosis model

studies.
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CHAPTER 4

Real-time imputation of missing predictor
values improved the application of prediction
models in daily practice




Objectives - In clinical practice, many prediction models cannot be used when predictor values

are missing. We therefore propose and evaluate methods for real-time imputation.

Study design and Setting - We describe (i) mean imputation (where missing values are replaced
by the sample mean), (i) joint modeling imputation (JMI, where we use a multivariate normal
approximation to generate patient-specific imputations) and (jii) conditional modeling imputation
(CMI, where a multivariable imputation model is derived for each predictor from a population).
We compared these methods in a case study evaluating the root mean squared error (RMSE) and
coverage of the 95% confidence intervals (i.e. the proportion of confidence intervals that contain

the true predictor value) of imputed predictor values.

Results -RMSE was lowest when adopting JMI or CMI, although imputation of individual
predictors did not always lead to substantial improvements as compared to mean imputation.
JMI and CMI appeared particularly useful when the values of multiple predictors of the model

were missing. Coverage reached the nominal level (i.e. 95%) for both CMI and JMI.

Conclusion - Multiple imputation using, either CMI or JMI, is recommended when dealing with

missing predictor values in real time settings.

Keywords: missing data; multiple imputation; real-time imputation; prediction; computerized

decision support system; electronic health records



Cardiovascular risk management guidelines advocate use of prediction models in routine
clinical practice.

The implementation of a prediction model in routine care typically requires complete
information on all predictor values. If one or more predictor values are unknown, the model
cannot provide a prediction.

The implementation of a prediction model (e.g. in a decision support system) should always
include a strategy for dealing with missing predictor values.

Traditional (multiple) imputation methods require information from other patients and
therefore cannot be used when patients present individually, as is the case in clinical practice.
Itis possible to adapt existing imputation strategies for real-time use. This requires to estimate
the conditional distribution for each predictor variable in a training sample, and to make this
summary information available to the implementation of a prediction model.

In general, two approaches are possible to model the conditional distribution of the predictor
variables in a training sample. One approach is to estimate each distribution separately using
a flexible (e.g. regression) modeling strategy. Alternatively, it is possible to directly estimate
the joint distribution of all predictor variables. When this joint distribution is normal, then
the conditional distributions can directly be derived from the mean and covariance of the
training sample.

Simulations indicate that joint modelling imputation and conditional modelling imputation
results in fewer inappropriate treatment decisions and has minimal impact on predicted risk,

especially for high-risk patients.



Chapter 4

In present-day medical practice, characterized by an aging population, multimorbidity and
high complexity of diseases, attention has grown towards personalized medicine aiming to
administer the most applicable treatment to the individual patient given their risk profile

. In cardiovascular disease management, guidelines advocate the use of prediction models
to assess the patients’ risk of developing a certain cardiovascular disease to guide treatment
decision making ***. To integrate risk-guided care in daily practice, technological solutions such as
computerized decision support systems (CDSS) are increasingly developed .Using predictor
values directly extracted from the electronic health record (EHR), CDSS can provide an immediate

risk assessment of each encountered patient at a glance

The use of prediction models in daily practice in individual patient requires real-time availability
of the patient’s values of the predictors in the model. Most prediction models cannot provide a
risk estimate in the presence of missing predictor values, which hampers implementation and
may ultimately limit guideline adherence ***. Therefore, predictor values should be measured
and registered (e.g. in the Electronic Health Record; EHR) in such a way that they are available
in real-time. Yet, routine clinical care data is often incomplete because certain measurements
are deemed unnecessary, time-consuming, or expensive, or because they cannot directly be

extracted from the EHR (e.g., registered as free text)

Missing data is a well-known challenge in (medical) research, for which several scalable solutions
exist **. Multiple imputation by chained equations has often been recommended to handle
missing data in a research setting where data from multiple patients are available for study
analysis purposes . This approach, however, is not directly applicable when applying a
prediction model real-time to a single patient in the consulting room. In particular, the models
used for imputation cannot be generated “live” in clinical practice, and therefore need to be

derived elsewhere and beforehand

One option is to replace missing predictor values by their respective mean/median, which
in turn is estimated from another data set or training sample . Whilst straightforward to
implement, mean imputation may be insufficient when the predictor with missing values is a
strong predictor or exhibits large variability such that assigning an overall mean may lead to
less predictive accuracy of the prediction model and to misinformed treatment decisions. Mean
imputation does not distinguish between patients and may therefore likely impute values that
are unrealistic given the patient’s observed predictor values. Also, mean imputation obfuscates

any uncertainty about the imputed values.
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To address these issues, we expand on two well-known methods that may also be used in real
time imputation of missing predictor values **': joint modeling imputation (JMI) *** and conditional
modeling imputation (CMI, also known as multiple imputation by chained equations) ***. As
opposed to mean imputation, these methods are able to incorporate the relation between
multiple patient characteristics, and therefore allow imputations to be adjusted for observed
patient specific characteristics. Similar to mean imputation, these relations can be learned
from training data and, in real time, applied on new patients that are not part of the training
sample. Additionally, both methods allow for multiple imputations to be estimated, reflecting

the uncertainty with respect to the imputed value.

Using a real-world example and empirical data set on cardiovascular risk prediction, we compared
the accuracy and usability of three imputation methods (mean imputation, JMI, and CMI) to deal
with missing values of predictors in the prediction model in real time. Though it is well known
that mean imputation is problematic, it was chosen as a comparison due to its straightforward
implementation when implementing a prediction model in routine clinical practice orin a decision

support

> Multipleimputation approaches can be adapted without much difficulty to allow for real-time
imputation of missing predictor variables.
> Both conditional modelling imputation (CMI) and joint modelling imputation (JMI) give more

accurate estimates of missing predictor values when compared to mean imputation.

> Imputation of missing predictor values does not require ‘live’ access to a source dataset.
Simple population characteristics (such as the mean and covariance) can be used to generate

imputations that are tailored to a specific individual.

> Real-time multiple imputation, using either CMI or JMI, should be made available in clinical
practice (e.g. viaa computerized decision support system) to support guideline recommended
use of prediction models and to be more transparent about uncertainty

> When developing or validating a prediction model, researchers should report the mean and
covariance of the study population, as this information can directly be used to impute missing

values in routine care.
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To facilitate live imputation of missing values in routine care, it is essential to obtain information on
the distribution of the target population. This summary information can, for instance, be derived
in an epidemiologic (e.g. cohort) study and then be utilized to train live imputation models. A key
constraint given is that all methods, after being trained, are independent and stand-alone, which
means that they can directly be used for live imputation in a new, single, patient without requiring

the need for any additional procedures.

The three methods under evaluation are mean imputation, joint modeling imputation (JMI),
and conditional modeling imputation (CMI) . All methods were implemented in R and
facilitate live imputation of missing values in individual patients. Source code is available from

the supplementary information (Appendix D).

The training sample is used to derive the means of all predictors in the model (Figure 1). Missing
predictor values are then imputed by their respective mean (or proportion in case of binary
variables). This method is relatively straightforward to implement, and can be extended to
subgroup-specific means (i.e. creating subdivisions based on certain parameters of a population

of which multiple means are respectively calculated).

Mean imputation

— Mean imputation

Training sample

Estimate means of all predictors in
the model using training data

Individual patient data

il Identify missing variables given an
Lo--a individual patient
Imputation

Use means to fill in missing variables
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The training sample is used to derive the means and covariance of all predictor variables (Figure 2).
Itis assumed that all predictor variables of the training sample are normally distributed, such that
imputations for an individual patient can directly be generated from the mean and covariance of
the training sample and the observed predictor values .In contrast to overall mean imputation,
use of covariances between all predictors incorporates the relation between the predictors, and
therefore allows imputations to be tailored to an individual’s patient own characteristics. A more

detailed description is provided in Appendix A

Joint modelling imputation

—Joint modelling imputation

Training sample

Estimate means and covariance of all
© relevant predictors using training data
to estimate joint normal distribution

Individual patient data

il Identify missing variables given an
Lem= individual patient
Imputation

Use derived distribution to generate
imputation for missing variable

The training sample is used to derive a flexible (e.g. regression) model for each predictor (as
dependentvariable) with all other predictor variables as independent variables (Figure 3). These
models describe the conditional distribution of each predictor, and usually need to be estimated
using a Gibbs sampling procedure (as predictor values may also be missing in the training sample).
Due to the flexible nature of these conditional models, it is no longer assumed that predictor
variables of the training sample are normally distributed (as does JMI). For instance, a logistic

regression model can be used to estimate the conditional distribution of a binary predictor
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variable (e.g. current smoker). Subsequently, when the smoking status for a new patient is
unknown, the logistic regression model can be used to generate a probability that they are a
current smoker. This probability can directly be used as imputed value (in case only 1 imputation
is needed). Alternatively, if multiple imputations are required, a Bernoulli distribution (with
aforementioned probability) can be used to sample multiple (discrete) values for the patient’s
current smoking status. If multiple predictor values are missing, the conditional models need to

be used successively using an iterative Monte Carlo procedure (Appendix A).
Conditional modelling imputation

— Conditional modelling imputation

[ dependent | independent » . )
In a training sample with n predictors
model 1 . derive a regression model for
model 2 B @ cach predictor (as dependent
. variable) with all other variables as
model n m independent variables

172 137 s
a) Lem-d Identify if the patient has a single or
b) 1 S R . e multiple missing predictor variable(s)

[ [

model 3
When a single predictor has a missing
I ) value, the fitted regression model of
2 '3 114 5 that predictor can directly be used to
generate an imputed value
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rmma rmma values, the fitted regression models
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rmma the procedure for a single missing value
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Cardiovascular disease prevention is an example of a setting where risk-guided management
of predictors — smoking, blood pressure, cholesterol - is common practice ***. Numerous risk
prediction models have been developed and the (international) guidelines advocate the use of
risk classification to inform treatment decisions . These models are typically implemented
in a CDSS, where a patient’s characteristics of the predictors can be entered manually or are

automatically retrieved from the patient’s EHR

For this study we used a data set of the ongoing Utrecht Cardiovascular cohort initiative (UCC). This
cohortincludes all patients who come for a first-time visit the Center for Circulatory Health at the
UMC Utrecht for the evaluation of a symptomatic vascular disease or an asymptomatic vascular
condition. Aminimum set of predictors, according to the Dutch Cardiovascular Risk Management
Guidelines, is collected in all patients. No data on outcomes (i.e. time-to-event data) was recorded.
UCC has been approved by the Institutional Review Board of the UMC Utrecht (Biobank Ethics
committee). For the present analyses an anonymized dataset was used of the UCC cohort up to
November 2018

The sample consisted of 3880 patients with information on 23 variables, measured during
the patient’s visit (Table 1 and Appendix B). To ensure full utilization of the observed data, we
completed this dataset using all 23 variables in k-nearest neighbor imputation, which aggregates

the values of the k nearest neighbors to an imputation

To evaluate the quality of the three selected imputation methods in individual patients, a leave-
one-out-cross-validation (LOOCV) procedure was used in the completed UCC dataset. In LOOCYV,
all but one patient are used as the training sample from which the overall mean or proportion
(method 1), or imputation models (method 2 and 3) are derived (Figure 4). In the remaining
hold-out patient, missing values are introduced for one or more predictor variables. As we apply
each scenario to each patient exactly once, the missing data mechanism is essentially missing-
completely-at-random (MCAR) ***. The summary information from the training sample is then used
to impute the missing predictor values in the hold-out patient. For CMI and JMI, we generated
50 imputations for each missing predictor value. This process is repeated until all patients have

been taken from the dataset exactly once.
We consider 8 scenarios where missing values occur for one predictor variable, and 8 scenarios

where multiple predictor variables are simultaneously missing (Figure 5). A detailed description

of how the scenarios were selected and of the R code are listed in Appendix C and D respectively.
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Table 1. Descriptive statistics (after imputation)

Part of missing

data scenarios Mean (sd) or n/total (%)*  Original missing %
Age (years) No 61.7(18.2) 0.00
Sex (1=female; 0=male) No 1987/3880 (51.2) 0.00
Smoking (1=yes; 0=no) No 363/3880 (9.4) 24.07
SBP (mmHg) Yes 142.8 (24.2) 10.54
TC (mmol/l) Yes 5.1(1.2) 24.54
LDL-c (mmol/l) Yes 3.1(1.3) 26.01
HDL-c (mmol/l) No 1.4 (0.4) 25.39
eGFR (mL/min/1.73m2) Yes 81.8(24.6) 15.98
History of CVD (1=yes; 0= no) Yes 1971/3880 (50.8) 23.45
History of PAD (1=yes; 0= no) No 335/3880 (8.6) 23.45
History of CHD (1=yes; 0= no) No 591/3880 (15.2) 23.45
History of CHF (1=yes; 0=no) No 284/3880 (7.3) 23.45
History of CVA (1=yes; 0= no) No 579/3880 (14.9) 23.45
History of DM (1=yes; 0= no) No 607/3880 (15.6) 2345
Polyvascular disease No 0.6 (0.7) 23.45
# of medications No 0.8(1.7) 27.24
BP lowering medication (1=yes; 0=no) No 705/3880 (18.2) 27.24
Statin (1=yes; 0= no) No 415/3880 (10.7) 27.24
HbA1c (mmol/mol) No 40 (10.7) 26.37
Years since first CVD (years) Yes 4.6(8.1) 26.21
Diabetes (1=yes; 0= no) Yes 755/3880 (19.5) 8.12
Diabetes duration (years) No 11.3(7.3) 86.11
Pulse pressure (mmHg) No 61.7 (18.9) 10.54

Legend - SBP: systolic blood pressure, TC: total cholesterol, LDL-c: low-density lipoprotein cholesterol, HDL-c: high-density
lipoprotein cholesterol, eGFR: estimated glomerular filtration rate according to the CKD epi formula, CVD: cardiovascular
disease, PAD: peripheral artery disease, CHD: coronary heart disease, CHF: chronic heart failure, CVA: cerebrovascular
accident, DM: diabetes mellitus, BP: blood pressure, HbAlc: glycated hemoglobin. * after KNN-imputation
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To evaluate the performance of the three imputation methods we used four performance metrics:

1. We calculated the root mean squared error (RMSE) between the average of the multiple
imputed predictorvalues (i.e. 50 imputations) and the true, original (i.e. before the simulation
of missing) predictor value to evaluate the accuracy of the imputations. The RMSE is a
performance measure that aggregates error due to bias and variability. Generally, an RMSE
of zero means perfectimputation and an increasing RMSE means decreasing performance of
the imputation. Clinical relevance of an RMSE depends on the natural range of the predictor.
Forexample, an RMSE of 0.5 is large for LDL-c (mean 3.0 SD 1.3 mmol/L) but not for SBP (mean
143 SD 24 mmHg).

2. Foreach hold-out patient, we assessed whether the original predictor value was in the 95%
confidence interval around the imputed predictor value. Subsequently, we calculated the
proportion of confidence intervals that consisted the original value (coverage). For a 95%
Cl, the coverage should ideally be equal to 95% ***. A lower coverage translates to imputed
predictor values that are too precise (which in turn may lead to estimates of predicted risk
that are too precise), whereas a coverage above 95% indicates that imputed predictor values
are too imprecise **. We assessed coverage only for continuous predictor variables.

3. We assessed the effect on treatment decision support for blood pressure in patients with
manifest cardiovascular disease (n=1971) to evaluate the clinical implications of the imputed
predictor values. Guidelines indicate that all patients with a history of CVD should receive
blood pressure lowering treatment when their blood pressure is higher than 140/90mmHg

. We adopted the LOOCV approach, and set values for SBP missing in the hold-out
patient. Subsequently, we imputed the missing value and compared the treatment decision
for the true value with the treatment decision for the imputed value (SBP <> 140mmHg).
Afterwards, we calculated the sensitivity, specificity, positive predictive value and negative
predictive value. Also, we illustrated the importance of reporting confidence intervals based

on imputed values to inform the discussion around treatment commencement.

We compared the risk predictions that were obtained in the absence of missing values (i.e. in
the original data) with the risk predictions that are based on imputations to evaluate the impact
of the imputed values on the precision of predicted risk. Ideally, the predictions that are based
on imputed values should have a similar distribution as the predictions that are derived from
the complete original data. To explore any deviation, we assessed the interquartile range of
predicted risk for a single missing predictor scenario and for a multiple missing predictor scenario.
Rather than developing a prediction model ourselves, we used the previously developed SMART

prediction model for risk of 10 year recurrent vascular disease as an example **. The prediction
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model includes 11 variables: age, sex, current smoker, SBP, diabetes, history of cerebrovascular
disease, aortic aneurysm or peripheral vascular disease, polyvascular disease, HDL-cholesterol

and total cholesterol.

With the exception of smoking, all predictor variables in single missing predictor scenarios had a
lower RMSE when using JMI or CMI as compared to mean imputation (Table 2). For most multiple
missing predictor scenarios, the RMSE is consistently lower when using JMI or CMI as compared
to mean imputation. The exceptions being history of CVD and smoking. Performance diminished
as more variables were missing. For example, the RMSE of years since 1 CVD event are 6.30 and
6.26 for JMI and CMI respectively when univariately missing, whilst mean imputation has a RMSE
of 8.06. When additional variables (e.g., SBP, history of CVD and smoking) are missing, the RMSE
foryears since 1*' CVD event for both JMI'and CMI increases to 7.58 and 7.84 respectively.

For JMI, the coverage reached nominal levels for all single missing predictor scenarios and multiple
missing predictor scenarios (Table 3). For CMI, the coverage reached nominal levels for all single
missing predictor scenarios and multiple missing predictor scenarios. For mean imputation,
coverage was 0% by definition for all imputed predictors because no uncertainty is taken into

account.

When assessing the treatment decision for blood pressure management according to the
prevailing clinical guidelines (see above), we selected 1971 out of the total 3880 patients with
manifest cardiovascular disease. We found that 1134 patients (57.53%) should be treated.
However, when blood pressure values were set to missing, the overall mean imputed value was 142
mmHg (Table 1), which is just above the treatment threshold of 140 mmHg. As a result, everyone
would have been treated when adopting overall mean imputation, such that 837 patients (42.47%)
would have been treated unnecessarily. When adopting JMI or CMI, only 16.08% or, respectively,
15.98% of patients would have been treated unnecessarily (Table 4). Hence, imputation of missing
blood pressure values using CMI or JMI was more adequate than mean imputation in terms of

decision making.
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Table 4. 2x2 tables of guideline adherence to treatment threshold given the point estimate of each method

True value

Treatment advised Treatment not advised

Mean imputation (2140mmHg) (<140mmHg)

Treatment advised

1134 837
(>140mmHg)
Point estimate
Treatment not advised 0
(<140mmHg)
Totals 1134 837

1971

1971

Sensitivity 100%, specificity 0%, Positive Predictive Value 58%, Negative Predictive Value (cannot be calculated) %

True value

Treatment advised Treatment not advised

Joint modeling imputation (= 140mmHg) (<140mmHg)

Totals

Treatment advised

946 317
(> 140mmHg)
Point estimate
Treatment not advised
188 520
(<140 mmHg)
Totals 1134 837

1263

708

1971

Sensitivity 83%, specificity 62%, Positive Predictive Value 75%, Negative Predictive Value 73%

True value

Treatment advised Treatment not advised

Conditional modeling imputation (=140mmHg) (<140mmHg)

Totals

Treatment advised

960 315
(>140mmHg)
Point estimate
Treatment not advised
174 522
(< 140mmHg)
Totals 1134 837

1275

696

1971

Sensitivity 85%, specificity 62%, Positive Predictive Value 75%, Negative Predictive Value 75%

To illustrate the importance of measuring uncertainty we provided an example in which we

compare the use of imputation in a real-life situation (table 5). In the example a patient with

an imputed SBP of 144mmHg was given an indication for blood pressure lowering treatment

according to the guidelines ***. However, given that the uncertainty around the imputed predictor

value crosses the treatment line of 140mmHG (scenario A), there is reasonable doubt this

imputation is too uncertain to be used for treatment decision making.
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Clinical interpretation of imputed SBP values and 95% confidence intervals from a patient with a history of CVD

SBP (95%Cl) 144 144 (138-150) 144 (142-146)
Treatment based on >140mmHg, >140mmHg, >140mmHg,
point estimate Start treatment Start treatment Start treatment
Treatment based on NA Uncertain >140mmHg,
95% Cl Start treatment

* estimated. Legend: SBP =systolic blood pressure, 95% CI=95% confidence interval A= hypothetical situation where
imputed value interval contains treatment threshold B=hypothetical situation where imputed value interval does not
contain treatment threshold

The predicted risks, given each method, did not seem to deviate much from the originally
predicted risk, given the complete data (table 6). When assessing the single missing predictor
scenario there was a difference between overall mean imputation (median difference of -1.713%
to the originally predicted risk) and the combination of JMI and CMI (median difference of
respectively 0.301% and 0.399% to the originally predicted risk). Further, we found that predicted
risks for mean imputation were more similar when compared to the complete data (standard
deviation = 15.12 versus the reference of 18.91). In contrast standard deviations of JMI and CMI

were 17.87 and 17.86 respectively.

In the multiple missing predictor scenario, there was a similar difference between mean
imputation (median difference of -2.064% to the originally predicted risk) and JMI and CMI (median
difference of respectively 0.375% and 0.390% to the originally predicted risk). With multiple
missing predictors the predicted risks for mean imputation were again more similar than the
predicted risk given the complete data (standard deviation = 14.42 versus the reference of 18.91).
The standard deviations of JMI and CM| were 17.67 and 17.68 respectively.

The difference between mean imputation and both JMI and CMl is especially apparent in higher
risk patients (i.e., 75% IQR) where mean imputation, as expected, underestimates the risk. This is
because mean imputation pulls the risk predictions of patients with missing values towards the
prediction foran “average” patient. As such JMI and CMI perform much better with regards to their

impact on prediction in higher risk patients, when compared to mean imputation.

71



Chapter 4

Table 6. Differences in predicted 10-year risk of CVD for both a single missing predictor scenario and a multiple missing
predictor scenario

Single missing Absolute risk Absolute risk Absolute risk

predictor: difference to difference to difference to
eGFR 25%IQR completed data Median completed data 75%IQR  completed data

Predicted risk

8.382% - 13.711% - 28.170% -
complete data
Predicted risk

7.287% -1.095% 11.997% -1.713% 23.035% -5.135%
(mean)
Predicted risk

. 8.767% 0.385% 14.012% 0.301% 27.734% 0.435%

(joint)
Predicted risk

8.786% 0.404% 14.110% 0.399% 27.783% 0.387%

(conditional)

Multiple missing Absolute risk Absolute risk Absolute risk

predictors: SBP, difference to difference to difference to
TC,LDL-cand eGFR 25%IQR completed data Median completed data 75%IQR  completed data

Predicted risk

8.382% - 13.711% - 28.170% -
complete data
Predicted risk

T473% -0.909% 11.647% -2.064 % 22.692% -5.478%
(mean)
Predicted risk

. 8.809% 0.427% 14.085% 0.375% 28.410% 0.240%

(joint)
Predicted risk

8.786% 0.404% 14.100% 0.390% 28.267% 0.097%

(conditional)

Legend: eGFR = estimated glomerularfiltration rate, SBP = systolic blood pressure, TC = total cholesterol, LDL-c = low density
lipoprotein cholesterol, IQR = inter quartile range.

Discussion

This project described the development and performance of three imputation methods to handle
missing data on an individual patient level in real-life clinical decision making. As expected, both
JMI - using draws from a normal distribution constructed from means and covariance in the
training sample and observed values in the patient - and CMI - using a conditional distribution
of each variable based on regression models fitted on all other variables, - were more accurate
and showed better coverage as compared to mean imputation, resulting in fewer inappropriate

treatment decisions and lower impact on predicted risk.

The accuracy measures — RMSE, coverage and clinical decision accuracy - were comparable for
JMI'and CMI. Hence, both methods can be used for generating live imputations in routine care.
Based on usability, we recommend JMI, as its implementation in decision support systems is
fairly straightforward and only requires information on the mean and covariance of the target
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population. Although its assumption of multivariate normality may be unrealistic for real life
clinical data, simulation studies have demonstrated that this rarely affects the performance of

imputation

Previous studies on imputation methods to handle missing data on anindividual patient level have
focused on the impact of missing values on the performance of a prediction model and evaluated
the use of mean imputation as well as the (re)development of a simplified prediction model

.Meanimputation was recommended due to its applicability in practice and relatively good
performance compared to other models, but was considered insufficient when strong predictors
were missing. For this reason, our proposed multiple imputation models appear particularly
relevant when strong or multiple predictors are missing. This was confirmed in our simulation
study: RMSE and coverage did not much deteriorate with increasing number of predictor values
that were simultaneously missing for the individual patient. Itis noted that our simulations, due to
the way missing data was introduced, were not able to distinguish between various mechanisms
by which data can be missing, e.g. data that is missing at random (MAR) versus data that is missing

completely at random (MCAR)

Furthermore, because the described imputation methods can accommodate for numerous patient
characteristics that are not necessarily disease-specific, they are highly scalable to other settings
and populations. However, it is likely that some local tailoring is necessary when imputation
models are derived from specific studies or settings that do not fully match the intended target
population. For JMI, the means and covariances could for instance simply be replaced by their
respective valuesin alocal "training” sample. For CMI, the regression coefficients can be revised
using recently described updating methods **". When the (local) training data are affected by
missing predictor values, advanced methods exist to estimate the mean and the covariance

All methods can be potentially incorporated within an EHR based computerized decision support
system and generate imputations based on observed data from individual patients extracted from
the EHR. Evidently, before implementing imputation models in clinical practice, it is of the utmost
importance to assess their validity, likely impact on treatment decisions, patient outcomes, as

well as any practical, security and ethical constraints.

Although multiple imputation offers a computational framework to account for missing values,
we recommend to always first optimize data collection, and to avoid having missing values: a
clinical decision making should never be based solely on imputed values. However, imputed
values can serve as a proxy for prior risk, setting an indication for more (advanced) diagnostic
tests. This is especially useful for expensive tests, tests associated with complications or when

tests are unavailable. Additional diagnostic testing should preferably only be performed when it
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is expected to change treatment and the potential clinical benefit outweighs the tests risk). Note
that in this study we do not take into account the (un)certainty around imputed values when

assessing treatment decision support.

In cardiovascular risk management, the decision to start treatment of a risk factor is based on i)
the predicted risk for a cardiovascular disease or patient characteristics that are per definition
associated with a high risk for cardiovascular disease and ii) the absolute value of the risk
factor itself. We focused on imputation models to recover the missing value and to quantify its
uncertainty. We demonstrated that the choice of imputation method may impact risk predictions
and decision making. Whilst the magnitude of this effect was not always substantial, it may
vary according to the number of missing predictors and their weight in the decision-making
process and should therefore be evaluated when applying these models in different settings

and populations.

Lastly, traditional (e.g. regression-based) prediction models assume complete input data, which
is often not realistic in routine clinical practice. Although we developed models for imputing the
missing values, which can subsequently be used to generate predictions, it is also possible to
develop prediction models that do not require complete information on the predictors. Well-
known examples are the use of decision trees with surrogate or sparsity-aware splits ,
the use of submodels ***, or the use of missing indicator variables *. More research is warranted
to evaluate whether these methods may offer any improvement in model predictions, as well

facilitate their implementation in routine care.

In summary, this study describes three imputation methods to handle missing values in the
context of computerized decision support systems in clinical practice. We found that JMI and CMI
provide imputations that are closer to the original value (as compared to mean imputation) and
able to reflect uncertainty due to missing data. We therefore recommend their implementation
in situations where information on relevant predictors is often incomplete due to practical

constraints.
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In this supplementary material we will explain which values are required to be calculated in the
training data and which R packages are used perimplemented method. We will also explain step
by step what we do for each method. We will focus specifically on JMl and CMI as mean imputation
is relatively straightforward. In addition, we will shortly cover the requirements and step-by-step

instructions for each evaluation method used. All code is added in appendix C.

As stated JMI allows tailored imputations, making use of covariances between all predictors. More
specifically, imputations are randomly sampled from a (multivariate) normal distribution that is
conditioned on the observed predictor values. For binary variables, a logistic regression model

is used to transform the drawn continuous values into discrete imputations.

To implement JMI we first have to calculate the expectation (mean) of all variables included in
the data and save this in a single vector. Additionally, a covariance matrix of the data has to be
saved in a separate object. We also save the class of each variable included in the data. On a
patient-by-patient basis we extract which variables are missing and which are not missing. From
the variables that are not missing we save the observed values in a separate vector. Then, using
the rcmvnorm function in R, we estimate the conditional multivariate normal distribution using
the provided expectations (mu), covariance matrix (sigma), dependent variables (i.e. names of the

missing variable), the given non-missing variables and all observed values

Forexample, consider a situation where we have two variables of interest x; (e.g. blood pressure)
and x; (e.g. Body Mass Index). These variables have been fully observed in a previous cohort
study, where we calculated their respective means p; and i, their respective variance of and
o4, and their correlation p; ,. Consider now the encounter with a single new patient for which the
Body Mass Index has been measured (i.e. x, is known), but for which the blood pressure cannot
be retrieved (and therefore is missing). Assuming that BMI and blood pressure follow a bivariate
Normal distribution, likely values for x| (given that x;, is known) can be described by a Normal

distribution with mean py), and variance (712|z where:
g1

e = M+ p1o— 00— 1)
a2

and

af, = (1= piyos
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Hence, imputations for x; can simply be generated by drawing random samples from the

distribution N(ul‘z,af‘z ). If only a single imputation is desired, the most likely value for x is

simply given by piy .

Consider now that x; is a binary variable (e.g. smoking) instead of a continuous variable. In this
case, samples from N{uy 2, 012‘2 ), denoted as x; |, may not be appealing to be used as imputation
because they are unlikely to be discrete (e.g. 0 or 1) and may even take negative values. For this

! ). Note that for

reason, imputations for x; are generated according to Bernoulli (m
exp (=X

each imputation, a new value of x; |, need to be sampled.

The code that was used can be found in appendix C (function: joint.Mi()). Note that the amount
of imputed values is specified beforehand (i.e. n.imp). Also note that the mean vector mu and
covariance matrix sigma of the training data can simply be obtained by applying the R functions
colMeans() and cov() to the corresponding data frame. In case the training data are affected by
missing values, R packages such as mvnmle can be used to obtain maximum likelihood estimates

for the original mean and covariance.

Toimplement CMI we, before calculating other separate values, estimate each conditional model
based on the training data. This entails iterating over all columns in the training data, specifying
a conditional model (e.g. logistic) based on the type of dependent variable (e.g. binary). We save

the conditional models in a list to be used in our imputation.

Note that we use the function estimice instead of glm when modeling continuous variables.
This approach is analogous to the imputation of missing continuous variables in the R package
mice when adopting the mice.impute.norm function. The estimice function is a least squares
implementation of ridge regression, and can therefore better handle situations where training

samples are relatively small.

The fitted regression models (one for each variable of interest) can then be used to generate
imputations in new patients. In similar fashion to JMI, our implementation of CMI requires the
means, covariance and data classes of the training data. The method first checks, on a patient-
by-patient basis, how many variables are missing. We start with this distinction as single and

multiple missing variable require a different approach.
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In short: when a single predictor has a missing value, the fitted regression model of that predictor
can directly be used to generate an imputed value. When multiple predictors have jointly missing
values, the conditional models need to be combined through Markov Chain Monte Carlo sampling

. Missing values are then first initialized to an arbitrary value, and updated iteratively by applying

the procedure for a single missing value successively on each missing value.

More specifically: when the patient has a single missing variable, we specify the variables on
which each model should be based, thus excluding the missing variable. If the missing variable
is binary we use the regression coefficients of the relevant imputation model (i.e. as estimated
in conditional.estimation function) and its corresponding covariance matrix to draw a random
sample of imputation coefficients. Hereto, we use a multivariate T-distribution as implemented
in the R function rmvt ***. The imputation coefficients are then used to calculate a probability,
which is then used with a Bernoulli distribution to draw an imputation for the missing value. This
process of drawing the betas, calculating a probability and drawing a value from the Bernoulli

distribution is done the amount of times we specify (i.e. n.imp).

When the missing variable is continuous, we use the Bayesian multiple imputation approach
described by van Buuren and implemented in the R function mice.impute.norm ***. This approach
generates imputation coefficients by sampling from a posterior distribution that is based on
the regression coefficients of the relevant imputation model (i.e. as estimated in conditional.
estimation function) and standard non-informative priors. This adaptation was necessary to
ensure that estimation uncertainty for the residual error variance is also taken into account when

generating imputations.

When two or more variables are missing for a single patient, the conditional imputation models
need to be used in conjunction to generate reliable imputations. Because each imputation model
requires complete data on all but one variable, we first initialize each missing variable with a
random starting value. To this purpose, we use the means and covariance of the training sample.
Then, on a variable-by-variable basis, the starting values are updated by imputing them using
all other (original or initiated) values. This process of updating randomly initiated values iterates
over each missing variable and is then repeated for a specified number of times to also replace
the updated values numerous times. This cyclic generation of updated values is necessary to
ensure that the imputed variables depend on each other and the observed data, but no longer
on theirinitial values. Updated values from the last iteration are then extracted and used as the
imputed values. The process of initializing starting values, updating these values and extracting

them is repeated for a prior specified amount (i.e. n.imp).
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The code in appendix C (functions: conditional.estimation() and conditional.MI()) was used to
implement conditional modelling imputation. Note that the object model_estimation is a list
containing the conditional imputation models for each variable, and can be obtained using the

function conditional.estimation().

Each method provided an three-dimensional array of the data, where the third dimension
consisted of the prior specified amount of imputations (i.e. 50 in our analysis) for each of the
missing variables. When calculating the RMSE we square the difference between the mean of
those imputations and the true value, which gives us a vector of squared deviations. The root
of the mean of that vector is the RMSE reported in this study. We calculated the coverage rate
by first calculating a 95% confidence interval for each imputed predictor in the hold-out patient

according to
mean(x;) + tg(,)OS/z x sd(x;)

Where xiis the ith imputed value (out of a total of 50), and tis a value from a two-sided t-distribution
with 50 degrees of freedom. We then specify a binary indicator showing if the confidence interval
included the true value. Taking the mean of the binary indicator gives us the percentage of

confidence intervals containing the true value.

The code in appendix C was used to calculate both evaluation measures for a single missing
predictor (function: test_single_missing()). Note that the object knnl is the exemplar dataset
where all predictors are fully observed. To accommodate deriving the necessary population
characteristics from the training data we completed any missing values in the UCC data using
K-nearest neighborimputation (KNN) **. In addition the character test_var specifies the variable

for which” missing values are introduced in the Jack-knife procedure.
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Age (years) 61.7(18.2) 0.00
Sex (1=female; 0=male) 1987/3880 (51.2) 0.00
Smoking (1=yes; 0= no) 363/2583 (14.05) 24.07
SBP (mmHg) 141.49 (24.2) 10.54
TC (mmol/l) 5.2(1.4) 24.54
LDL-c (mmol/l) 3.0(1.2) 26.01
HDL-c (mmol/l) 1.4 (0.4) 25.39
eGFR (mL/min/1.73m2) 80.7 (25.6) 15.98
History of CVD (1=yes; 0= no) 1063/1907 (55.7) 23.45
History of PAD (1=yes; 0= no) 271/2699 (10.0) 23.45
History of CHD (1=yes; 0= no) 472/2498 (18.9) 23.45
History of CHF (1=yes; 0= no) 283/2687 (10.5) 23.45
History of CVA (1=yes; 0= no) 449/2521 (17.8) 23.45
History of DM (1=yes; 0= no) 607/2363 (25.6) 23.45
Polyvascular disease 0.5(0.8) 23.45
# of medications 1.0(1.9) 27.24
BP lowering medication (1=yes; 0= no) 599/2224 (26.9) 27.24
Statin (1=yes; 0= no) 395/2428 (16.3) 27.24
HbA1c (mmol/mol) 40.7(11.8) 26.37
Years since first CVD (years) 3.8(8.5) 26.21
Diabetes (1=yes; 0= no) 755/2810 (26.9) 8.12
Diabetes duration (years) 14.9(12.0) 86.11
Pulse pressure (mmHg) 61.7 (19.5) 10.54

Legend - SBP: systolic blood pressure, TC: total cholesterol, LDL-c: low-density lipoprotein cholesterol, HDL-c: high-density
lipoprotein cholesterol, eGFR: estimated glomerular filtration rate according to the CKD epi formula, CVD: cardiovascular
disease, PAD: peripheral artery disease, CHD: coronary heart disease, CHF: chronic heart failure, CVA: cerebrovascular
accident, DM: diabetes mellitus, BP: blood pressure, HbAlc: glycated hemoglobin. * after KNN-imputation
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Given that the interest of the study is to provide a method with which a prediction model is able
to be used whilst missing predictor values are present, we looked at combinations of missing
predictor values that are observed in real data (see below). This figure describes the most common
missing intersections of predictor variables. No distinction concerning variable importance is
made. All single missing predictor scenarios are included, regardless of their occurrence in real

data, as such the apparent single scenarios in the figure below can be ignored.

Each of these intersections is used in the study as a possible scenario for which the imputation
methods should realistically work well. For a combination of missing predictor values to be
included in the study it should at least be apparent in >1% of patients. This resulted in the inclusion

of eight distinct multiple missing predictor scenarios.
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The next part of variable selection was identifying the auxiliary variables that are inextricably
linked to any of the predictor variables. Using these variables in an attempt to impute their
respective predictor value via JMI or CMI would overestimate their performance as they are highly
reliant on the relationship between available variables and the missing predictor value to be
imputed. As such it is important that these auxiliary variables are not available for information
extraction when their respective predictor values are missing. The variables were identified using
the clinical experience of the authors as well as by using visualizations of the various combinations
of missing value scenarios in the complete data (see next figure). For example, it was noticed that

pulse pressure, or SAP, were never exclusively missing.

The combinations identified are: (1) SAP and pulse pressure, (2) diabetes and diabetes duration,
(3) history of CVD and history of PAD, CHD, CHF, CVA and polyvascular disease and (4) total

cholesterol, HDL-cholesterol and LDL-cholesterol.
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Intersection Size
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Appendix D - R code
Code available upon reasonable request.
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CHAPTER S

Real-time imputation of missing predictor
values in clinical practice




Introduction - Use of prediction models is widely recommended by clinical guidelines, but
usually requires complete information on all predictors that is not always available in daily

practice.

Methods - We describe two methods for real-time handling of missing predictor values when
using prediction models in practice. We compare the widely used method of mean imputation
(M-imp) to a method that personalizes the imputations by taking advantage of the observed
patient characteristics. These characteristics may include both prediction model variables and
other characteristics (auxiliary variables). The method was implemented using imputation from
a joint multivariate normal model of the patient characteristics (joint modeling imputation; JMI).
Data from two different cardiovascular cohorts with cardiovascular predictors and outcome were
used to evaluate the real-time imputation methods. We quantified the prediction model’s overall
performance (mean squared error (MSE) of linear predictor), discrimination (c-index), calibration

(intercept and slope) and net benefit (decision curve analysis).

Results - When compared with mean imputation, JMI substantially improved the MSE (0.10 vs.
0.13), c-index (0.70 vs 0.68) and calibration (calibration-in-the-large: 0.04 vs. 0.06; calibration slope:
1.01 vs. 0.92), especially when incorporating auxiliary variables. When the imputation method

was based on an external cohort, calibration deteriorated, but discrimination remained similar.

Conclusions - We recommend JMI with auxiliary variables for real-time imputation of missing
values, and to update imputation models when implementing them in new settings or (sub)

populations.

Keywords: missing data; joint modeling imputation; real-time imputation; prediction;

computerized decision support system; electronic health records



Real-time imputation of missing predictor values in clinical practice

The identification and treatment of patients at increased risk for disease is a cornerstone of
personalized and stratified medicine . Often, identification of high-risk patients involves
the use of multivariable risk prediction models. These models combine patient and disease
characteristics to provide estimates of absolute risk of a disease in an individual . For
example, prediction models for cardiovascular disease such as Framingham heart score (FHS) */,
HEART score ***, ADVANCE **/, Elderly ** and SMART *** are well known examples **. Additionally,
cardiovascular guidelines recommend use of prediction models integrated in computerized

decision support systems (CDSS), to support guideline adherent, risk-informed decision making

When applying a risk prediction modelin real-time, which constitutes its application in individual
patients in routine clinical practice, one needs to have the individual’s information (values)
on all predictors in the model. Otherwise no absolute risk prediction by the model can be
generated, restricting its use in situations when a physician is unable to acquire certain patient
measurements. For example, for cardiovascular risk assessment, prediction models require
complete information typically on age, sex, smoking, co-morbidities, blood pressure and lipid
levels . With the increased availability of large databases with information from electronic health
care records, automated implementation and use of risk prediction models within CDSS using
routine care (EHR) data has gained much interest . However, the use of EHR databases
faces many challenges, notably the incompleteness of data in the records . The usability
of a prediction model may thus still be limited in clinical practice if its implementation cannot

standardly handle missing predictor values in real time. A detailed example is given in Box 1.

Avariety of strategies have been developed for daily practice to handle missing predictor values
inreal-time .Imputation strategies are of interest since they allow for direct use of well-known
prediction models in their original form. In short, imputation substitutes a missing predictor value
with one or more plausible values (imputations). In its simplest form, these imputations solely rely
on the estimated averages of the missing variables in the targeted population. Therefore, they
reflect what is known about the average patient. These simple methods can be applied directly
in real-time clinical practice, provided that summary information (e.g. mean predictor values)
about the targeted population is directly available. Additionally, imputations can account for
the individual patient’s observed predictor values by making use of the estimated associations
between the patient characteristics in other patients. In that case, the imputations reflect all what
is known about the specific individual at hand. Usually, the implementation of more complex

imputation strategies requires direct access to the raw data from multiple individuals, which is
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typically problematic in clinical practice (e.g. due to operational or privacy constraints). As such,
alternative strategies are required to make the imputation model applicable in real-time clinical

practice.

Although real-time imputation of missing predictor values in clinical practice offers an elegant
solution to generate predictions in the presence of incomplete data, the accuracy of these
predictions may be severely limited ifimputed values are a poor representation of the unobserved
predictor values. In particular, problems may arise when (i) the imputation procedure does
not adequately leverage information from the observed patient data, and (ii) if the estimated
population characteristics used to generate the imputation(s) poorly represent the population to
which theindividual patient belongs. Itis currently unclear how these novel real-time imputation

methods influence the accuracy of available prediction models.

In this paper we explicitly focus on the relatively new area of real-time imputation, which has not
been studied often before in similar literature. Most similar studies that address missing data
consider and attempt to halt the onset of missing data in a particular dataset with missing values
in study individuals, rather than a missing predictor in a single individual that is encountered
in real-time clinical practice. Briefly, we investigate the performance of these two real-time
imputation methods to handle missing predictor values when using a prediction model in daily
practice. We evaluated both the accuracy of imputation and the impact of imputation on the
prediction model’s performance. Furthermore, transportability of the imputation procedures

across different populations was empirically examined in two cardiovascular cohorts.

An example of real-time imputation in an individual patient

A patient visits their physician for a regular check-up. The patient and physician have access to a
clinical decision support system that provides information on previously ordered test results (automatically
retrieved from a registry). The physician would like to know the 10-year risk for the patient to suffer from a
cardiovascularevent, in order to determine whether any lifestyle changes or preventative therapies are needed.
A calculator to determine this risk (e.g. the pooled cohort equations) is incorporated in the clinical decision
support system, but requires complete information on several patient characteristics, including their BMI,
cholesterol levels, and blood pressure. Many of these predictors are directly available (e.g. age, gender) at the
visit. However, for some patients, important lab results (e.g. LDL cholesterol) are yet unknown or outdated
(e.g. when retrieved from the registry). It is then not possible to determine the absolute risk of CVD for these
patients. Our algorithm provides a substitute value for the missing LDL-cholesterol in real-time, enabling the

calculation of a risk estimate ‘on the spot’.
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We conducted a simulation study to evaluate the impact of real-time imputation of missing
predictor values on the absolute risk predictions in routine care. Hereto, we considered 2 large
datasets and two real-time imputation methods. The datasets considered were the ongoing
Utrecht Cardiovascular cohort - Cardiovascular risk management (UCC-CVRM) and the Utrecht
Cardiovascular cohort - Secondary Manifestation of ARTerial disease (UCC-SMART) study
Both studies focused on cardiovascular disease prevention and included newly referred patients
visiting the University Medical Center (UMC) Utrecht for evaluation of cardiovascular disease
. Baseline examinations (i.e. predictors) for the UCC-CVRM included only the minimum set

as suggested by the Dutch Cardiovascular Risk Management Guidelines

We considered mean imputation (M-Imp) and joint modelling imputation (JMI)
Mean imputation was chosen as a comparison due to its straightforward implementation
and extensive use during prediction model development and validation . A major
advantage of mean imputation is that it does not require information on individual patient
characteristics and can be implemented without much difficulty in daily clinical practice.
Using mean imputation, missing predictor values are simply imputed by their respective mean,
usually from a representative sample (e.g., observational study). JMI was chosen because it
allows to personalize imputations by adjusting for observed characteristics. To this purpose,
JMI implements multivariate methods that have extensively been studied in the literature
. Some modifications are required to implement JMI for real-time imputation, these
have been discussed previously . In JMI, missing predictor values are imputed by taking the
expected value from a multivariate distribution that is conditioned on the observed patient
data. Implementations of JMI commonly assume that all variables are normally distributed, as
this greatly simplifies the necessary calculations. This method then minimally requires mean
and covariance estimates for all variables that are included as predictors in the prediction
model from a representative sample (e.g., observational study). As an extension to JMI, we
also consider that additional patient data (auxiliary variables) are available and can be used to

inform the imputation of missing values (denoted as JMI?%)

All imputation methods can be directly applied to individuals and only require access to
estimated population characteristics (i.e., mean and covariance estimates of the predictors)
to account for missing predictor values. For both imputation methods the required population

characteristics are easily stored and accessible in ‘live’ clinical practice within any accompanying
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CDSS. The outcome is excluded from the imputation procedure as this information is not
available when imputing the missing predictor values, and is the target of the prediction model.
The corresponding source code is available from the supplementary information (Appendix E).

Table 1. general characteristics of the study populations

UCC-SMART UCC-CVRM
Mean (sd) or Mean (sd) or
n/total (%)* n/total (%)**

Age (years) 56.28 (12.45) Predictor 61.7 (18.18) Predictor
Gender (1=male) 8258 (65.50) Predictor 1987 (51.21) Predictor
Smoking (1=yes) 3560 (28.24) Predictor 363(9.36) Predictor
SBP (mmHg) 144.67 (21.58) Predictor 142.75 (24.24) Predictor
TC (mmol/l) 5.11(1.37) Predictor 5.07 (1.24) Predictor
HDL-c (mmol/l) 1.27(0.38) Predictor 1.36 (0.36) Predictor
DM (1=yes) 2299 (18.23) Predictor 755 (19.46) Predictor
AD (1=yes) 8332 (66.09) Predictor 705 (18.17) Predictor
LDL-c (mmol/l) 3.15(1.22) auxiliary 3.08(1.27) auxiliary
HbAlc (mmol/mol) 3.69 (0.20) auxiliary 3.66(0.22) auxiliary
MDRD (ml/min/1.73m2) 79.90 (19.54) auxiliary 81.79 (24.56) auxiliary
History of CVD (1=yes) 8134 (64.51) auxiliary 1971 (50.80) auxiliary
Time since 15*CVD event (years) 2.37(5.93) auxiliary 4,642 (8.06) auxiliary
MPKR (mg/mmol) 4.10(13.71) auxiliary NA None
CRP (mg/L) 0.71 (1.13) auxiliary NA None

AF (1=yes) 164 (1.30) auxiliary NA None
LLD (1=yes) 6836 (54.22%) auxiliary NA None

PAI (1=yes) 6805 (53.97%) auxiliary NA None

Legend - SBP: systolic blood pressure, TC: total cholesterol, HDL-c: high-density lipoprotein cholesterol, , DM: diabetes
mellitus, AD: antihypertensive drugs, LDL-c: low-density lipoprotein cholesterol, HbAlc: glycated hemoglobin, MDRD:
modification of dietin renal diseases, MPKR: micro-protein/creatinine ratio, AF: atrial fibrillation, lipid-lowering drugs, PAI:
platelet aggregation inhibitors. * after multiple imputation by chained equations.

Study population

The UCC-CVRM sample consisted of 3.880 patients with 23 variables and the UCC-SMART study
consisted of 12.616 patients with 155 variables. Some patient values were missing in UCC-CVRM
(for 1057/3880 patients) and in UCC-SMART (for 2028/12616 patients). For the purpose of our
methodological study, we had to have complete control over the patterns of missing predictor
data and the true underlying predictor values, and needed to start with a fully observed data set
that could be considered as the reference situation. To that end, for each dataset separately, we
imputed all missing data once using Multiple Imputation by Chained Equations (for UCC-SMART)
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and nearest neighbor imputation (for UCC-CVRM) . These then completed data sets formed the
reference situation after which missing predictor values were generated according to various
patterns (see below). Table 1 provides an overview of the completed variables in both cohorts,
and how they were subsequently used in our simulation study. To assess the relatedness between
UCC-CVRM and UCC-SMART, we calculated the membership c-statistic *“*, which ranges between
0.5 (both samples have a similar case-mix) and 1 (the case-mix between both samples does
not have any overlap). We found a membership ¢ of 0.86, which indicates that the population
characteristics of UCC-CVRM and UCC-SMART differ greatly.

We performed 4 simulation studies to investigate the impact of real-time predictor imputation
on absolute risk predictions (Figure 1). In the first simulation, we considered the ideal situation
where a (new) patient stems from the same population (i.e. UCC-SMART) as the one that is used to
develop the prediction model, to derive the population characteristics, and to test the accuracy of
individual risk predictions after the real-time imputations. In the second simulation, we considered
a less ideal situation where imputations are based on the characteristics from a different, but
related, population (i.e. UCC-CVRM). This simulation mimics the situation where development
data are unavailable (or otherwise insufficient) to inform the imputation procedure, and thus
assesses the transportability of the imputation model. In the third simulation, we investigated
the situation where the estimated population characteristics underlying the imputations are
derived from an external cohort (UCC-CVRM) and subsequently updated using local data (from
UCC-SMART). This resembles a situation in which a small amount of local data is available,
though insufficient to entirely inform the real-time imputation procedure. In the final simulation,
we considered the most extreme scenario where 3 different populations are used to derive a
prediction model (Framingham Risk Score *'), the imputation model (UCC-CVRM), and to test the
accuracy of the real-time imputations on the individuals’ absolute risk predictions (UCC-SMART).
This simulation mimics a more common predicament in which local data is insufficient to inform
the imputation procedure and there is no access to the data from which the prediction model

had been developed.
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the simulation studies illustrated

— Simulation studies
(@ UCC-SMART population @ UCC-CVRM population @ FRS population (8)

To be estimated:

IM Imputation model
PM Prediction model
NP New patient (with missing values)

All characteristics are estimated in the UCC-SMART
population

The prediction model and “new”patients are
m n 9 derived from UCC-SMART, whilst the imputation
model is estimated in UCC-CVRM

The prediction model and “new” patients are
) derived from UCC-SMART, whilst the imputation
model is estimated in UCC-CVRM, which is

enriched by patients from UCC-SMART

The imputation model is estimated in UCC-CVRM,
n m the prediction model FRS is used and new patients
are taken from UCC-SMART

In all simulation studies, we considered UCC-SMART as the target population. For simulations

1-3, we adopted a leave-one-out-cross-validation (LOOCV) approach to develop the prediction
model, to derive the population characteristics, and to evaluate the accuracy of risk predictions.
This procedure ensures that independent data are used for the evaluation of risk predictions. In
the LOOCV approach both the prediction model imputation model were derived from all but one
patient (leave-one-out) of UCC-SMART. In the remaining hold-out patient, one or more predictor
variables were then set to missing (see Figure 2 for an overview of which sets of predictor values
were set to missing). The leave-one-out procedure was repeated until all patients had been

removed from UCC-SMART exactly once (Figure 3).
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Multivariate scenarios of missing predictor values observed in UCC-CVRM

— Multivariable missing data scenarios in the data

& &

[ missing Q/,;o"\ o N

N X

observed SR &
L F S &
NP ZEN o
< <@ -(:0 ‘(‘o QQ' &
L AL S
Q?’q,o'\'b “)o\"bo\'&\(\((\o
RO 7 QY VORI W

Scenario 1 . . Observed in 12.94% of patients
Scenario 2 . . Observed in 12.86% of patients
Scenario 3 . . . Observed in 2.60% of patients
Scenario 4 . . . Observed in 1.34% of patients
Scenario 5 . . . . . Observed in 4.02% of patients
Scenario 6 . . . . . . Observed in 3.01% of patients
Scenario 7 . . . . . . . . Observed in 0.00% of patients
Scenario 8 . . Observed in 0.00% of patients

LOOCV was not needed for the 4™ simulation as each task (prediction model development,

derivation of population characteristics, and evaluation of risk predictions) involved a different

dataset (Figure 4).
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Simulation study 1-3 in detail

—Simulation study 1-3

. hold-out patient
L In a dataset with n patients take one
training set . >

hold-out patient for analysis.

patient 1 . (1)

patient 2 H We repeat this procedure until all
patients have been taken from the

. dataset exactly once
patient n .

In training set do:

Estimate means and covariance of all
predictors in the model

Alternatively estimate means and covariance of all predictors in the model
using similar, external data (e.g. UCC-CVRM)

Alternatively estimate means and covariance of all predictors in the
model using similar, external data (e.g. UCC-CVRM) enriched with varying
amounts of local data from the training set

1 2 3 4 5 Use framingham heart score
L risk variables to estimate a Cox

proportional hazards regression

S S E— |
. Impose missing predictor values usin,
Scenario 1 P K s . &
pre-determined scenarios
i r-l-a
1 2 1 14 1
12 13504 s

-1 -2

. Impute missing predictor values usin,
Imputation P & P e

means, JMI or JMI with auxiliary variables

Predict risk for hold-out patient using

. imputed predictor values

! Prediction !

Evaluation

Evaluate accuracy of imputation and
performance of prediction model
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Simulation study 4 in detail

— Simulation study 4

We consider UCC-SMART (S) as our ‘local’
S x

H (complete) UCC-SMART data data and UCC-CVRM (C) as our ‘external,
(incomplete) UCC-CVRM data but similar’ data

First, in external data do:

Extract missing data patterns from real
clinical data (C)

Apply missing data patterns (MD) to
UCC-SMART data (S) to create
incomplete local data (Si)

which were derived from UCC-CVRM

Predict risk with the Framingham Risk
Score (FRS) for each patient using
imputed predictor values

! Prediction !

Evaluation

Evaluate accuracy of imputation and
performance of prediction model

Impute missing predictor values using
means, JMI or JMI with auxiliary variables
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Forall simulation studies, the prediction model of interest was a Cox proportional hazards model
predicting the onset of cardiovascular disease or coronary death. This model was derived in the
LOO (leave-one-out) subset of UCC-SMART using predictors from the original FRS (simulation
1-3), or retrieved from the literature (simulation 4). A detailed description of how the prediction
models were fit and the R code is listed in Appendix E. As a sensitivity analysis, we fitted a Cox
regression model with only age and gender as predictors and included a scenario where, though

unrealistic, age and gender were missing.

We estimated the population characteristics necessary for the real-time missing data methods

(i.e. the imputation models) in the following data (Figure 1):

> inthe entire LOO subset of UCC-SMART (simulation 1),
> in the entire dataset of UCC-CVRM (simulation 2 and 4)
> in the entire dataset of UCC-CVRM, plus a random sample of the LOO subset of UCC-SMART,

which were simply stacked. (simulation 3)

For simulation 1-3, we set one or more predictor variables to missing in each hold-out patient
of UCC-SMART (scenarios illustrated in Figure 2). To match the introduction of missing values
with real life occurrences of missingness, we included scenarios based on observed patterns of
missingness in UCC-CVRM. For simulation 4, missing values were generated for the entire UCC-
SMART dataset, rather than for individual patients. We subsequently impute the missing values

once using the following strategies:

1. Mean imputation. Any missing predictor value was imputed with their respective mean as
estimated in step 2.

2. JMI with observed predictors only. Each missing predictor value is replaced by its expected
value conditional on the individual’s observed predictors. The expected value is derived using
the estimated population means and covariances from step 2.

3. JMIwith observed predictors and auxiliary variables. Each missing predictor value is replaced
by its expected values conditional on all the observed patient data. Note that this includes

additional patient data that are not included as predictors in the prediction model (Table 1).
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The imputed missing predictor values were then used together with the observed predictor
values to calculate the linear predictor n, (where n = x +Bx,+...) and the 10-year predicted
absolute risk. The predictions from all UCC-SMART patients were then used to assess the following
performance measures: 1) Mean Squared Error (MSE) of the prediction model’s linear predictor, (2)
concordance (C-)statistic, 3) calibration-in-the-large, 4) the calibration slope and 5) the decision

curve

4. The MSE of the linear predictor of the prediction model can be described as the average
squared difference between the linear predictor afterimputation and the true, original linear
predictor (i.e. before introducing missing values) **. The linear predictor can be described as
the weighted sum of the predictors of a given patient, where the weights consist of the model
coefficients ***. Lower values for the MSE are preferred.

5. The C-statistic can be described as the ability of the model to discern those who have
experienced an event and those who haven'’t . Itis represented by the probability of
correctly discerning who, between two random subjects, has the higher predicted probability
of survival. The C-statistic is ideally close to 1.

6. Calibration-in-the-large (CITL) can be described as the overall calibration of the model (i.e.
agreement between average predicted risk and average observed risk) s
interpreted as an indication of the extent to which the predictions systematically over- or
underestimate the risk; the ideal value is 0.

7. The calibration slope can be described as a quantification of the extent that predicted risks
vary too much (slope <1) or too little (slope > 1), and is often used as an indication of overfitting
or lack of transportability . Theideal valueis 1.

8. The decision curve can be described as a way of identifying the potential impact of leveraging
individual risk predictions for decision making . It considers a range of thresholds
(e.g. 10%) to classify patients into high risk (indication of treatment) or low risk (no treatment
required) and calculates the net benefit (NB) for each cut-off value. A decision curve is then
constructed for 3 different treatment strategies: treat all, treat none, or treat according to risk
predictions. Ideally, the decision curve of the latter strategy depicts consistently better NB

over the complete range of thresholds.

97



Chapter 5

Based oninternal validation by means of LOOCV, the optimism corrected c-statistic for our newly
derived prediction model in UCC-SMART was 0.705. As expected, the CITL and calibration slope
were near 0 (-0.0005) and 1 (0.9999) respectively. Therefore, there were no signs of miscalibrations
and/or over/underfitting of the developed CVD risk prediction model. The prediction model that
was based on age and gender yielded an optimism corrected c-statistic of 0.679, with a slope of
0.9999 and an intercept of -0.00005. Finally, the refitted FRS model (as derived from the literature)
yielded a c-statistic of 0.6280 and a slope of 0.8205 in UCC-SMART.

The MSE of the linear predictor was consistently lower when adopting JMI, as compared to M-Imp.
The implementation of Ml was particularly advantageous when adjusting for auxiliary variables
that were not part of the prediction model (see table 2 for the results of scenario 1 and 5). For
instance, when total cholesterol (TC), HDL-cholesterol (HDL-c), use of Antihypertensive Drugs
(AD), smoking and Diabetes Mellitus (DM) were missing (i.e. scenario 5), M-Imp yielded an MSE
of 0.130, whereas the MSE for JMI was 0.126 or even 0.101 when utilizing auxiliary variables. As
expected, differences in MSE were lower, when imputing other predictors that did not have a
strong contribution in the prediction model, or much more pronounced when imputing important
predictors (see table 3 for the results of the sensitivity analysis with age and gender missing).
This expected discrepancy results from the fact that the linear predictor is a weighted average
of the predictors and the important variables simply have larger weights. When imputation was
based on the characteristics of a different, but related, cohort to UCC-SMART, all imputation
strategies yielded a substantially larger MSE. Forinstance, when TC, HDL-c, AD, smoking and DM
were missing (i.e. scenario 5), the MSE increased from 0.130 to 0.193 for M-Imp, and from 0.1014 to
0.159 for JMI2*. Again, JMI?* was superior to M-Imp and JMI based on predictor variables only. As
expected, the MSE for all imputation methods improved when the imputation model was based
on a mixture of patients from both the UCC-CVRM (different but related) and the UCC-SMART (the
target cohort for predictions). However, the lowest MSE’s were obtained when imputations were
based on UCC-SMART data only.

The c-statistic was higher for both implementations of JMI, when compared to M-Imp (Table 2).

Using JMIP*further increased the c-statistic substantially, especially when important predictors
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(i.e. age and gender) were missing (Table 3). In this scenario, M-Imp yielded a c-statistic of 0.61,
whereas M| yielded a c-statistic of 0.62 or even 0.67 if auxiliary variables were used. Discrimination
performance did not much deteriorate when imputation was based on the characteristics from a
different but related population. Again, JMI***was superior to M-Imp and JMI based on predictor
variables only. The c-statistic, for all imputation methods, improved when the population
characteristics from UCC-CVRM were augmented with data from UCC-SMART. However, when
an external prediction model was used in combination with external population characteristics
(simulation 4), the utilization of auxiliary variables did not seem to improve on the discriminatory
ability of risk predictions (Table 4). The highest c-statistics were obtained when imputations were

based on UCC-SMART data only and a locally derived prediction model was used.

The CITL was consistently closer to the ideal value (i.e. 0) for all scenarios when using both
implementations of JMI, when compared to M-Imp. Using JMI?** improved the CITLs further
towards their ideal value (Table 2). When imputation used estimated population characteristics
from UCC-CVRM, all imputation strategies had a substantially worse CITL. The performance drop
was most notable as more predictors in the model were missing. Again, JMI?** was superior to
M-Imp and JMI based on predictor variables only. The CITL, for all imputation methods, improved
when the population characteristics from UCC-CVRM were augmented with data from UCC-SMART.
When an external prediction model was used, M-Imp yielded the “best” CITL (-0.167 as opposed
to -0.2030 for JMI and -0.2256 for JMI?*; Table 4). The CITLs were closest to 0 when imputations
were based on UCC-SMART data only.

The use of JMI?* improved the calibration slope as compared to M-Imp or JMI using predictor
variables only (Table 2). When imputation used population characteristics from UCC-CVRM, the
variability of predicted risks generally became too large (slope < 1 for all imputation methods).
The performance drop was most notable as more predictors were missing. When an external
prediction model was used, both JMI and JMI**yielded better calibration as compared to M-Imp
(Table 4), although JMI2* performed worse than JMI. The best calibration slopes were found for
imputations based on UCC-SMART data only.

Figure 5visualizes calibration plots for scenarios 1,5 and 8. It shows that when important predictors
(i.e. age and gender in scenario 8) are missing there is a notable impact on the calibration of
10-year risk predictions, especially when using external data for generating imputations. When
lessimportant predictors are missing (scenario 1 and 5) the differences between the imputation

methods are much less pronounced in the calibration plots.
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When important variables were missing, imputation through JMI with auxiliary variables yielded
an improved net benefit over the whole range of thresholds when compared to M-Imp and JMI
(Figure 6), and was substantially better than treat-all or treat-none strategies. The observed net

benefit did not much deteriorate when imputation was based on a different, but related, dataset.

Acomplete detailed overview of all results (e.g. all scenarios) can be found in the supplementary

material.

Calibration plots for scenario 1,5and 8
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Figure 6: Decision curve analysis simulation 1
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Our aim was to evaluate the impact of using real-time imputation of missing predictor values on
the performance of cardiovascular risk prediction models in individual patients. We considered
mean imputation and joint modeling imputation to provide automated real-time imputations.
Our results demonstrate that in all scenarios and for all parameters studied (c-index, calibration
and decision curve analysis) JMI leads to more accurate risk predictions than M-Imp, especially
when used to impute a higher number of missing predictors (e.g. scenario 5 for prediction of
cardiovascular events). The performance of JMI greatly improved when imputations were based
on all observed patient data, and not restricted to only the predictors that were in the prediction
model. Finally, we found that real-time missing predictor imputations were most accurate when
the imputation method relied on characteristics that were directly estimated a sample from the
target population (i.e. the population for which predictions are required), rather than from an
external though related dataset. In the latter case, while discriminative performance was stable,
calibration clearly deteriorated (in terms of both CITL and calibration slope). Thisimplies that the
need for local updating, as is well known in clinical prediction modeling, may extend to imputation
models. In practice, a prediction model is ideally developed together with an appropriate missing
data method for real-time imputation. When high quality local data are available, performance
gains can be expected for that setting by local updating of both the prediction model and the

imputation model.

Our findings suggest that JMI should be preferred over M-Imp for real-time imputation of missing
predictor values in routine care, ideally making use of additional patient data (variables) that are
not part of the prediction model. The underlying rationale, is that some variables that are highly
correlated are unlikely to both end up in a prediction model (due to little added value), but are
quite valuable forimputation purposes when one or the other is missing. The implementation of
JMlis very straightforward, and only requires estimating the mean and covariance of all relevant
patient variables in a representative sample. Imputations are then generated using a set of
mathematical equations that are well established in the statistical literature . As JMI does not
rely on disease-specific patient characteristic and lends itself excellently for local tailoring ", it is
considered highly scalable to a multitude of clinical settings and populations. Routine reporting of
population characteristics (i.e. means and covariance) would greatly facilitate the implementation
of risk prediction models in the presence of missing predictor data in daily practice, and has

previously been recommended to improve the interpretation of validation study results

A limitation we observed in the data was that most of the explained variability in risk of

cardiovascular disease, as defined in our study, could be inferred based on age and gender.
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Although additional predictors (e.g. blood pressure, cholesterol levels) somewhat improved the
model’s discrimination and calibration performance, their individual added value appears small.
Afurther limitation of the data was the lack of strong correlations between predictors other than
age and gender (appendix D). Consequently, the information available for JMI to leverage observed
patient characteristics was limited. These findings are in line with earlier research, suggesting that
M-Imp performs similarly to more advanced imputation methods when considering commonly
encountered missing data patterns in cardiovascular routine care *'*. However, our study reveals
that JMI had the advantage even under these typical but difficult settings. Gains are expected
to be larger when the interrelation of predictors is stronger and especially when key auxiliary
variables can be identified. Moreover, for many disease areas, risk prediction relies more strongly
on a multitude patient characteristic that are more likely to be missing (e.g. certain imaging

characteristics, biomarkers or genetic profiles), and JMI offers a larger advantage.

Various other aspects need to be addressed to fully appreciate these results. First, we restricted
our comparison to M-Imp and JMI. Considering M-Imp was picked as a comparator, we choose
JMlasitwas well established in the statistical literature and permitted relatively straightforward
adjustments to be applied in clinical practice via the EHR “***. Other, more flexible, imputation
strategies exist, and have been discussed at length *“. These strategies generally require more
complex descriptions of the population characteristics and adopt more advanced procedures
to generate imputations. For this reason, their implementation appears less straightforward in
routine care. A more detailed overview of the impact of using other strategies for handling real-
time missing predictor value imputation is warranted. Also, the use of multiple imputation may be
preferable with respect to prediction accuracy in case of models with a non-linear link function
such as the Cox or logistic model, the reason is multiple imputation can correctly convey the
influence of imputation uncertainty on the expected prediction. The available R code already
provides in this, though in this study we explicitly choose to use single imputation. We choose
single imputation due to its convenience in real-time clinical practice. The imputation processis
quick, in contrast to the usually computationally expensive multiple imputation, and it presents
an individual’'s imputed predictor value which may be informative to the clinician. Additionally,
rather than imputing a random draw, we impute the most likely value in order to be able to
easily reproduce model predictions from the imputed data. Ideally, the predictions would be
based on multiple imputation from the conditional distribution of the missing predictors rather
than representing their conditional means. Further extensions, for example multilevel multiple
imputation, may also be recommended in specific situations where the prediction model and
accompanying imputation models are derived from large datasets with clustering *"*. Lastly,

whilst there are many clinical settings and populations the study only considered cardiovascular
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risk prediction. The performance of JMI, when compared to M-Imp, might have been further

emphasized had other clinical settings been considered.

In summary, this study evaluates the use of two imputation methods for handling missing
predictor values when applying risk prediction models in daily practice. We recommend JMI over
mean imputation, preferably based on estimated from local data and with the use of available
auxiliary variables. The added value of JMI is most evident when missing predictors are associated

with either observed predictor values or auxiliary variables.
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Appendix D: Correlation matrix (with additional patient variables) - left: local data (SMART), right: external data (UCC)

Appendix E - R code
Code available upon reasonable request.
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CHAPTER 6

Real-time handling of missing data in
the application of prediction models:
a comparison of methods




Introduction - The need to account for missing values in real time is unique to the application
of prediction models but is underrepresented in the literature. In this study, we aim to evaluate
various real-time strategies to handle the pervasive problem of missing data when using clinical
data to make predictions on patients for whom part of the data is missing. We assess the influence
of built-in missing data handling mechanisms on prediction accuracy and compare it with existing

real-time imputation methods (e.g., joint modeling imputation).

Methods - We evaluate the effect of various missing data handling methods under specific
missing data circumstances as would occur in medical practice in a simulation study. Hereto,
we consider three types of missing data handling strategies: Joint Modelling Imputation (JMI),
Pattern Submodels (PS), and Surrogate Splits (SS). The predicted risks are evaluated in terms of
overall prediction accuracy (i.e., root mean squared error of the predicted risk and brier score),
and in terms of discrimination (C-statistic) and calibration (i.e., calibration-in-the-large and the

calibration slope).

Results - Simulation results suggests that both PS and JMI work reasonably well, provided JMI
generated multiple imputations for each missing value. In comparison, when a RF was used, the

performance of PS diminished.

Discussion - We recommend JMI-MD as it yielded good performance for both FLR and RF. When

the goal is to use a RF, the use of JMI-CM and SS are not recommended.



A comparison of real-time missing data handling methods

Incompleteness of medical records is a ubiquitous problem when using healthcare data. Besides
the well-documented issues that missing data can create in data analyses, incompleteness of
medical records may also create practical issues in clinical practice ***. Forinstance, a prediction
model that relies on historical but unrecorded data for a particular patient or prediction models
that are used as early-warning systems for individual patients . Most prediction models are
not designed to be used when predictors are not fully observed, and ad-hoc approaches such as
replacing the missing value with the population average value (i.e., mean imputation) is generally
not advised ***". As prediction models are increasingly being integrated in the electronic health
record (EHR) via clinical decision support systems (CDSS), the issues concerning missing data
and the need to deal with those missing values when applying prediction models in individual
patients becomes more evident . Theissueis further complicated as the common strategies
to mend or circumvent missing data in research are not directly applicable for use when predicting

an outcome for an individual patientin a clinical practice setting.

Various strategies to handle different manifestations of missing data have been studied thoroughly
and can usually provide more plausible substitution values (e.g., via imputation) . Multiple
imputation is often considered to be the gold standard for missing data problems and is known
to provide valid estimates and correct standard errors in circumstances where the missingness
doesnot depend on the unobserved values °. Mostimputation algorithms, however, require direct
access to data from multiple instances (i.e., multiple patients or multiple measurements) and are
therefore not directly suitable for use on a case-by-case basis. Further, when a prediction model
is applied to a single patient in clinical practice via a CDSS there is usually no access to any data

from other individuals due to computational and privacy constraints

An intuitive alternative to imputation is to solve for the missingness inside the prediction
model instead of the data. Two promising methods of this type are the pattern submodel (PS)
approach and surrogate splits (SS). PS are attractive to a variety of parameter-based modeling
techniques (e.g., regression). The so-called submodels incorporate the nature of the missing
data by developing a separate prediction model for all possible missing data patterns .Then,
when applied to a new case or out-of-sample individual the corresponding prediction model
that matches the individual’'s missing data pattern is used. Whereas the PS approach lends
itself to various kinds of prediction models, SS come naturally to tree-based methods, such as
random forest models . Briefly, SS attempt to preserve the partitioning of the original

split by finding the next most optimal split given other observed variables. When the model is
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applied, each original split for which the predictor is missing will be replaced by the best available

‘surrogate’ variable to decide the split direction.

In this article we compare various real-time missing data handling approaches when implementing
specific modeling techniques in clinical practice. We use the term ‘real-time’ to refer to methods
that can be applied to data from a single individual as would occur in a clinical practice setting,
possibly without the availability of data from other individuals. We present a simulation study
and a motivating example to compare the different missing data handling strategies that can
be used at the implementation level. The aim is to identify strengths and weaknesses of these
approaches on the ability to estimate individualized risk, as quantified by the discrimination and

calibration of the predictions.

We consider the following three prediction modeling strategies for real-time handling of missing
data: (i) prediction models that adopt joint modeling imputation, (i) prediction models that adopt
a pattern submodel approach (iii) prediction models that adopt random forests with surrogate

splits

JMI is an imputation method that involves estimating the multivariate (joint) density of the
predictor data and is used to generate imputed values directly from the conditional distribution

An advantage of JMIis that it can be applied to a previously developed prediction model. Because
distribution parameters cannot directly be estimated in incomplete data, JMI typically requires
the implementation of a Gibbs sampler. Recently, an extension to JMI was proposed to allow for
real-time imputation in individual patients . With the extension the development of a JMI
model consists of two separate steps. In the first step, the means and covariance of all predictor
variables are estimated in a complete training sample from the population to which the prediction
model will be applied. Since JMI assumes that every predictor variable is normally distributed, the
population characteristics (i.e., means and covariance) can directly be used to generate, or draw,
imputations on an individual level. In clinical practice, when a prediction model now encounters
missing values, the developed JMI model can be utilized to generate imputations for each missing
value on each predictor variable. We implemented three variants of JMI to be evaluated: single
draw (JMI-SD, where a single draw from the conditional distribution is the imputed value), multiple
draw (JMI-MD, where the average of 50 draws from the conditional distribution is the imputed
value) and the conditional mean (JMI-CM, where the expected value of the conditional distribution

is the imputed value). See Figure 1 for a schematic depiction of JMI.

118



A comparison of real-time missing data handling methods

Joint Modeling Imputation (JMI)

—Joint modelling imputation

Training sample

Estimate means and covariance of all
O relevant predictors using training data
to estimate joint normal distribution

Individual patient data

Ml Identify missing variables given an
P individual patient
Imputation

Use derived distribution to generate
imputation for missing variable

Another approach to address missing data without requiring imputation is to develop separate
prediction models (so called pattern submodels, or briefly, PS) for each missing data pattern

Each PS s to be made specifically for one of the identified missing data patterns in the training
data and the missing data patterns that are encountered in clinical practice. When applied to
a new, out-of-sample, individual, PS approach uses the corresponding prediction model (i.e.,
matching the missing data pattern at hand). A recent study has shown that the use of PS for
prediction performs similarly to multiple imputation and outperform multiple imputation in
some cases when the data are missing not at random (MNAR, when missing data is dependent
on unobserved values) . As such, PS may provide an elegant and intuitive to understand
method for handling missing data when implementing prediction models. See figure 2 for a

schematic depiction of the PS approach.
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Pattern submodel approach

— Box of submodel approach
Identify missing data patterns
predictor [ outcome

P=-.
L_lmissing

In a dataset with n predictors identify
each possible combination of predictors.

pattern 1 E::

pattern 2 E_:

pattern n{_¥_E_E_E7ECEC I

In each pattern

pattern 11 _; ! For each identified pattern, create a

separate prediction model

prediction model 1

In out-of-sample patient

PatientlE:E P p_n1

When missing data is encountered,
e @ select and apply the corresponding
prediction model

risk prediction

Awell-known family of ML-based prediction models are the tree-based models, with as a simple
case a (single) decision tree "**. Decision trees use a tree like structure to find the optimal cut-
off point which partitions the data for optimal predictive performance. Based on the values of
the pre-defined predictor variables, each branch in the tree represents a possible direction or
decision. In essence, random forests combine multiple decision trees by using a combination of
a random subspace method (i.e., random combinations of features) and bagging (i.e., random
sample of observations). As an early extension to the well-known decision tree and random forest,
SSwere developed to circumvent the necessity forimputation . Briefly, SStry to preserve the
partitioning of each original splitin a tree as good as possible in the presence of missing predictor
values. Whenever the modelis applied to an individual and encounters a missing predictor value,
it will use the pre-specified surrogate (i.e., replacement) variable, rather than the missing predictor
variable, to decide upon the split direction. See figure 3 for a schematic depiction of SS in the
context of a single decision tree. In this study we use SS in combination with a random forest

prediction model.
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Decision tree with surrogate splits

Simple decision tree
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— Decision tree with surrogate split

A comparison of real-time missing data handling methods

This tree like structure provides a
decision about a (treatment) decision.

o Each branch in the tree represents

a possible direction or decision. For
each predictor several replacement (or
surrogate) variables are specified.

Whenever the model encounters a
missing predictor value (A), it will use

@ the chosen surrogate variable (D) that

preserves the original partitioning as
good as possible.

The aim of the simulation study is to emulate how a single patient would present themselves

in clinical practice, with incomplete prediction model data, and to evaluate the performance

of several real-time missing data handling approaches. We compare the performance of these

missing data approaches on their ability to generate accurate risk predictions. We consider the

situation in which a complete dataset is available for prediction model development, and that the

resulting model is then applied to individual patients with missing observations for one or more

variables. For an overview of the simulation, see Figure 4; for the full script and technical details,

see github.com/hanneoberman/real-time-missing.
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Simulation study

— Simulation study

Complete Incomplete

development data validation data
(n=10.000) (n=20.000)

estimate

Fitted prediction
models
apply to
Complete
validation data

Generate predictions
in validation data

Evaluate predictions

Summarize results

Missing data

handling parameters

repeat 1.000 times

All data are generated from a single model-based population, consisting of ten continuous
predictors and one dichotomous outcome. In each simulation iteration, we draw two samples
from the population: a complete development set (n =10.000), and a validation set in which we
introduce missing values to mimic how patients would present themselves in clinical practice
(n'=20.000).

The data generating mechanism of the predictor space is a multivariate normal distribution,
X ~ N(X), with mean vector Y and covariance matrix ¥ (Supplementary materials A).
Correlations between the ten predictors range from r=-.37 to r=.36. From the predictor space,

we define the binary outcome vector Y. is a function of X through the logit link function,

logit(Pr(Y =1)) = a+ B XX+ xx; XX +5¢,
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Where aistheintercept, s are regression coefficients, and eisthe residual errorterm e ~ N'(0,2).
We differentiate between two types of regression coefficients: 3 is a vector of regression
coefficients for the main effects of the predictors, 8 = [B1, B2, ..., B1o]; B is a vector of regression
coefficients for the interactions with the first predictor, £~ = |1, B, ..., Bio]. This introduces
a polynomial effect of the second degree, 1 X x7, and nine interaction effects. For additional
non-linearity, we use a transformation in the effect of the second predictor, 8, X log(]x,]). All
regression coefficients can be found in Supplementary materials B. The expected occurrence of

the outcome is 15%.

The validation set is amputed (i.e., made incomplete) according to several missingness
mechanisms and missingness rates. In this study, we focus primarily on the Missing At Random
(MAR) missingness mechanism and additionally on the Missing Not At Random (MNAR) missing
mechanism “. We use a mixture of the four kinds of MAR missingness, as described by Schouten
and others *"". The overall missingness rate is 60%, but the number of missing predictor entries
differs between cases. The hypothetical patients in our validation set are missing either 40%,
60%, or 80% of the observations in the predictor space. The resulting missing data pattern is

visualized in Figure 5.

Missing data pattern.

123



Chapter 6

Our methods consist of nine pairs of missing data methods and prediction models to predict the

absolute risk of the outcome in real-time. For an overview of all methods, see Table 1.

To accommodate for missing predictor values in real-time, we consider three types of missing data
handling strategies: JMI, PS, and SS. Since JMI can have different implementations, we further
subdivide this strategy into (i) imputing the conditional mean (JMI-CM), (i) single imputation with a
random draw from the conditional multivariate distribution (JMI-SD), and (iii) multiple imputation
with 50 draws from the conditional multivariate distribution and pooling (i.e., taking the average

of) the predictions of the outcome (JMI-MD).

We obtain predictions of the outcome by applying two models on the incomplete (imputed)
predictor space. The first prediction model is flexible logistic regression (FLR) with a natural
cubic spline. The second prediction model is a random forest (RF). Both prediction models are
compatible with the JMI and PS. The SS missing data strategy is only available for tree-based
prediction models, such as a random forest. Technical details such as model tuning can be found

in Supplementary Materials C and on github.com/hanneoberman/real-time-missing.

Overview of missing data methods and prediction models.

JMI-CM  Conditional mean imputation. Missing values are imputed by the predictor mean,

conditional on the observed values of the other predictors. ! §
JMI-SD  Single draw imputation. Missing values are imputed by a random draw from the

conditional multivariate distribution of the predictor. ! §
JMI-MD  Multiple draw imputation. Missing values are imputed 50 times by a random

draw from the multivariate normal distribution, and subsequently used to obtain

50 predictions of the outcome, which are then averaged to obtain one pooled * *

prediction.
PS Pattern submodels. Missing values are circumvented by selecting the appropriate

pattern submodel for predicting the outcome. * *
SS Surrogate splits. Missing values are accommodated using surrogate splits. X

We evaluate the estimates (the predicted risk of the outcome for each of the hypothetical
patients) in terms of overall prediction accuracy at the individual patient-level, and in terms
of discrimination and calibration. Subsequently, all metrics are averaged across simulation

iterations. Table 2 provides an overview of the performance measures: root mean squared error
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(RMSE) of the predicted risk, brier score, concordance (C-) statistic, calibration-in-the-large (CITL),

and the calibration slope.

Performance measures

Root mean square error (RMSE). The RMSE of the predictions reflects the difference between the
estimated probability of Y and the true underlying probability of the outcome before amputation.

Overall Like the estimand and estimates, the RMSE lies on the probability scale. Lower values indicate better
prediction performance
accuracy Brier score. The brier score is defined as the squared difference between the predicted risk and the

observed outcome value. A brier score of 0 would represent a perfect model, whilst the maximum
brierscore is determined by the incidence of the outcome

Concordance (C-)statistic. The C-statistic is a rank-order statistic, which is used to describe how well a
classification model can discriminate between those with an event and those without. The C-statistic

Discriminati shows the probability of taking two random subjects (one with and one without the outcome) and
iscrimination
correctly attributing the one with the outcome with a high risk. A C-statistic of 0.5 describes a model

with no discriminative performance and a C-statistic 1 describes a model with perfect discriminative
performance.

Calibration-in-the-large (CITL). The CITL represents the overall calibration of a model. In other words,

the extent of agreement between the average predicted risk and the original predicted risk ***. The

metric ultimately describes the amount of systematic over- or under-estimation of the predicted
Calibration risk. Avalue of O is ideal and represents perfect agreement.

The calibration slope. In contrast with the CITL, the calibration slope does not evaluate the average
predicted, or original, risk. Rather, it quantifies the extent by which the predicted risks vary too much
(i.e., slope <) ortoo little (i.e., slope >1). Ideally, the slope is 1.

Figure 6 displays the performance of the real-time missing data approaches across simulations.
Table 3 presents the average performance across simulations. The additional simulation under
a MNAR missingness mechanism showed equivalent results, and can be found in Supplement D.
For reasons of brevity, we exclude the severely under-performing missing data approach JMI-SD

from any further reported results.

Overall, imputation and non-imputation missing data handling methods were very similar in
their ability to recover the original probability of the outcome. When implemented with a FLR,
PS performed best. A very similar performance was obtained when adopting a FLR model after
imputation with JMI-CM or JMI-MD. For the random forest prediction model, JMI-MD outperformed

all other missing data approaches. RF with SS and PS showed relatively low accuracy.
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When paired with a FLR, both imputation (JMI-MD and JMI-CM) and non-imputation (PS) missing
data handling methods had an equivalent performance. When a random forest prediction model
was used, JMI-MD appeared to be slightly better at approximating the binary realization of the

outcome than JMI-CM, with SS and PS again showing relatively poor performance.

The use of JMI-MD paired with RF marginally exceeded the performance of other techniques, now
in terms of discriminating between cases and non-cases. The discriminatory ability of JMI-CM
and JMI-MD with FLR are mostly equivalent. The performances of JMI-CM and PS are diminished
when comparing the random forest prediction model to FLR. And, although slightly better than

PS, the performance of SSis below par.

Both PS and JMI-MD showed near perfect overall calibration when paired with a FLR. With JMI-CM
showing an only marginally worse performance. Whilst all missing data handling techniques had
very similar performances when paired with a RF, JMI-MD remained the favourite with near perfect

calibration.

In contrast with other performance metrics, the best performance is observed with JMI-CM paired
with FLR, which could best quantify the extremeness of predicted risks across the whole range.
Both JMI-MD and PS had similar performance. Apart from JMI-MD, all missing data handling

techniques showed miscalibration when a random forest prediction model is used.

Figure 7 presents calibration plots for the methods of interest, taken from a single iteration in
the simulation. The missing data approaches can be found in the row-wise panels; the prediction
models in the columns (left = FLR, right = RF). Within each plot, dashed lines show optimal
calibration (i.e., perfect match between predicted and actual probabilities), colored lines (blue
for FLR, green for RF) are Loess lines with standard errors through the calibration, and the shaded

grey area represents the density of the predicted probabilities.
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Performance measures per method
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Legend - JMI-CM: conditional mean imputation; JMI-SD: single draw imputation; JMI-MD: multiple draw imputation; PS:

pattern submodels; SS: surrogate splits; AUC: area under the curve; RMSE: root mean squared error; FLR: flexible logistic

regression; RF: random forest
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FLR

RF

Average performance across simulations.

JMI-CM
JMI-SD
JMI-MD
PS
JMI-CM
JMI-SD
JMI-MD
PS
SS

0.223
0.244
0.222
0.221
0.227
0.240
0.221
0.237
0.238

(0.002)
0.002
0.002
0.002
0.003
0.002
0.002
0.002
0.004

0.123
0.133
0.123
0.123
0.125
0.131
0.122
0.130
0.130

0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.003

0.634
0.581
0.631
0.635
0.627
0.592
0.643
0.607
0.617

0.006
0.006
0.006
0.006
0.008
0.006
0.006
0.006
0.01

0.027
0.105
0.009
0.003
0.064
0.093
-0.003
0.085
0.091

0.006
0.003
0.006
0.007
0.01

0.003
0.007
0.003
0.01

0.985
0.297
0.941
0.981
0.789
0.355
0.952
0.410
0.851

0.05
0.02
0.044
0.047
0.058
0.02
0.041
0.018
0.087

Legend - RMSE: root mean squared error; EmpSE: empirical standard errors; C-index: concordance-index; CITL: calibration-
in-the-large; FLR: flexible logistic regression; RF: random forest; JMI-CM: conditional mean imputation; JMI-SD: single draw

imputation; JMI-MD: multiple draw imputation; PS: pattern submodels; SS: surrogate splits.

Calibration plots
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Legend - FLR: flexible logistic regression; RF: random forest; JMI-CM: conditional mean imputation; JMI-MD: multiple draw

imputation; PS: pattern submodels; SS: surrogate splits.
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This simulation study evaluated real-time missing data handling strategies to handle missing
predictorvalues in individual patients. We considered JMI, PS and SS for the real-time handling of
missing data when using either a FLR or RF. Our simulation study showed that the optimal choice
of missing data handling technique may be dependent on the preferred prediction modeling
approach. Overall, simulation results suggests that PS (when paired with FLR) and JMI (provided
multiple imputations are generated) work reasonably well. Multiple imputation was found to be
more consistent than imputing a conditional mean. In contrast, SS performed relatively poor.

Likewise, imputing single draws severely underperformed on all metrics.

Generally, we found that missing data handling techniques yielded better performance when
paired with FLR rather than RF. Possibly, this is because our dataset included mostly continuous
predictors and the DGM was a logistic regression model. RF have been reported to perform
particularly well when dealing with a very large number of discrete variables, especially in the
presence of interactions . Possibly, RF is also more prone to overfitting when estimated in
smaller (sub)samples as compared to FLR. However, it is likely that due to the larger sample size
in our simulation study, this is not the case. Due to the choice of DGM, comparisons between
FLR and RF may be skewed in favour of FLR; consequently, any comparisons between the two

modeling techniques may beirrelevant.

The good performance of JMI in our simulations may partly be driven by the choice of predictor
correlation structure and missing data pattern in our simulations. Low correlations have previously
been associated with limited performance of JMI . Likewise, SS very heavily rely upon the
correlation between the missing predictor value and the surrogate replacement value . With
the low to moderate correlations imposed in our DGM, it may be expected that multivariable
approaches such as JMI perform better when compared with SS, which relies only on the single
surrogate variable. For example, in the most extreme missing data scenario, when only and

are observed, it is likely that optimal surrogate variables are not available. It may be ewdent
that PS, which uses only the observed predictor variables, is also limited in circumstances such
as these. In the end, when using clinical data, correlations between predictor variables need to

be considered.

Additionally, to avoid overfitting, prediction models are typically designed as simple as possible
and usually include predictors that do notintercorrelate much. Likewise, in our simulation study,
we only generated 10 covariates, all of which were used for development of the prediction model

and imputation strategies. In practice, however, many more additional variables may be available.
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These auxiliary variables (i.e., not part of the prediction model) have previously shown to improve
JMI performance . If made available, it is likely that auxiliary variables, if not for prediction,
may improve the accuracy of any missing data handling strategy which relies upon correlations

between available variables.

Generally, PS has adequate prediction model performance in the presence of missing data.
A major advantage for PS is that it does not require MAR assumptions. In real-world datasets
PS, therefore, offer an appealing solution. When PS is paired with RF, however, problems arise.
These problems may be explained by the fact that less predictors ultimately restrict how much a
random forest may vary between each tree """, In other words, if there are less features available,
as is the case for PS, the variability between trees is limited. Similarly, surrogate splits perform
relatively poor, which can be explained by the strong dependence on high correlations between

the surrogate variable and the missing predictor variable.

In summary, the best missing data handling technique depends on the prediction modeling
technique. JMI-MD is considered the safest choice for handling missing data as it yielded good
performance for both FLR and RF, whilst PS only obtained good performance when paired with
FLR. The use of JMI-CM and surrogate splits are not recommended when using RF. Similarly,
JMI-SD should be avoided.
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Supplementary Materials

A.DGM

Means vector: All 10 predictors have a mean of zero, 1 = [0,0,...,0].

Covariance matrix:

1.05 -0.12 0.04 -0.29 0.29 -0.17  0.01 0.00 -0.01 -0.07
—0.12 1.08 —0.31 0.26 0.08 -0.03 -0.04 -0.11 -0.17 0.30
0.04 —0.31 1.08 —-0.19 0.01 —-0.29 0.20 0.07 -0.18 -0.15
=029 026 -0.19 1.07 -0.20 0.00 -0.12 0.01 -0.19 -0.04
0.29 0.08 0.01 -0.20 1.08 -0.25 -0.14 0.02 0.15 -0.32
-0.17 -0.03 -0.29 0.00 -0.25 1.08 -0.13 -0.04 -0.29 0.01
0.01 -0.04 020 -0.12 =014 -0.13 1.04 -0.16 -0.17 0.8
0.00 —-0.11 0.07 0.01 0.02 -0.04 -0.16 1.02 0.10 —0.19
-0.01 -0.17 -0.18 -=0.19 0.15 -0.29 -0.17 0.10 1.08 0.15
-0.07 030 -0.15 -0.04 -0.32 0.01 0.18 —-0.19 0.15 1.08

Correlations:

0201000102 05 00 05

B. Regression coefficients:

po=-3
f = [ —-027 053 —-097 -0.05 0.62 —0.52 0.53 —-0.61 0.17 —0.55 ]
g o= 0.06 0.04 —-0.02 -0.02 -0.06 —0.05 0.04 0.05 0.01 —-0.07 |
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> FLR: glm() with natural spline with 3 degrees of freedom.

> RF: ranger:ranger() with defaults (500 trees and 3 predictors considered for each split),

party::cforest() with defaults (500 trees, 5 predictors considered for each split, and 3 surrogate

variables considered for each split with missingness).

JMI-CM A o—E— JMI-CM A ——— »
JMI-SD sse—HI—= IS0 sa—0—a
WMD) — = JMINMD A «—E—-
PS5 «——Hl— 5 =——=
581 T T T T T 581 T T T e T "
023 0.24 0.25 0.26 0.27 0.23 024 025 0.26 0.27
RMSE RMSE
JULCM A so—J——=s JMI-CM 4 o—T— =
JMI-SD o — w50 so—[I[0——= s+
JME-MDA o — e JMI-MD ] see—T—m= e
PSq e—(HI—»e BS em— =
881 5581 e
012 013 0.14 0.15 0.12 013
Brier score Brier score
JUI-CM oo—N—ew JMI-CM so——»
JMI-SD —— JMI-SDq e—HE——wes
JWI-MD sme— Il —= = JMI-MD em— N —e
PS sl —w = PS —— e
85 89 i — | S—
0.600 0.625 0.650 0.675 0.700 063 0.66 0.69 072
C-statistic C-statistic
JWI-CM co—fl—= » JMI-CM ssme—{T[I—-
JMI-SD o—l—s MI-SD ==
JMHMD sm— il —sms IMIND A sm—E—ss
PS| s=o = PS Lo
85 | S8 somm— [T }——
0.00 0.04 0.08 012 -0.05 0.00 0.05 010
CITL CITL
JW-Ch e o——=+ JU-CM o—f—=
JM-SDq - JMFSD A b=
JUI-MD o so—Jlll—= JMIMD =
PS s —= PS ofs
88 35 ST i il
0.25 0.50 075 1.00 05 1.0 ok 20

Calibration slope

Calibration slope

Prediction model BE FLR B3 RF

Legend - JMI-CM: conditional mean imputation; JMI-SD: single draw imputation; JMI-MD: multiple draw imputation; PS:

pattern submodels; SS: surrogate splits; AUC: area under the curve; RMSE: root mean squared error; FLR: flexible logistic

regression; RF: random forest
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Average performance under MNAR

RMSE Brier C-index CITL Slope
IMI-CM 0.239 0.126 0.681 0.035 0.985
JMI-SD 0.269 0.141 0.616 0.104 0.347
o JMI-MD 0.237 0.125 0.679 0.007 0.957
PS 0.236 0.125 0.682 0.002 0.988
IMI-CM 0.242 0.127 0.685 0.055 0.978
JIMI-SD 0.258 0.136 0.632 0.083 0.45
RF IMI-MD 0.233 0.123 0.701 -0.032 1.144
PS 0.248 0.13 0.666 0.062 0.581
SS 0.259 0.136 0.667 0.083 1.287
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CHAPTER /

Internal-external cross-validation helped to
evaluate the generalizability of prediction
models in large, clustered datasets




Objective - To illustrate how to evaluate the need of complex strategies for developing

generalizable prediction models in large, clustered datasets.

Methods - We developed eight Cox regression models to estimate the risk of heart failure using a
large population-level dataset. These models differed in the number of predictors, the functional
form of the predictor effects (non-linear effects and interaction) and the estimation method
(maximum likelihood and penalization). Internal-external cross-validation was used to evaluate

the models’ generalizability across the included general practices.

Results - Among 871,687 individuals from 225 general practices, 43,987 (5.5%) developed heart
failure during a median follow-up time of 5.8 years. For discrimination, the simplest prediction
model yielded a good concordance statistic, which was not much improved by adopting complex
strategies. Between-practice heterogeneity in discrimination was similar in all models. For
calibration, the simplest model performed satisfactorily. Although accounting for non-linear
effects and interaction slightly improved the calibration slope, it also led to more heterogeneity in
the observed/expected ratio. Similar results were found in a second case study involving patients

with stroke.

Conclusion - In large, clustered datasets, prediction model studies may adopt internal-external
cross-validation to evaluate the generalizability of competing models, and to identify promising

modelling strategies.



What is new?

Key findings
> Flexible modelling strategies did notimprove prediction model performance across different
settings and populations.
> Although theinclusion of additional predictors marginally improved the model’s discriminative
performance, it also increased between-practice heterogeneity (thereby impairing model

generalizability).

What this adds to what was known
> In contrast to traditional internal validation methods, internal-external cross-validation
(IECV) can quantify the generalizability of a prediction model across different settings and
populations.

What is the implication and what should change now?
> When developing prediction models using large, clustered datasets, both their internal and
external validity should be studied.
> |ECV can be used to compare the practical benefits of different modelling strategies, and to

simplify model complexity.
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In medicine, there are an increasing number of clinical prediction models **". These models aim to
predict a risk of having a certain condition or experiencing a health event in the future. Prediction
models are often developed using a single and small dataset. This leads to prediction models
that are more prone to overfitting with the dataset used for its development, which leads to poor
accuracy and less generalizability of risk predictions when the model is validated or used in new

individuals.

Forthis reason, there has been a growing interest in prediction model studies using large datasets
from electronic health records (EHRs), multi-center studies or individual participant data

An advantage of such large datasets is that parameters of the prediction model can accurately
be estimated, thereby facilitating the development of complex models with many predictors,
interaction terms and/or non-linear effects. Furthermore, a common feature of these large
datasets is that individuals are often clustered within hospitals, primary care practices, or even
within countries. Clusters may differ with respect to included participants, variable definitions,
and measurement methods, all of which may affect the generalizability of developed prediction
models. The presence of clustering, however, also offers an important opportunity, as the
performance of a prediction model can be examined on multiple occasions and thus be used to
explore its generalizability across different settings and populations. Recently, various strategies

for such analyses using large, clustered data have been proposed
The aim of this study was to illustrate how advanced methods can be used to evaluate the need

of complex strategies for developing generalizable clinical prediction models in large, clustered

datasets.

Forillustration purpose, we used two case studies.

We compared various modelling strategies using an example of a prediction model for the
incidence of heart failure (HF). In the field of cardiovascular diseases (CVD), HF is one of the most

relevant outcomes due to its high morbidity and mortality
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We used an existing large population-level dataset which links three sources of EHRs in England:
primary care records from the Clinical Practice Research Datalink (CPRD), secondary care
diagnoses and procedures recorded during admissions in Hospital Episodes Statistics (HES),
and the cause-specific death registration information sourced from the Office for National
Statistics (ONS) registry. This study was carried out as part of the CALIBER © resource (https://
www.ucl.ac.uk/health-informatics/caliber and https://www.caliberresearch.org/) .CALIBER,
led from the UCL Institute of Health Informatics, is a research resource providing validated EHR
phenotyping algorithms and tools for national structured data sources. Data were recorded in
five controlled clinical terminologies: Read version 2 (CPRD diagnoses), International classification
of diseases (ICD)-9 and ICD-10 (HES diagnoses, ONS causes of death), the Office of Population
Censuses and Surveys (OPCS)-4 (HES procedures) and British National Formulary (BNF) (CPRD
medication prescriptions). The study was approved by the MHRA (UK) Independent Scientific
Advisory Committee (14_246RMnA2), under Section 251 (NHS Social Care Act 2006).

The construction of this cohort has been described by Uijl et al ***. Briefly, we selected all
individuals that were 55 years or older between 1st January 2000 and 25th March 2010, and had
at least one year of follow-up by a general practitioner, in a practice that had at least one year of
up-to-standard data recording in CPRD. The last date of the follow-up between the period above
was considered cohort entry date (index date). Individuals with a history of HF before their index

date were excluded. The study flow diagram is shown in Appendix A.

We identified predictors that are commonly measured in CPRD or HES, and commonly used
for prediction of HF : Age, sex, current smoking, ethnicity (CE, Caucasian ethnicity), index
of multiple deprivation (IMD), body mass index (BMI), creatinine level (CL), and total cholesterol
(TC). IMD is a measure of multiple deprivation at the small area level, consisting of seven domains

. Within this set, we selected those predictors which were least affected by missing data. The
closest measurement to index date between three years before and one year after the index
date was used. Detailed information about the definition of each predictor is available on the
CALIBER website

The primary outcome was incidence of HF, based on the first record of HF from CPRD or HES
after the index date. In CPRD, HF was defined by a diagnosis of HF or chronic left ventricular

dysfunction on echocardiogram with READ codes. In HES, it was defined by a diagnosis of HF
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during a hospitalization using all positions of ICD-10. If no diagnosis of HF was made, censoring
was defined as the first event among the following: death, de-registration from a practice, last

practice data collection, or at the study end date.

Multilevel imputation

Multiple multilevel imputation which accounts for potential heterogeneity between the included
clusters is recommended in the recent methodological guidelines ***, however, due to limited
hardware processing capacity, we applied single multilevel imputation. The detail of the

imputation process is described in Appendix B.

Derivation and validation of prediction models

We considered eight modelling strategies to predict the risk of developing HF using Cox regression.
These models differed with respect to the number of predictors, the functional form of the
predictor effects and the method of estimation. Each model and their estimation method are

summarized in Table 1.

Model 1 included four predictors (age, sex, current smoking, and CE) as linear effects. Model 2
was an extension of Model 1 that included non-linear effect for age and for all possible two-way
interactions between the four predictors. Model 3 and 4 included the same predictors as Model 1
and 2, respectively, but were estimated using a ridge penalty. Model 5 was an extension of Model
1 thatalsoincluded IMD, BMI, CL and TC as linear effects. Model 6 - 8 were extended from Model
5as similar to Model 2 - 4 from Model 1. In models with a ridge penalty (Model 3,4, 7 and 8), all
regression coefficients were shrunk towards zero by penalizing the partial log-likelihood for the
magnitude of the squared coefficients (L2-norm) **". This strategy has been recommended to
avoid overfitting, and to improve prediction model performance, particularly when it is applied
in new population. We used the degree of penalty (lambda) which minimized the mean square
errorin ten-fold cross validation. The proportional hazards assumption of all models was checked

using the Schoenfeld residuals.
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Table 1. Description of the eight prediction models

Model Included predictor variables 2-wayIT #RC Estimation method

Male Sex Smoking CE

1 L L L L - - - - no 4 Coxregression
2 RCS L L L - - - - yes 14 Cox regression
3 L L L L - - - no 4 Ridge penalized Cox
4 RCS L L L - - - yes 14 Ridge penalized Cox
5 L L L L L L L L no 8 Cox regression
6 RCS L L L RCS RCS RCS RCS yes 66 Cox regression
7 L L L L L L L L no 8 Ridge penalized Cox
8 RCS L L L RCS RCS RCS RCS ves 66 Ridge penalized Cox

IT=interaction terms. #RC=the total number of regression coefficients. CE=Caucasian ethnicity. IMD=index of multiple
deprivation. BMI=body mass index. CL=creatinine level. TC=total cholesterol. L=Linear effects. RCS=restricted cubic splines
Models 1, 3, 5 and 7 include all predictor variables as linear effects. Models 2, 4, 6 and 8 use RCS with three knots for all
continuous predictorvariables, and interaction terms between all possible combinations of two variables. For all models,
the total number of regression coefficients is displayed.

We performed internal-external cross-validation (IECV) to compare the performance of the
aforementioned eight prediction models at multiple occasions ******. In contrast to traditional
internal validation methods (e.g., bootstrapping, cross-validation) which evaluate the model’s
performance in new individuals from the same population (i.e., reproducibility), [ECV assesses
model performance in new individuals from different but related practices as compared to the
original development sample. These practices (i.e., taken as cluster) may differ with respect
to case-mix, variable definitions and measurement methods, and thus allow to investigate
the model’s generalizability ****. Using IECV, the data from all but one practice are used for
estimating the prediction model, after which its performance is evaluated in the remaining
practice. The procedure is repeated by rotating the omitted practice, resulting in multiple
estimates of prediction model performance. For each prediction model, we assessed the
model’s discrimination performance using Harrell's concordance (c-) statistic. For calibration,
we constructed calibration plots in the overall population. We also estimated the calibration
slope and the ratio of observed versus expected events (O:E ratio) at five years of follow-up ***.

Interpretation of each performance measure is described in Appendix C.

The performance measures resulting from IECV were pooled using random-effect meta-analysis
1L This approach not only accounts for the precision of practice-specific performance
estimates, but also quantifies the between-practice variability (heterogeneity) of model
performance. Heterogeneity is quantified by the between-practice standard deviation of model

performance (1) ***. Meta-analysis results were reported as point estimates with 95% confidence
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intervals (Cl) and 95% prediction intervals (Pl). The Cl indicates the precision of the model’s
average performance across all practices. Conversely, the Pl accounts for heterogeneity between
practices and therefore indicates what performance can be expected when the model is applied
within a specific practice.

Case study 2

In this case study, we used patient-level data from a large international, multi-center, randomized
controlled trial **". Because the missingness proportion was very low (6.0%), we performed a
complete case analysis. Eight modelling strategies using ridge penalized Cox regression model
were considered to predict the risk of mortality from CVD in patients with acute ischemic stroke.
These models differed with respect to the number of predictors, the functional form of the
predictor effects (non-linear effects and/or interaction terms). We illustrated the advantage of
IECV by comparing it with bootstrap internal validation. More detailed information is available
in Appendix D.

All analyses were performed using R version 3.6.1.

Results

Case study 1
The cohortincluded 871,687 individuals from 225 general practices. Among these, 43,987 (5.5%)
developed HF during a median follow-up time of 5.8 years (interquartile range [IQR] 2.7 - 9.9), with

a median time-to-event of 3.7 years (IQR 1.8 - 6.4). Baseline characteristics are shown in Table 2.

Table 2. Baseline characteristics of the cohort

Individuals Individuals Proportion

Predictor variable with incident HF without HF of missing
Total number of patients 43,987 823,700

Age, years, median (IQR) 75'5(68:5-81'5) 606 (55-0-70-5) 0-0%
Male sex, n (%) 22,618 (514) 442,409 (53-7) 0-0%
Caucasian ethnicity, n (%) 42,065 (956) 754,756 (91-6) 392%
Current Smoking, n (%) 10,843 (24-7) 190,851 (232) 662%
IMD, median (IQR) 162 (9-4 - 271) 137 (8:3-234) 0:3%
BMI, kg/m2, median (IQR) 274 (23:9-31:0) 26:9 (236 -30-4) 602%
Creatinine, umol/L, median (IQR) 1024 (850 - 122+4) 887 (731-1056) 66-5%
Total cholesterol, mmol/L, median (IQR) 53(46-61) 55(4-8-6-3) 72:3%

HF=heart failure. IQR=interquartile range. IMD=index of multiple deprivation. BMI=body mass index.
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The number of patients with HF in each general practice was a median of 197 (IQR 128 - 282,
range 3 - 622). We explored heterogeneity of case-mix across the included general practices
by comparing their distribution of predicted risk according to Model 5. Results in Appendix E
indicate that the standard deviation (SD) of the linear predictor (LP) in each general practice
ranges between 1.09 and 1.41, and that the mean LP in each general practice ranges between
-0.51 and 0.61.

The estimated regression coefficients of the eight prediction models, as obtained from the
entire dataset, are presented in Appendix F. These results indicate that all included predictors
are significantly associated with HF, and that interactions are present between various predictors.

The performance of the estimated models, as evaluated using IECV, is summarized in Table 3.

The c-statistic across the general practices is shown in Appendix G. All models showed similar
discrimination, although models that included more predictors yielded somewhat larger values
for the c-statistic (0.79 in Model 1 - 4 vs. 0.81 in Model 5 - 8). For all models, there was notable
between-practice heterogeneity in discrimination performance. For instance, the 95% PI for a
Cox regression model including eight predictors as main effects (model 5) ranged from 0.756 to
0.852. Estimates for the between-study standard deviation (1) were similar for all models, but
slightly larger for prediction models that included eight predictors and allowed for non-linear

effects and interactions.

Calibration plot
Calibration plots in Figure 1 indicate that predicted and observed risks were almost in perfect
agreement for the unpenalized Cox regression model that included non-linear effects and

interactions between predictors (Model 2 and 6).
Predicted and observed risks are almost in perfect agreement for the unpenalized Cox regression

models that included non-linear effects and interactions between predictors (Model 2 and 6).

Some under-prediction for risk estimates around 10% is observed in the remaining models.
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O:E ratio

The O:E ratio across the included general practices is shown in Appendix H. All models yielded
summary O:E ratios at 5 years below one, especially those models that included eight predictors
(Model 5-8). In addition, Pls indicate that all prediction models may substantially over- or under-

predict the risk of HF when applied to individual patients from a new practice.

Calibration slope

Calibration slope across the included general practices is shown in Appendix I. Unpenalized
prediction models yielded pooled calibration slopes most close to one (Model 1, 2, 5, and 6).
Prediction models that adopted a ridge penalty yielded calibration slopes that were slightly larger
than one, indicating that predicted risks did not vary enough and thus that too much shrinkage
may have been applied in the development sample. For all models, the calibration slope was
proneto a limited amount of between-practice heterogeneity. For instance, the prediction model
that included eight predictors as main effects (model 5) yielded a 95% PI from 0.833 to 1.214.

Estimates of between-study variance of the calibration slope were similar for all models.

The detailed results are shown in Appendix D. In short, among 16,280 patients from 14 countries,
2,745 (16.9%) died due to any CVD related conditions. Using bootstrap validation and IECV,
we found that the c-statistic ranged from 0.65 to 0.71, and that models with more predictors
discriminated better. Results of IECV also indicate that inclusion of non-linear terms and/or
interaction effects) did not improve discrimination performance when the model is applied to
new patients (from the original to new populations). In calibration performance, the effect of
complex modelling strategies was small in both summary estimates of O:E ratio and calibration

slope and their generalizability.

We illustrated how evidence synthesis methods can be used to evaluate the need of complex
strategies for developing generalizable clinical prediction modelsin large, clustered datasets. To
this end, we applied IECV and quantified the model’s average performance as well as its variability
between clusters. In contrast to traditional internal validation methods, a major advantage
of using IECV in large, clustered data is that the external validity of prediction models can be
assessed on multiple occasions, thereby allowing researchers to explore the generalizability of

different modelling strategies directly during the development process.
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In the case study 1, we found that adopting complex modelling strategies did not much improve
the external validity of developed prediction models for HF. In particular, prediction models
that were based on four commonly available variables yielded a c-statistic of 0.79, which is
comparable to existing models for HF using even more than 10 predictors including laboratory
tests .Although the inclusion of additional predictors marginally improved the discriminative
performance, it also slightly increased the between-practice heterogeneity. When investigating
model calibration, we found that all prediction modelling strategies yielded adequate calibration
performance on average. However, because of between-practice heterogeneity, local revisions
were often deemed necessary. In the case study 2, we also found that complex modelling did
not meaningfully improve the generalizability of the prediction models, although the inclusion

of additional predictors moderately improved their discrimination performance.

As we found in the case study 1, the incremental value of candidate predictors is often small in
prediction model studies for the incidence of CVD . For instance, systematic reviews have
demonstrated a lack of incremental value for cholesterol level %, BMI “**, and even biomarkers
(e.g., triglycerides, C-reactive protein) for predicting CVD ***. For this reason, it may sometimes be
more advantageous to consider the inclusion of non-linear effects orinteraction terms, rather than
adding more predictors. This strategy is common in machine learning, where methods no longer
assume additive linear effects and adopt penalization to avoid overfitting. We mimicked the use
of flexible modelling strategies by including non-linear effects and non-linear interaction terms.
However, this strategy also failed to improve model discrimination. Similar findings also have been
reported in prediction model studies for the prognosis of patients with CVD . Forinstance,
arecent study adopting advanced machine learning algorithms failed to outperform traditional
prediction models for readmissions in patients with HF, and yielded c-statistics around 0.60 . In
another study, discrimination performance to predict all-cause mortality in patients with coronary
artery disease marginally increased from 0.793 (Cox regression model with 27 predictors) to 0.797
(random survival forests with 98 predictors) and to 0.801 (elastic net Cox regression model with
586 predictors) “**. More generally, there is limited evidence that machine learning models can
outperform simple prediction models involving additive linear terms, especially when predictions

are only based on structured epidemiological data

The following limitations need to be considered. In the first case study, the substantial presence
of missing data is an important concern. Although we focused on the inclusion of variables with
relatively few missing values, some were missing for more than 70% of participants. Multiple
imputation is generally recommended to obtain reliable standard errors of the performance
measures but only single imputation was pursued due to limited hardware processing capacity.

There is still limited guidance on how to implement multiple imputation when developing and
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validating a prediction model in large, clustered datasets. Key issues that remain unclear are (i)
how to combine multiple imputation with sampling procedures (e.g., IECV) , (ii) the order
of pooling estimates (across imputations or across clusters) ***, (i) how to ensure congeniality
between the imputation model and the prediction model development procedure “*. Another
limitation was that we were not able to include non-linear and interaction terms in the imputation
model due to non-convergence issues. Therefore, continuous variables were imputed as a linear
term and nointeraction term was included in imputation models. This strategy may have favored
simpler modelling strategies in IECV. For this reason, we implemented those modelling strategies
in the case study 2 where the presence of missing data was much less a concern. And we found

similar findings to those in the case study 1.

Second, eligible individuals in both case studies were enrolled more than ten years ago. It is
possible that population characteristics have substantially changed over time, and that complex

associations (e.g., non-linear predictor effects or interaction terms) have become more common.

Third, we focused on regression-based methods and did not evaluate other flexible modelling
strategies such as neural networks or random forests. It is possible that these strategies could
yield more promising results, especially if (interaction between) predictor effects cannot

adequately be described using the regression-based methods considered here.

We recommend the use of IECV in large, clustered datasets to assess the generalizability of
prediction models during their development, and to identify whether complex modelling
strategies may offer any advantages. In contrast to traditional internal validation methods, IECV
allows to evaluate model performance in non-random hold-out samples with individuals from
different settings or populations. In our case studies, we found that accurate prediction does not
necessarily require complex modelling strategies, and that the need for local updating may be

inevitable regardless of how much data are at hand during the model’s development.
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Chapter 8

In this thesis, we investigated traditional statistical and modern machine learning (ML) methods

for handling of missing predictor data when applying prediction models in real-time medical

settings and evaluated how well ML-based prediction model studies follow recommendations

from existing reporting guidelines on missing data. The main findings in this thesis are:
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Chapter 2 shows how a majority of the clinical prediction model studies using ML techniques
does not report sufficient information on the presence and handling of missing data, despite
missing values are highly common in routine healthcare data that often form the basis in ML
prediction models studies. Consistent with similar reviews, strategies in which patient records
with some missing variables are simply omitted are most often used, even though it is well

known this likely causes bias and certainly loss of analytical power.

Chapter 3 shows that ML-based prediction model studies adhered poorly to the current
guideline Transparent Reporting of a multivariable prediction model for Individual Prognosis
or Diagnosis (TRIPOD). Most items considered essential (e.g., about titles and abstract) were
not completely addressed in prediction modelling studies. Some items and sub-items of
TRIPOD may be less suitable for ML-based models; thus, the TRIPOD guideline requires tailored

extensions for ML-based prediction model studies.

Chapter 4 shows the development of real time imputation methods for missing predictor
values using either conditional modelling imputation (CMI, where a multivariable imputation
model is derived for each predictor from a population) or joint modelling imputation (JMI,
where we use a multivariate normal approximation to generate patient-specific imputations).
These newly developed methods were compared with mean imputation (where missing
values are replaced by the sample mean) in a case study evaluating the accuracy of the

imputed missing predictor values, where we found that JMI and CMI were more accurate.

Chapter 5 shows how the use of JMI, especially with auxiliary variables (i.e., variables not part
of the prediction model), for real-time imputation of missing predictor values is preferred
over JMI without auxiliary variables and mean imputation, in terms of the discrimination and

calibration of the model predictions.

Chapter 6 compares various ML modelling techniques that deal with missing predictor values.
The use of surrogate splits were found to perform poorly, whilst pattern submodels showed
good performance only when paired with a specific modelling technique. Overall, Ml is still
to be preferred for both modelling techniques in terms of calibration and discrimination,

provided multiple imputations are used.



General discussion

> Chapter 7 describes how the adoption of internal-external cross-validation (IECV) is preferred
to assess the generalizability of prediction models during their development, and to identify
whether complex modelling strategies may offer any advantages. Briefly, [ECV allows to
evaluate model performance in non-random hold-out samples with individuals from different
settings or populations. In our case studies, we found that accurate prediction does not
necessarily require complex modelling strategies, and that the need for local updating may

be inevitable regardless of how much data are at hand during the model’s development.

In this final chapter we bring all these findings about current practice, reporting and advancements
in the handling of missing predictor data in prediction modelling together, and explore how
real-time imputation of missing predictor when using a prediction model in real time practice
is perceived by healthcare professionals. We focus on how users of individualized prediction
models in daily medical practice feel about imputing missing predictor values as we investigated
via a vignette case study. Before that we briefly summarize the principles of risk prediction in
daily care and the issue of missing predictor values. We will end this chapter by summarizing our
future perspective on using missing data handling strategies for enabling risk prediction in daily

medical care.

Prediction models in routine clinical practice are able to provide actionable information to
potentially improve shared clinical decision making in individual patients . By combining
patient, test result and disease characteristics these multivariable risk prediction models
provide absolute risk estimates for diagnostic or prognostic purposes to guide further patient

management .Examples are the SMART risk score and the Framingham risk score

Increasingly, with the introduction of build in prediction models in electronic health record (EHR)
newly developed and carefully validated clinical prediction models can directly extract any
individual's observed predictor value from the EHR and may provide risk-guided recommendations

. The actual use of such fully in EHR integrated clinical prediction models is however
limited and often frustrated by missing predictor data in the EHR and the inability to real time

handle these missing predictor data

Unfortunately, missing predictor data are a hallmark of routine care datasets that are increasingly
used for the development, validation, and implementation of prediction models, notably by
prediction models based on ML. Consequently approaches for handling missing data (e.g. multiple
imputation) in research that aims to develop or validate prediction models, have been developed

and are now recommended by multiple reporting and methodological conduct guidelines
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. As it stands, there is limited adherence to these reporting guidelines in prediction
model studies (Chapter 2 and Chapter 3) ***. These approaches for handling missing data are,
however, not directly suitable for real-time use to impute missing predictor values when using a
prediction modelin daily clinical practice *. Common imputation strategies are notably developed
forvalid statistical inference of prediction model research, for example, on estimated prediction
model coefficients and not for application in single patients. Moreover, these methods typically
require access to raw data from multiple individuals, which is unlikely to achieve in daily clinical

care given privacy and computational constraints.

Still, imputation of missing predictor values is important to provide for the use of a prediction
model in daily care and to provide an individual’s prediction. Mean imputation of a missing
predictor value has been recommended as a real-time missing predictor data handling strategy,
due to its simple applicability in practice and relatively good performance, although it was also
found to be insufficient when strong predictors were missing . As a result, additional real-time
missing data imputation developments, such as joint modelling imputation (JMI), have been made
as also evaluated in Chapter 4 and 5. JMI alleviates the issues found with mean imputation as it
estimates all associations between the relevant patient characteristics **. Briefly, JMI uses a two-
step approach: first population characteristics (i.e., means and covariance) are estimated from
raw individual patient data and stored in the EHR-system; second the prediction model handles
any missing predictor data by drawing imputations using the stored population characteristics.
As a consequence JMI is suitable for individual predictions by an EHR built-in prediction model,
does not need large amounts of raw data, and can achieve near-real time handling of missing

predictor data which makes it attractive for use in real-time model predictions

Alternatives to imputation of missing predictor values exist and may be more intuitive as they solve
theissue of missing data from within the prediction model, rather than via a separate imputation
step as described above. In Chapter 6 we evaluated two of such approaches: so-called pattern
submodels (PS) in which separate prediction models are developed for each possible missing
predictor data pattern, and surrogate splits (SS), in which the original split direction of a tree-based
method is preserved as good as possible by means of a surrogate variable .Compared to PS,
surrogate splits seem to perform poorly and are very dependent on the correlations between the
surrogate variable and the missing predictor variable. Ultimately, JMI appeared in our research

to still be preferred.

Still, the use of JMI requires careful interpretation by prediction models users such as the
healthcare professionals, as imputations may be (very) uncertain. Furthermore, missing predictor

imputation in daily care is not widely adopted yet and a valid and reliable assessment of the
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acceptance of using a prediction model combined with real-time imputation in practice is
warranted. To do so, we assessed acceptance of a real-time imputation method by means of a

vignette study.

Avignette describes a potential scenario as would occur in real life (e.g., patient scheduled for a
consult) “*. When simulating real-time use of missing predictor data handling, the information
provided in each vignette needs to resemble an existing patient, with realistic missing patient
characteristics or predictor values (Table 1). The participants - in this case healthcare professionals
that use prediction models to guide their patient management - for a vignette study usually consist

of those that may experience the potential scenario described.

To simulate the use of an existing prediction model with real-time missing predictor value
imputation, we used the SMART risk score and paired it with the available U-Prevent prediction
and decision model (figure 2) . We approached potential study participants that may use
both prediction models (i.e., clinicians) from the departments of cardiology, vascular medicine,
or internal medicine at the UMC Utrecht. Our vignettes resembled real world patients as
mimicked from the large scale Utrecht Cardiovascular Cohort (UCC) ***. Further, we presented
the participating clinicians with vignettes in fixed order and included separate questionnaires at
different points in time of the mimicked clinical process: (i) before missing predictor imputation, (ii)
after missing predictorimputation, and (iii) after unveiling the true values of the missing predictors
(Figure 1). The questionnaires ultimately asked whetherimputed predictor values were clinically
realistic, the users were comfortable with using the imputed values to predict the patient’s risk,

and whether the imputation model provided added value for the clinician (Figure 1).
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Overview of survey structure and design

—Survey design
Information provided before imputation Questions before imputation
- Introduction of vignette which includes: - How much risk do you believe the patient has?
- Patient scenario - Are predictors easy to measure?
@‘iz‘ ‘)24‘@ - Observed predictors of the patient - Would you measure the missing predictors?
B - - Missing predictors - Would you let the patient come to the hospital?
Information provided after imputation Questions after imputation
- Imputed predictor values (with Cls) - Are you comfortable with predicting risk?
- Resulting predicted risk - Are the imputed values clinically realistic?
@@@@@ - Are the imputed values as you expected?
- Do the ClIs change your comfortableness?
+ - Motivated to measure missing predictors?
Information provided after seeing true values Questions after seeing true values
- True predictor values - Are you still comfortable with predicting risk?
- Predicted risk when using true predictors - Is the difference in predicted risk acceptable?
@@@@@ - Would you use JMI in similar patients?
- How would you use JMI in clinical practice?

Legend - ClI: confidence interval; JMI: joint modelling imputation.

Between the provided three vignettes (see Table 1) different combinations of predictors or patient
characteristics were made missing, based on a combination of variable types (i.e., binary and
continuous), burden to retrieve the missing predictor value, and expected ease of interpretation
of the imputed predictor values (Table 1). We defined three categories for burden: low (i.e., when
a phone call to the patient would suffice to retrieve the missing predictor value), medium (i.e., if
the clinician can easily measure the variable with the patient during the physical examination),
and high (i.e., when the missing predictor would require some additional, e.g. lab or imaging,
test). In short, scenario 1 (table 1) with missing predictor values was the most prevalent and
easiest to interpret, scenario 2 the most extreme and scenario 3 the easiest to fix with additional

measurements.

With 17 clinicians, of which 13 completed all9 questionnaires, the vignette study provided an exploratory

look at how real world imputation of missing predictor values in clinical practice is perceived.

Overall, the imputed values themselves were perceived as very realistic (Table 2). The type of
missing predictor did not influence this perception as both continuous, such as SBP (100%), and
binary, such as diabetes or anti-thrombotic treatment (both 77%), predictors were rated similar.
Except for SBP (46%) and years since first CVD-event (29%), the imputed values matched clinical
expectations across variable types and levels of clinical burden. When many predictor variables
were missing, the difference in predicted risk was perceived as unacceptable (23%) (reflected by

scenario 2).
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Table 1. Summary of vignettes and type of missing predictor values and their imputed and real values

Variable Burden to retrieve Imputed Real
Missing predictor values type the missing data values values
SBP Continuous Medium 136 163
Scenario 1
Hs-CRP Continuous High 3.2 1.6
Hs-CRP Continuous High 3 2.5
Years since first CVD-event Continuous Low 14.7 4
Scenario2  Total cholesterol Continuous High 52 4.1
HDL-cholesterol Continuous High 12 12
LDL-cholesterol Continuous High 33 2.3
SBP Continuous Medium 138 138
Scenario3  Diabetes Binary Low 11.9% No
Anti-thrombotic treatment Binary Low 86.9% Yes

Legend - SBP: systolic blood pressure; hs-CRP: high sensitivity C-reactive protein; CVD: cardiovascular disease; LDL: lower-
density lipoprotein; HDL: high-density lipoprotein.

The level of comfortableness was, altogether, low. Solely when few, exclusively continuous
predictors, were missing, participants were comfortable with imputation of missing predictor
values (67% in scenario 1). With too many predictors missing, independent of the burden to
retrieve the missing predictor values, few participants were comfortable (29%). Only when
predictors were mostly binary (as reflected in scenario 3), the level of comfortableness changed

substantially after revealing the true predictor values (from 18% to 54%).

Participants seemed motivated to measure any missing predictor value, regardless of variable
type or burden to retrieve the missing predictor value. The one exception was hs-CRP, for which
participants were consistently not motivated to measure the missing values (35% and 13% for
scenarios 1 and 2 respectively).

Theview on comfortableness in predicting a patient’s risk after having imputed a missing predictor
value, seemed dependent on the type of the missing predictor. Possibly this is because binary
predictors are imputed with percentages (e.g., 85% instead of yes/no), rather than a dichotomized
imputed value, making the interpretation more difficult. Likewise, CIs forimputed predictor values
were found to deteriorate the interpretability of the imputed value and comfortableness in the

predicted risk (after imputation) more unrealistic.

Theseresults indicate that the implementation of real time imputation seems better perceived as

useful when itis used to impute continuous variables and not too many predictors are missing.
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Also, the acceptance of real time imputation of missing predictor values is dependent on the
importance of the predictor. Cholesterol levels, for example, were noted as important predictors
and participants specifically stated that imputation could not be relied upon as it were part of
the minimum set of predictors to be measured in cardiovascular risk prediction “*. In comparison,
hs-CRP was not considered important for deciding on treatment options and thus participants
were not concerned when it was imputed. This vignette study thus indicates that there is
acceptance by users of prediction models to apply missing predictor value imputation in real

time, if not only to justify additional measurements.

One of the questions that remains is whether the use of confidence intervals around the imputed
predictorvaluesis helpful. Also, we note that this pilot of course addressed only a limited number
of scenarios and clinical domains, which stresses the importance of further study on professionals’

acceptance and use by of imputation of missing predictor values in real time.

The use of real-time missing predictor value imputation was found to be acceptable by potential
users. Developments in terms of how to implement real time imputation models, which variables
or information is to be used by the imputation models and how to present the imputed values
and the correspondingly predicted risks, are required to ensure continued acceptableness of real-
time imputation in daily practice. For example, an improved way to communicate the uncertainty
around the missing predictor value imputations and the subsequently predicted risks by the

model is warranted.

Inherently, there is always uncertainty when imputing missing predictor values in real time
practice. When more predictor values are missing, the uncertainty around imputed values is
evidently higher. Still, it is difficult for users to exactly interpret when an imputed predictor value
in real time is too uncertain. As is, the use of confidence intervals seems to primarily cause doubt
rather than providing confidence among prediction model users. Generating a rule of thumb for
when a confidence interval is too wide or the uncertainty of an imputed predictor value is too high,
may be possible but remains complex. Instead, we recommend to present the difference in the

resulting model’s predicted risk based on the confidence limits of the imputed predictor values.

Similarly, inclusion of auxiliary variables and information (extracted from the EHR) to be used in the
real time imputation models has not yet been fully evaluated. There is tremendous opportunity
in the typically rich EHRs forimproved real-time missing predictor value imputation, which might
result in more accurate imputations. Similarly, though unproven, the use of auxiliary variables

may improve other missing data handling approaches such as surrogate splits, as discussed in
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our chapter 5. Still, privacy regulations may limit the use of other available patient data to be used
in real time imputation models. Ultimately, to ensure the use of auxiliary variables in real time

imputation models is feasible but should be researched further.

Table 2. summary of acceptance measures (shows percentage of participants that said yes)

Comfort-
Clinical realism ableness Added value
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Scenarios Missing variables O < 8§83 25 £ 28 = <
Before (i), after (ii), or after seeing true values (iii) ii ii iii ii iii iii i
SBP +/- 7% 46% 71%
Scenario 1 80% 67% 60% 87%
Hs-CRP - 100% 67% 35%
Timesince
X + 47% 29% 80%
first CVD event
Hs-CRP - 93% 93% 13%
Scenario 2 Total cholesterol - 93% 86% 23% 29% 23% 7% 93%
HDL-cholesterol - 93% 93% 93%
LDL-cholesterol - 93% 60% 93%
Anti-thrombotic
o + 7% 80% 69%
medication
Scenario 3 Diabetes + 7% 100% 92% 15% 54% 85% 69%
SBP +/- 100% 54% T7%

Legend - SBP: systolic blood pressure; hs-CRP: high-sensitivity C-reactive protein; CVD: cardiovascular; +: low; +/-: medium;
- high.
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Likewise, though implied in our vignette study above, it has not yet been fully evaluated whether
theintended users of prediction models and underlying real time imputation models, will actually
improve the measurement of patient information to reduce the amount of missing data in future
patients. The impact that the use of real-time imputation may have on the overall missingness
ratesin EHRs is yet unknown and more hands-on research in existing risk management systems

may show whether this is the case.

The framework and protocol for adopting real-time imputation in daily practice of healthcare
professionals may also be a hurdle. Real-time imputation models need to be developed in or
tailored (i.e., calibrated) to a suitable sample of patients from the targeted local population to
which the prediction models will be applied. Fortunately, the development of the proposed
real-time imputation models is relatively simple, and only requires estimating the means and
covariance matrix of a targeted population. Consequently, it would be possible that this data
needed for real time imputation, is directly provided from the research that led the development
or validation of the prediction model itself. This would make the adoption of real time missing

predictor value imputation easier.

Theimportant question remains whether all these suggestions and developments on the use and
implementation of real time imputation in daily practice will have a positive impact on clinical
decision making and health outcomes in individual patients . Thisis the ultimate aim of

subsequent research in this area.

With the existence of extensive reporting guidelines and missing data handling theory, it remains
surprising that missing data in clinical healthcare data continuous to be a persistent problem
when developing, validating, or applying clinical prediction models. Omitting orignoring missing
predictor data seem the prevailing situation. Overall, this indicates an overall lack of appreciation
about the severe consequences of improper handling of missing data in prediction model research
and practice. Whilstimprovements in clinical healthcare, such as improved clinical care pathways
that minimize missing data, and the use of real time missing data imputation may provide a
suitable solution, researchers and users of prediction models must first become more aware of
the consequences of ignoring missing data. Otherwise, all improvements and solutions will not
follow theirimplementation in future research or practice. We do believe that the research in this

thesis will contribute to this acknowledgment.
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Figure 2. Example of a hypothetical risk profile as presented to the clinician
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Appendix

The identification of individual patients at risk of disease has become an integral part of recent
trends towards a more personalized healthcare system. A healthcare system that is personalized
allows us to administer the most applicable treatment to an individual patient given their risk
profile and, in turn, make our healthcare much more efficient. To that end, clinical prediction
models are situated as prime candidates to assist clinicians with accurate risk estimates. By
harnessing the information captured in various patient or disease related properties, these risk
prediction models are able to chart a likely path that a disease might take (i.e., prognosis) or

identify whether a specific disease is likely present in individual patients (i.e., diagnosis).

Recent efforts to computerize the use of various clinical prediction models in clinical practice
have provided clinical decision support systems (CDSS) that are already usable in clinical practice.
These CDSS already allow clinicians to potentially inform their clinical decision making by
providing individual risk probabilities. However, because currently available risk prediction models
require complete information to generate predictions, these models are severely hampered
whenever any patient or disease properties are missing. Luckily, the ample guidance that exists
on the handling of missing data provides useful stepping stones to develop flexible or missing

data handling techniques usable in real-time clinical practice.

In Chapter 2 we show that, so far, the majority of clinical prediction model studies that make use
of machine learning (ML) techniques are not reporting enough information on the presence or
handling of missing data when developing or validating a prediction model. Though ill-advised,
the removal of patient records with missing variables is also used most often. These results were
retrieved by evaluating whether a systematically searched subset of published papers included

information on predefined features to be reported about missing data.

In addition to poor reporting on missing data, we show that the adherence of ML prediction
model studies to current recommended reporting guidelines is also poor (Chapter 3). Several of
the items deemed essential were reported incomplete, resulting in a heightened risk of bias for

these studies. In addition, methodological quality was generally poor.

It is clear efforts are required to improve the design and consecutive reporting of prediction
model studies (using ML or not). To that end, Chapter 4 presents the development of several
imputation methods for missing predictor values in real-time. In a case-study with a real-world
empirical data set for cardiovascular risk prediction, we compared the accuracy of two common

imputation methods which were adjusted for use in real time clinical practice: conditional
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modeling imputation (CMI, where for each predictor a separate multivariable imputation model
is derived) and joint modeling imputation (JMI, where we assume all predictors are normally
distributed and use the observed patient information to generate imputations for each missing
predictor). We then compare these methodologies with a method which is often used in practice:
mean imputation (where missing values are replaced by the sample mean). Congruent with our
expectations, simulations found that both JMI and CMI are generally to be recommended in
terms of imputation accuracy. As JMI was generally faster and less complex, it was deemed more

promising.

In Chapter 4 we evaluated novel imputation methods strictly on theirimputation accuracy in terms
of their root mean squared error. In Chapter 5 we continue with the more promising imputation
method (i.e., JMI) and evaluate it using common evaluation methods for prediction models
(i.e., discrimination and calibration of the model predictions). We specifically focus on the use
of auxiliary variables (i.e., variables not part of the prediction model), elaborate further on the
idea of imputation model updating and make a comparison with the often-used method mean
imputation. In summary, the use of JMI is found to be most beneficial when estimated in local
data and with the use of these auxiliary variables. Its added value is most prominent whenever

the missing predictors are correlated with other observed (auxiliary) variables.

The solution to missing data in clinical practice is not solely solvable by estimating substitute
predictor values based on what we know of the individual patient. Multiple techniques exist
which can handle missing values with a built-in design. In Chapter 6 we evaluated multiple
missing data handling methods and compared them with JMI. Specifically, we evaluated pattern
submodels (PS, where for each pattern, by which variables are missing, a separate prediction
model is developed) and surrogate splits (SS, where an optimal replacement value is found among
the available patient information which can serve as a replacement for the missing predictor).

Provided multiple imputations are used, JMI is still to be preferred over PS and SS.

We are hopeful that large, local datasets may become more available to inform properimputation
procedures which will enable real-time handling of missing data. Still, prediction models need to
be generalizable to such data. In Chapter 7 we show that internal-external cross-validation (IECV)
is to be preferred, when the data is clustered, for assessing the generalizability of a prediction
model during development. In short, IECV evaluated model performance in every hold-out
sample which includes individuals from a different setting or population (e.g., a different hospital).
Additionally, it can be adopted to evaluate whether complex modeling strategies (e.g., the use of

penalization, interactions or non-linear effects) offer any benefits. We found that the accuracy of
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prediction models does not necessarily benefit from more complex modeling strategies, which

shows that IECV is potentially useful for simplifying model complexity.

As of yet, itis largely uncertain whether personalized medicine, in the form of CDSS, will offer the
benefits it gives the impression of providing. Clinicians are certainly inclined to believe so, but
concrete evidence of positive impact on health outcomes s, as of yet, missing. First and foremost,
and for fair comparison, the severe consequences of improper missing data handling must be
appreciated and handled the right way.
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Samenvatting

De identificatie van individuele patiénten met een risico op ziekte is een integraal
onderdeel geworden van recente trends in de richting van een meer gepersonaliseerd
gezondheidszorgsysteem. Een zorgsysteem dat gepersonaliseerd is stelt ons in staat om de meest
toepasselijke behandeling te vinden voor een individuele patiént gegeven diens risicoprofiel. Die
persoonlijke benadering zou onze gezondheidszorg veel efficiénter kunnen maken. Daartoe zijn
klinische voorspelmodellen de voornaamste kandidaten om clinici te helpen met nauwkeurige
risicoschattingen. Door gebruik te maken van de informatie die is vastgelegd in verschillende
patiént- of ziektegerelateerde eigenschappen, kunnen deze risico-voorspelmodellen een
waarschijnlijk pad in kaart brengen dat een ziekte zou kunnen nemen (d.w.z.,, prognose) of
identificeren of een specifieke ziekte waarschijnlijk aanwezig is bij individuele patiénten (d.w.z.,,

diagnose).

Recenteinspanningen om het gebruik van verschillende klinische voorspelmodellen in de klinische
praktijk te automatiseren, hebben geleid tot klinische beslissingsondersteunende systemen die
al bruikbaar zijn in de klinische praktijk. Deze systemen stellen clinici in staat om hun klinische
besluitvorming verder te verbeteren door het gebruik van individuele risico inschattingen.
Omdat de momenteel beschikbare modellen voor risico-voorspelling echter volledige informatie
vereisen om voorspellingen te genereren, worden deze modellen ernstig belemmerd wanneer
eigenschappen van een patiént of ziekte ontbreken. Gelukkig is de uitgebreide kennis over
het omgaan met missende waardes in staat om nuttige opstapjes te geven om flexibele of

verwerkingstechnieken te ontwikkelen die bruikbaar zijn in de ‘live” klinische praktijk.

In Hoofdstuk 2 laten we zien dat, tot dusverre, de meeste klinische voorspelmodel studies die
gebruik maken van machine learning (ML) technieken, onvoldoende informatie rapporteren
over de aanwezigheid of verwerking van ontbrekende data bij het ontwikkelen of valideren van
een voorspelmodel. Hoewel het onverstandig is, wordt het verwijderen van patiéntendossiers
of variabelen met missende waardes het vaakst gebruikt. Dit konden we vaststellen door na te
gaan of een systematisch doorzochte subset van gepubliceerde artikelen informatie bevat over

vooraf gedefinieerde kenmerken die moeten worden gerapporteerd over ontbrekende gegevens.

Naast ondermaatse rapportage over missende waardes, laten we zien dat de naleving van huidige
aanbevolen rapportage richtlijnen voor ML-voorspelmodel studies ook slecht is (hoofdstuk 3).
Verschillende van de items die als essentieel worden beschouwd, zijn onvolledig gerapporteerd,
wat resulteerde in een verhoogd risico op vertekening voor deze onderzoeken. Bovendien was

de methodologische kwaliteit over het algemeen slecht.
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Hetis duidelijk dat er inspanningen nodig zijn om het ontwerp en de opeenvolgende rapportage
van voorspelmodel studies te verbeteren (al dan niet met ML). Met dat doel laat Hoofdstuk
4 de ontwikkeling zien van verschillende imputatie methoden voor missende waardes in
realtime. In een case-study met een real-world empirische dataset voor cardiovasculaire risico
voorspelling, vergeleken we de nauwkeurigheid van twee veelgebruikte imputatie methoden
die waren aangepast voor gebruik in de realtime klinische praktijk: conditional modelling
imputation (CMI, waarbij voor elke voorspeller een apart multivariabel imputatie model is
afgeleid) en joint modeling imputation (JMI, waarbij we uitgaan van enkel normaal verdeelde
voorspellers en de beschikbare patiéntgegevens gebruiken om imputaties te genereren voor
elke missende voorspeller). Vervolgens vergelijken we deze methodes met een veelgebruikte
methode in de praktijk: gemiddelde imputatie (waarbij missende waardes worden vervangen door
het steekproefgemiddelde). In overeenstemming met onze verwachtingen, vonden simulaties
dat zowel JMI als CMI over het algemeen kunnen worden aanbevolen in termen van imputatie
nauwkeurigheid. Omdat JMI over het algemeen sneller en minder complex was, werd het als de

methode met meer potentie beschouwd.

In Hoofdstuk 4 evalueren we nieuwe imputatie methoden strikt op hun nauwkeurigheid in
termen van hun gemiddelde kwadratische fout. In Hoofdstuk 5 gaan we verder met de meer
veelbelovende imputatie methode (d.w.z., JMI) en evalueren deze door middel van veel gebruikte
evaluatie maten voor voorspelmodellen (d.w.z., discriminatie en kalibratie). We richten ons
specifiek op het gebruik van auxiliaire variabelen (d.w.z., variabelen die geen deel uitmaken van het
voorspellingsmodel), werken hetidee van het flexibel bijwerken van het imputatie model verder
uiten maken een vergelijking met de veel gebruikte methode gemiddelde imputatie. Samengevat
blijkt het gebruik van JMI het voordeligst te zijn wanneer het wordt geschat in lokale gegevens en
met behulp van auxiliaire variabelen. De toegevoegde waarde is het meest prominent wanneer

de missende voorspellers correleren met andere waargenomen (auxiliaire) variabelen.

De oplossing voor missende waardes in de klinische praktijk is niet alleen op te lossen door
vervangende voorspeller waarden te schatten op basis van wat we weten van de individuele
patiént. Er bestaan meerdere (ML) technieken die kunnen omgaan met ontbrekende waarden met
een ingebouwd ontwerp. In Hoofdstuk 6 evalueren we meerdere methoden voor het verwerken
van missende waardes en vergeleken deze met JMI. Specifiek evalueren we patroon submodellen
(PS, waar voor elk bestaand patroon waarmee voorspellers missend gevonden zijn een apart
voorspelmodel ontwikkeld wordt) en surrogate splits (SS, waar een optimale vervangende waarde
wordt gevonden onder de beschikbare patiéntgegevens die gebruikt kan worden in plaats van
de missende voorspeller). Mits meerdere imputaties worden gebruikt, heeft JMI nog steeds de

voorkeur boven PSen SS.
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Samenvatting

We hebben goede hoop dat er meer grote, lokale datasets beschikbaar zullen worden gemaakt
om imputatie procedures uit te kunnen voeren die realtime verwerking van missende waardes
mogelijk maken. Wel moeten voorspelmodellen generaliseerbaar zijn naar dergelijke gegevens. In
Hoofdstuk 7 laten we zien dat interne-externe kruisvalidatie (IECV) de voorkeur verdient, wanneer
de gegevens worden geclusterd, voor het beoordelen van de generaliseerbaarheid van een
voorspellingsmodel tijdens de ontwikkeling. In het kort, IECV evalueert de model prestaties in elke
hold-out-steekproef die individuen omvat uit een andere setting of populatie (bijvoorbeeld een
ander ziekenhuis). Bovendien kan het worden gebruikt om te evalueren of complexe modellering
strategieén (bijvoorbeeld het gebruik van interacties of niet-lineaire effecten) voordelen bieden.
We ontdekten dat de nauwkeurigheid van voorspelmodellen niet noodzakelijkerwijs baat heeft
bij complexere modellering strategieén, wat aantoont dat IECV potentieel nuttig is voor het

vereenvoudigen van algemene model complexiteit.

Vooralsnog is het grotendeels onzeker of gepersonaliseerde geneeskunde, in de vorm van CDSS,
de potentie die het laat zien zal waarmaken. Clinici zijn zeker geneigd om van wel te geloven,
maar concreet bewijs van een positieve impact op de gezondheidsuitkomsten ontbreekt tot nu
toe. Eerst en vooral, en voor een eerlijke vergelijking, moeten de ernstige gevolgen van onjuiste

verwerking van missende waardes worden erkend en op de juiste manier worden behandeld.
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Vanaf het allereerste begin, en zeker toen Nederland door COVID-19 getroffen werd, was het
duidelijk dat het tot stand laten komen van dit proefschrift tot het moeilijkste zou behoren dat ik
ooit gedaan heb. Nu het tot een einde komt kan ik niet anders dan dankbaar zijn voor alle mensen
in mijn directe en indirecte omgeving die het voor mij mogelijk hebben gemaakt om door te gaan.

De voldoening en de eer komt jullie allen toe.

Allereerst zou graag mijn promotoren prof. dr. Moons, prof. dr. Asselbergs, mijn copromotordr.
Debray en mentor prof. dr. Bots willen bedanken. Jullie stonden vanaf het allereerste begin in
mijn hoek en hebben mijvol begrip gesteund op de momenten dat het moeilijk werd. Het is een
genoegen en voorrecht geweest dit te mogen doen onder jullie begeleiding. Beste Carl, ik wil je
heel graag bedanken voor je onbreekbare positiviteit gedurende de promotie. Je was begripvol,
inspirerend en vooral geinteresseerd in waar ik heen wilde. Jouw inspanningen en advies zorgde
ervoor dat ik een goede grip op mijn onzekerheid kreeg gedurende mijn promotie en daar ben ik
je nog altijd zeer dankbaar voor. Beste Folkert, dank voor je constante bereidheid om te helpen
en in te springen waar nodig en je zeer plezierige aanwezigheid gedurende de hele promotie.
Door de belangrijkste componenten van het onderzoek regelmatig te benadrukken en de hoofd
en bijzaken goed te scheiden was je bijdrage van essentiéle waarde. Het staat me nog goed bij
dat we op een gegeven moment belde over een pijnpunt in ons onderzoek en je mij wees op
de juiste invalshoek. Beste Thomas, met absolute zekerheid kan ik zeggen dat dit proefschrift
er niet was geweest zonder jou. Onze wekelijkse gesprekken waren inspirerend, aanstekelijk,
enthousiast, kritisch en bovenal nuttig. Je nam altijd de tijd voor mij en je streefde altijd naar
een leuke teamsfeer (bijv. middels etentjes). Je was bereid naar me te luisteren en dacht mee als
ik weer een gek idee had (die meestal niet werkte) en dit heb ik altijd zeer gewaardeerd. Dank
voor je begeleiding en dat ik zoveel van je heb mogen leren. Beste Michiel, mijn dank gaat uit
naar je betrokkenheid, je enthousiasme en je prettige benaderbare houding. Je aanwezigheid en
communicatieve vaardigheden maakte elke reguliere overleg gemakkelijker, ondanks dat ik van
tevoren nerveus kon zijn. Alhoewel je naar eigen zeggen geen technische expertise hebt, wist je
altijd essentiéle bijdrages te leveren door het kerndoel duidelijk te maken en herkende je zonder

meer waar potentiéle pijnpunten zouden kunnen liggen.

Aan mijn beoordelingscommissie, prof. dr. Rovers, prof. dr. Oberski, prof. dr. Scheepers,
prof. dr. Visseren en prof. dr. Kretzschmar, dank voor uw bereidheid mijn proefschrift te lezen
en beoordelen. Ook veel dank aan dr. van Smeden voor het plaatsnemen in de oppositie bij

mijn verdediging.
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Mijn dank gaat ook uit naar alle betrokkenen bij ORTEC, John, Ines, Inge, Menno en het team van
Logigcare. Jullie inbreng is van onschatbare waarde geweest. Bij Ortec heb ik me altijd welkom
gevoeld en het is jammer dat het beperkt is gebleven door het vele thuiswerken. Beste John,
ook jij bent sinds het begin betrokken geweest bij mijn onderzoek, dankjewel daarvoor. Je was
plezierig en leek altijd het vertrouwen erin te houden, wat heel bemoedigend werkte. Dank dat
je, ook toen het minder ging, met mij bleef praten. Onze wandeling door Utrecht zal ik altijd
blijven waarderen. Beste Ines, alhoewel je later aansloot, was je inbreng direct zichtbaar en van
meerwaarde. Heel veel dank voor al je inzet en je plezierige aanwezigheid bij de vele overleggen

die we gehad hebben.

Aan alle co-auteurs die meegewerkt hebben aan de hoofdstukken in dit proefschrift, ontzettend
veel dank voor jullie harde werk en vertrouwen. Beste Jeroen, zonder jouw bereidheid om mee
te kijken en te schrijven aan mijn eerste onderzoeken was ik nooit enigszins beslagen ten ijs
gekomen. Dank voor alle moeite die je erin gestopt hebt. Je humor en creatieve schrijfvaardigheid
hebben altijd veel plezier gegeven. Beste Constanza, het immense werk van jouw review heeft
de grondslag aan twee hoofdstukken in mijn proefschrift geleverd. Ontzettend bedankt dat ik
hieraan mee heb mogen werken. Onze online koffiemomenten waren altijd plezierig en iets
om naar uit te kijken, dank voor je vrolijke aanwezigheid. Beste Tuur, dank voor de gezelligheid
tijdens onze samenwerking. Het is altijd met veel plezier geweest dat ik met je discussieerde
over de verschillende componenten van ons onderzoek. Dear Toshi, it has been a pleasure to
work with you. Thank you for providing the opportunity to do so. Beste Saskia, veel dank voor
je betrokkenheid en inzet bij mijn laatste onderzoek. Je absolute positiviteit en enthousiasme
werkte aanstekelijk en het was inspirerend te zien hoe je te werk gaat. Dit zijn vaardigheden die

ik hoop eigen te kunnen maken.

Veel dank aan alle collega’s die meegewerkt hebben aan het Special Interest Group project,
Gerko, Hanne en Maarten. Nooit eerder waren de reguliere overleggen zo informeel en gezellig,
alsook nuttig. Dat was precies waar ik op hoopte aan het eind van mijn proefschrift, veel dank
daarvoor. Beste Gerko, alhoewel ik je soms nog steeds niet helemaal volg als je bepaalde missing
data vakjargon gebruikt heb ik je intelligente en kritische blik enorm gewaardeerd. Het heeft er
absoluut tot een beter resultaat geleid. Beste Hanne, het was heel erg fijn om samen te werken aan
onsonderzoek. Je kennis en vaardigheden zijn bewonderenswaardig en maakte het project heel
goed te doen. Het is ook niet zo gek dan dat je in de toekomst al een positie als promovendus hebt
vastgesteld, veel succes daarmee. Verder heb ik erg genoten van onze discussies. Heel erg bedankt
voor je betrokkenheid en harde werken. Beste Maarten, direct bij onze eerste kennismaking,

waarbij ik je vertelde van mijn voornemen om ML toe te gaan passen voor missing data, was je
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(gekscherend) sceptisch voor het nut daarvan. Die kritische, en humoristische, blik heb je nooit

laten varen en dat heb ik erg gewaardeerd gedurende de tijd dat we samenwerkte, dankjewel.

Aan alle collega’s in het methode team, dank voorjullie inzicht en gezelligheid. Jullie presentaties
zijn inspirerend geweest en ik keek altijd uit naar onze weekstart op maandag. De teamuitjes zijn
helaas pas recent weer opgestart, maar ik heb veel genoten van de momenten die ik ondanks
het vele thuiswerken nog met jullie gehad heb. We zullen maar moeten aannemen dat Michiel de
hypothetische pubquiz gewonnen zou hebben. Lieve Lotty, ondanks dat we aan weinig projecten
samen gewerkt hebben, heb je ongetwijfeld een positieve invloed gehad op mijn promotie. Je
vrolijke, begripvolle en lieve aanwezigheid, en bereidheid te praten wanneer ik dat nodig had, heb
ik enorm gewaardeerd. Het is één van de dingen die ik absoluut mis nu ik niet meer op het Julius
werk. Beste Valentijn, alhoewel ik niet verwacht dat ik je ooit zal verslaan met AoE heb ik altijd
erg genoten van je gezelschap deze jaren. We hebben veel gelachen en het was ontzettend leuk
om samen deel uit te maken van Thomas z’n team (met de extra lunches en uitjes). Dankjewel
voor al je positiviteit. Beste Hans, ondanks dat we niet samen hebben gewerkt wilde ik je graag
bedanken voor het feit dat je de reden bent geweest dat ik deze kans heb gekregen. Heel erg
bedankt dat je mijn naam destijds hebt doorgegeven aan Carl.

Lieve kamergenoten van 6.118, Noor, Marit, Zujie, Said, Antonis, Sieta en Katrin, dank voor jullie
gezelligheid. Door het thuiswerken heb ik jullie gezelschap helaas veel moeten missen, maar het
heeft het eerste jaar veel goed gedaan om met jullie op de kamer te zitten.

Lieve Katrien, in het eerste jaar heb jij mij de kneepjes van het vak geleerd. Je aanwezigheid was
van onmiddellijke en onschatbare meerwaarde en maakte dat ik met goed vertrouwen direct aan
de bak kon. Je laagdrempelige strategie middels zoete stroopwafels is mij nog lang bijgebleven,
alhoewel ze meestal op waren voor ik ze kon gebruiken zoals je had voorgesteld. Dank voor al je

vertrouwenwekkende aanwezigheid.

Anneke en Reinoud, wat fijn dat jullie mijn paranimfen willen zijn en achter mij zullen staan op het
grote moment. Lieve Anneke, in mijn laatste jaar waren we regelmatig kamergenoten en daar heb
ik zo enorm van genoten. Met veel plezier heb ik met je geluncht, waarbij het soms leek alsof wij
de enige waren die niet over werk wilde praten, gewandeld, gepraat en nunchaku beoefend (bij de
sportdag). Leuk om te horen dat je in Utrecht blijft. Reinoud, buddy, soms vraag ik me af of je wel
door hebt hoeveel onze vriendschap voor mij betekent. Je vermogen om ongenadig te veroordelen
als ik iets fout doe en tegelijkertijd lief en begripvol zijn als ik het nodig heb is prijzenswaardig.
Het heeft op zoveel momenten geholpen om de juiste keuzes te maken en ik hoop dan ook dat

ik daar nog heel erg lang van kan genieten. Dankjewel dat je er al die jaren al voor mij bent.
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Dankwoord

Al mijn lieve vrienden, (schoon)familie en mede-nunchaku-ka’s, dank voor jullie interesse
in mijn onderzoek en altruistische steun deze afgelopen jaren. Het is zo fijn geweest om mijn ei
kwijt te kunnen bij jullie als dat nodig was. Jullie hebben voor de nodige ontspanning gezorgd
door met mij te filosoferen over de toekomst, bordspellen te spelen, kata’s te lopen en te klagen
over politiek. Jullie hebben het in deze tijd een stuk makkelijker gemaakt om te kunnen genieten,

dank jullie allen.

Lieve papa en mama, het was heel fijn toen we uiteindelijk dichterbij jullie gingen wonen en we
zo veel vaker bij jullie over de vloer konden komen. Jullie zijn altijd bereid geweest te luisteren
als ik ergens mee zat en geinteresseerd in hoe het met mij ging en wat ik deed aan onderzoek.
Ditis zo belangrijk geweest voor mijin deze jaren. Jullie stonden altijd aan mijn kant, hielden het
vertrouwen in mijn kunnen en gaven dat zonder verwachtingen ook dikwijls aan. Daar zal ik jullie

altijd dankbaar voor zijn.

Lieve Tom, met veel plezier denk ik terug aan onze wandeling in Kaapverdié. De afgelopen jaren
voelt het alsof we meer naar elkaar zijn toegegroeid en dat vind ik heel erg fijn. Jij bent al heel
lang mijn grote voorbeeld geweest. Dank voor al je ondersteunende woorden de afgelopen tijd

en je vertrouwen in mij.

Hannah, lieve Hannah, zonder jouw vertrouwen en steun had ik dit allemaal nooit kunnen doen. Jij
bent mijn steun en toeverlaat. Mijn happy place. Alhoewel je af en toe genadeloos eerlijk was wat
je van het onderwerp van mijn thesis vond heb je altijd je best gedaan deze te begrijpen en mee
te denken wanneer ik dat nodig had. Jij was degene die mij ertoe zetten mijn gezondheid tijdelijk
boven mijn werk te zetten en dat is wat ervoor gezorgd heeft dat ik het af heb kunnen maken. Door
jou heb ik durven dromen over dingen die ik eerder niet voor mogelijk heb gehouden. We maken

een super goed team samen en ik kijk vol verwachting en geluk uit naar onze toekomst samen.

Endan totslot, Mels. Kleine, lieve Mels, je bent nu nog minder dan drie weken oud. Met grote ogen
kijk je echter al om je heen en ik kan alleen maar hopen dat ik een goede vader voor je zal zijn.

Gelukkigis nu de ene uitdaging afgerond en is het tijd voor een ander. Ik heb er heel veel zin in.

Steven Nijman
April 2022
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