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Chapter 1

Missing data is one of the most universal dilemmas in research using clinical healthcare data 1–4. 

A broken scale or an older patient’s refusal to have a lab-value measured or answer any clinical 

questions (e.g., about income or weight) can already have tremendous impact on the ease and 

validity of any research making use of these healthcare data. As a result, Rubin, who initiated the 

inception of classical missing data theory, and many others studied and published thoroughly 

about the proper handling of missing data 5–8.

Historically, methods for handling missing data either (i) delete cases (e.g., patients) or columns 

(i.e., variables) with missing data, often referred to as complete-case analysis (CCA), (ii) include 

a missing indicator (i.e., a dummy variable denoting whether the variable is missing or not) in 

the prediction model or (3) estimate a plausible substitution value (i.e., imputation) for each 

missing predictor value 6–10. Under most circumstances, It is recommended to generate multiple 

imputations for valid statistical inference 6,9,11,12.

A field which makes use of these clinical healthcare data and is well-known for its clashes with 

missing data is prediction research. Missing data frequently frustrates the development and 

validation of clinical – diagnostic and prognostic - prediction models 7,8,13–19. Briefly, clinical 

prediction models combine patient and disease characteristics to estimate an individual’s 

absolute risk of a pre-specified outcome (e.g., heart disease) with a fixed time window 13,20. 

Examples of these predictions models can be found in the field of cardiovascular disease; models 

such as the Framingham heart score (FHS) and HEART-SCORE are widely applied in medical 

practice 21,22. When developing or validating a risk prediction model, existing epidemiological 

reporting guidelines, congruent with the increasing amount of supportive literature, usually also 

recommend the use of multiple imputation 23–25.

When a prediction model is applied in daily practice to an individual, however, multiple imputation 

is mostly infeasible due to its computational time and required access to raw patient data. Hence, 

the actual, real-time, use of a risk prediction model, even when properly developed and validated, 

is limited in daily medical practice as risk prediction models usually have no direct, built-in 

problem-solving ability in case a predictor value of the individual is missing 13. This is evident 

in the fields where prediction models are already being applied, such as in the cardiovascular 

domain, and studies have shown that the adoption of risk prediction models is severely hampered 

by missing predictor values 14,20,22,26,27. This real-time aspect is unique to the application of risk 

prediction models in daily medical practice and seems to be underexposed in the literature, 

as evident by the variety of available solutions to deal with missing data when developing or 

validating a prediction model and the very limited guidance on dealing with missing data when 
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General Introduction

applying them 6,9,12,28. Clearly, simply ignoring the predictor from the prediction model which data 

is not observed is not a logical solution.

Lately, prediction research in medicine considers machine learning (ML) based risk prediction 

more often 29–35. These ML-based methods allow for more flexibility, handle multi-dimensional 

complex data, and may circumvent the necessity for substituting missing values completely 
30,35. By changing their risk estimation to account for missing predictor values, these ML-based 

approaches do not require the previously explained imputation methods. Rather, they are risk 

prediction models capable of handling missing data as they occur in medical practice with built-in 

mechanisms that account for the missing predictors. An example are the so-called surrogate splits, 

which form an extension to the well-known decision trees 36–38. Decision trees are one of the more 

common instances of ML based prediction that are used in clinical practice. As the name suggests, 

decision trees use a tree like structure to find the optimal cut-off point which partitions the data 

for optimal predictive performance. Based on the values of the pre-defined predictor variables, 

each branch in the tree represents a possible direction or decision 30,38. Surrogate splits try and 

preserve these splits by learning from missing predictor values in the training data and adjusting 

the partitioning to resemble the original split in the tree as good as possible in the presence of 

missing predictor values 37–39.

In this thesis we evaluated traditional statistical and modern machine learning strategies for 

handling of missing predictor data when applying prediction models in real-time medical settings. 

We focus on strategies that do not require continuous access to raw patient data sets, that are 

computationally efficient and can, if desired, provide direct access to the imputed predictor 

value 40. Since these imputation strategies allow existing prediction models to keep their current 

format and assigned weights, they provide an elegant and useful approach for enabling existing 

prediction models directly in medical practice.

Thesis outline

In chapter 2 we provide a review evaluating the extent to which prediction model studies that 

use ML based techniques report on the presence and nature of missing data, which included the 

common methods used or handling missing data during model development, validation, and 

implementation.

Existing strategies to impute missing data are not applicable in implementation settings. In 

Chapter 3 we expand on two well-known methods that make real-time imputation of missing 

predictor values possible and compare their imputation accuracy with mean imputation. In 

1
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Chapter 4 we further evaluate the impact of two of these imputation strategies on a prediction 

model’s performance.

Intuitive alternatives exist to real-time imputation and are characterized by their ability to solve 

missingness inside the prediction model instead of in the data. In Chapter 5 we compare various 

real-time missing data handling approaches other than imputation when implementing specific 

modeling techniques in clinical practice.

In addition to reporting on missing data, prediction model studies should report on many other 

aspects to ensure potential sources of bias have been handled appropriately. In Chapter 6 we 

assess the methodological quality and risk of bias of supervised ML-based prediction model 

studies.

The use of imputation and risk prediction in clinical care will likely rely upon using large datasets 

from the electronic health record (EHR) or multi-centre studies, though complex strategies may 

be required to develop generalizable clinical prediction models. In Chapter 7 we illustrate how 

advanced evidence synthesis methods can be used to evaluate this need in large population-

level datasets.

The thesis ends with a general discussion.
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Chapter 2

Abstract

Objectives – Missing data is a common problem during the development, evaluation, and 

implementation of prediction models. Although machine learning (ML) methods are often said 

to be capable of circumventing missing data, it is unclear how these methods are used in medical 

research. We aim to find out if and how well prediction model studies using machine learning 

report on their handling of missing data.

Study design and Setting – We systematically searched the literature on published papers 

between 2018 and 2019 about primary studies developing and/or validating clinical prediction 

models using any supervised ML methodology across medical fields. From the retrieved studies 

information about the amount and nature (e.g., missing completely at random, potential reasons 

for missingness) of missing data and the way they were handled were extracted.

Results – We identified 152 machine learning-based clinical prediction model studies. A 

substantial amount of these 152 papers did not report anything on missing data (n = 56/152). 

A majority (n = 96/152) reported details on the handling of missing data (e.g., methods used), 

though many of these (n = 46/96) did not report the amount of the missingness in the data. In 

these 96 papers the authors only sometimes reported possible reasons for missingness (n = 7/96) 

and information about missing data mechanisms (n = 8/96). The most common approach 

for handling missing data was deletion (n = 65/96), mostly via complete-case analysis (CCA) 

(n = 43/96). Very few studies used multiple imputation (n = 8/96) or built-in mechanisms such as 

surrogate splits (n = 7/96) that directly address missing data during the development, validation, 

or implementation of the prediction model.

Conclusion – Though missing values are highly common in any type of medical research and 

certainly in the research based on routine healthcare data, a majority of the prediction model 

studies using machine learning does not report sufficient information on the presence and 

handling of missing data. Strategies in which patient data are simply omitted are unfortunately 

the most often used methods, even though it is generally advised against and well known that 

it likely causes bias and loss of analytical power in prediction model development and in the 

predictive accuracy estimates. Prediction model researchers should be much more aware of 

alternative methodologies to address missing data.
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Missing data is poorly handled in prediction model studies using ML

What is new?

Key findings

›	 Prediction model studies that adopt machine learning (ML) methods rarely report the 

presence and handling of missing data.

›	 Although many types of machine learning methods offer built-in capabilities for handling 

missing values, these strategies are rarely used. Instead, most ML-based prediction model 

studies resort to complete case analysis or mean imputation.

What this adds to what was known

›	 Missing data are often poorly handled and reported, even when adopting advanced machine 

learning methods for which advanced imputation procedures are available.

What is the implication, and what should change now

›	 The handling and reporting of missing data in prediction model studies should be improved. 

A general recommendation to avoid bias is to use multiple imputation. It is also possible 

to consider machine learning methods with built-in capabilities for handling missing data 

(e.g., decision trees with surrogate splits, use of pattern submodels, or incorporation of 

autoencoders).

›	 Authors should take note of and appreciate the existing reporting guidelines (notably, TRIPOD 

and STROBE) when publishing ML-based prediction model studies. These guidelines offer a 

minimal set of reporting items that help to improve the interpretation and reproducibility of 

research findings.

2
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Chapter 2

Introduction

Thorough contemplation about the handling and reporting of missing data is an integral part 

of any research addressing and using clinical data, including clinical prediction model research 
1,23,24,41–43. Clinical prediction models use multiple input variables (i.e., covariates, predictors) 

to calculate the absolute risk of a specific outcome presence (diagnostic models) or incidence 

(prognostic models). In the medical literature, most diagnostic and prognostic prediction 

models are derived or validated using regression modelling strategies. When missing values are 

present in the model development or validation sample, additional efforts preparatory to model 

development are required.

The most common approach is to adopt a complete-case analysis (CCA), wherein individuals 

with missing data on any of the predictor or outcomes variables are (automatically) deleted from 

the analysis 9,44. Although this strategy is (only) valid under very stringent circumstances, it is 

generally inefficient and can lead to severe bias in estimates of the estimated model parameters 

(e.g., regression coefficients) and thus in the model’s predictive performance 6,12,41. For example, 

removing incomplete cases could lead to loss of a significant number of informative observations.

For this reason, it is generally recommended to implement multivariable imputation models that 

generate multiple imputations conditionally on other (observed) patient characteristics 6,12,28,45,46. 

When multiple imputation is used during prediction model development, multiple completed 

versions of the incomplete datasets are generated in which the prediction model coefficients are 

estimated separately. The model coefficients from each imputed dataset are then pooled using 

Rubin’s rules, and subsequently used for calculating absolute risk probabilities in new patients 
6,45. Although multiple imputation strategies are consequently applied to an entire prediction 

model development or validation dataset, it is possible to generate imputations tailored to 

individual patients 47,48. This also makes it possible use multiple imputation techniques when 

actually implementing and applying prediction models in electronic healthcare software in daily 

clinical practice 28,40,47,48.

Yet another approach is to address missing data directly during the prediction model development, 

validation, or application. This strategy can, for instance, be achieved by including missing 

indicator variables, by adopting pattern-mixture models, tree-based ensembles, or other machine 

learning (ML) methods that circumvent the use of missing data imputation (Box 1) 4,37–39,49,50.
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Box 1. Prediction with built-in missing data handling

Missing indicator. For each variable in the model a dichotomous dummy variable (0/1) is added to indicate 

whether that variable is missing or not 4,9,61,65. These dummy variables are then included in the statistical (i.e., 

risk prediction) model as separate predictors. The original, missing, predictor variable is usually set to 0. Missing 

indicators may contain relevant information for predictions, but are susceptible to so-called feedback loops; 

as soon as a clinician is aware of the informative missingness in certain predictors, their predictive value 

changes 62,63,66. Additionally, other issues may arise in the application of missing indicators as the manner of 

data collection between different practices is likely to vary 63.

Surrogate splits. Preserves the partitioning of each original split as good as possible in the presence of missing 

predictor values 37–39. Accordingly, the model, whenever it encounters a missing predictor value, will use the 

surrogate variable (rather than the missing predictor variable) to decide upon the split direction.

Sparsity aware splitting. A default direction is added for each tree node in a decision tree (e.g., XGBoost) 49. 

Whenever a missing predictor value is encountered, the instance is classified into the pre-specified default 

direction. The optimal default direction, and thus best direction to handle missing data, is learnt from the data.

Pattern-mixture models. For each pattern of missing data, a separate risk prediction model is made 

and included in the pattern-mixture model 50. Then, when applied to a new (out-of-sample) individual the 

corresponding (i.e., matching the missing data pattern in the individual) prediction model is used.

Existing prediction model reporting guidelines (TRIPOD), congruent with the increasing amount 

of supportive literature, recommend to at least report whether prediction model development 

sets and validation sets indeed suffered the presence of missing data and to what extent, and how 

such missing data were addressed in the analysis 6,23–25,51. So far, adherence to these reporting 

guidelines seems to be limited in applied prediction research. Even in prediction model studies 

that adopt more traditional (regression-based) methods, many reviews have found that missing 

data is often inadequately handled or completely ignored 3,52–56.

With the emergence of ML methods for prediction modeling, which may circumvent the need 

for imputation (e.g., random forests with surrogate splits), it becomes less evident whether and 

how missing data is handled during model development or validation. The question remains how 

often researchers adopting these ML methods make use of alternative and proper strategies and 

in what way. The objective of this study is, therefore, to investigate how well prediction model 

studies that used ML based techniques reported on the presence, nature, and extent of missing 

data in the used data sets, and which methods were commonly used for handling missing data 

during prediction model development, validation, or (if done) implementation.

2
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Figure 1. Inclusion flow continuation after systematic review 

Inclusion fl ow
Andaur Navarro et. al.

Nijman et. al.

Articles retrieved through 
PubMed database

(n=24,814)

10 random samples 
of 249 articles

Excluded (n=2,170)
Based on title and abstract

- No details about missing data presence or 
  handling (n=56)

Excluded (n=160)
- Non-humans (n=17)
- No prediction model studies (n=65)
- Only conventional statistical techniques (n=36)
- Unsupervised machine learning (n=27)
- Publication type (n=12)
- Language limitation (n=2)
- No full-text available (n=1)

Articles screened for 
title and abstract (TIAB)

(n=2,482)

Full-text articles 
assessed for eligibility

(n=312)

Articles included qualitative analysis (n=152)

Articles included qualitative analysis (n=152)

Articles reporting 
about missing data

(n=96)

Reported details on 
missing data presence

(n=50)

Details on 
missing data 

handling
(n=43)

Details on 
missing data 

handling
(n=46)

Unclear details 
on missing data 

handling
(n=3)

No details on 
missing data 

handling
(n=4)

No details on 
missing data presence

(n=46)

Identifi cation
Screening

Selection
Sum

m
ary analysis

Eligibility

BNW_Steven_v1.indd   18BNW_Steven_v1.indd   18 02/05/2022   11:51:5402/05/2022   11:51:54



19

Missing data is poorly handled in prediction model studies using ML

Methods

In a recent review by Andaur Navarro et. al. we systematically searched the medical literature 

for primary studies developing and/or validating prediction models using any supervised ML 

methodology, published between January 2018 and December 2019 57,58. The protocol of which was 

registered and published (PROSPERO, CRD42019161764) 59. The search initially yielded 24.814 results, 

from which 10 random sets of 249 articles were sampled. From the sampled 2.482 publications, 

152 were included in the review. The present review uses the same data set of this review (Figure 1). 

Similarly for the present review, articles were eligible for inclusion when a primary study described 

the development or validation of a multivariable prediction model using any kind of supervised 

ML methodology. We defined a study using supervised ML as the use of algorithmic approaches to 

develop or validate a prediction model (e.g., any tree-based methods, neural networks, or support 

vector machines). We excluded studies that adopted common statistical techniques such as linear 

regression, logistic regression, lasso regression, ridge regression, or elastic net. Also, studies were 

excluded when only a single variable was studied. All human medical fields, with the notable exception 

of medical imaging, were included. To address the aim of the present review, first, a list of key reporting 

items that may facilitate the interpretation of prediction model studies in the presence of missing data, 

were defined (Table 1). These items were based on prevailing reporting guidelines 6,23,24,41 and consider:

1.	 Information on the presence, amount, and distribution of missingness on the study variables, 

including reasons for the missing data and assumptions about the missing data mechanism.

2.	 Methods for missing data handling, including the type (e.g., imputation, missing indicator, 

surrogate splits).

3.	 Implementation details of the missing data method, including total number of imputed 

datasets and (auxiliary, i.e., not part of the prediction model) variables used in the imputation 

models (Table 1).

Existing machine learning reporting guidelines sparsely refer to the need to report on missing data 

details 35. As a consequence, items specifically about the ML modeling techniques were based on key 

characteristics of known ML methods with built-in strategies to handle missing data 37–39,49. Subsequently, 

we reviewed each eligible study and assessed whether missing data was present. For studies that 

reported the presence of missing data, we evaluated the level of reporting of the items listed in Table 

1. If applicable, data extraction was done both for the prediction model development and validation. 

When a sensitivity analysis was utilized, applied methods for handling missing data in these sensitivity 

analyses were also assessed separately. Supplementary material was considered when available. 

Ten percent of the total set was reviewed first by two reviewers (SN, AL), in which disagreements 

were resolved for mutual learning by discussing the found discrepancies. The two reviewers then 

2
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independently reviewed fifty percent of all studies respectively. Unresolved disagreements were 

resolved through consensus with a third reviewer (TD). All items used in the data extraction can be 

found in the Appendix. For the data extraction some reporting items (e.g., Item 2.1) about identifying 

and handling missing data from Table 1 were split up into several separate data extraction items.

Results

After screening, 152 eligible articles were available for the present study (Figure 1). A total of 

56 (37%) prediction model studies did not report on missing data and could not be analyzed 

further. We included 96 (63%) studies which reported on the handling of missing data. Across 

the 96 studies, 46 (48%) did not include information on the amount or nature of the missing data.

Presence and mechanism of missing data

Papers that reported on the amount of missing data most often (n = 31/50 [62%]) reported the 

overall number or frequency of missingness (e.g., the total number of patients or variables with 

one or more missing values). For these papers, the overall median percentage of missingness 

was 4.7% (IQR 1.85-28). In most other cases it was unclear how many values were missing. It was 

often unclear which variables exactly were missing (n = 39/50 [78%]). In 7 papers it was explicitly 

stated that the outcome was missing [14%]. Only a small proportion of papers provided possible 

reasons for missingness of predictor values (n = 7/50 [14%]) or compared the characteristics of 

patients with and without any missing values (n = 5/50 [10%]). Additionally, a statement about 

the (potential) mechanism by which the data were missing was seldom reported (n = 8/50 [16%]).

Handling of missing data

From the 96 papers reporting on missing data handling, the most common approach was deletion 

(n = 65/96 [68%]), with the majority using complete case analysis (CCA) (n = 43/65 [66%]). About 

a third of papers reporting on missing data handling, used imputation (n = 36/96 [38%]), most 

often single imputation (23/36 [61%]) with the mean (12/23 [52%]). Only a handful used the 

recommended multiple imputation (n = 8/36 [22%]). Of these eight papers, important details 

such as the number of imputed datasets, whether predictor and outcome variables were included 

in the imputation models, exact imputation method applied, or whether auxiliary variables were 

used, was only rarely reported (1-3 papers). Missing indicators were used by some authors (n = 8/96 

[8%]), most often in combination with any deletion or imputation method (n = 6/8 [75%]). Many 

studies used a type of prediction model development or validation (e.g., random forest) capable 

of handling missing data via built-in mechanisms (n = 77/152 [51%]). Few articles explicitly stated 

that the machine learning method could handle missing data via built-in mechanisms (n = 13/77 

[17%]), this concerned almost exclusively tree-based models.
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There were many studies (n = 23/96 [24%]) where a combination of missing data handling methods 

was used, most often combining deletion practices with imputation methods (n = 15/23 [65%]). 

Only sometimes were these reported as sensitivity analyses (n = 3/23 [13%]). There were no studies 

in which a submodel approach was used.

A complete overview of the extracted data can be found in the Appendix.

Discussion

This work comprised a comprehensive review of 152 ML-based clinical prediction model 

development or validation studies, to evaluate the reporting and methodological quality with 

regards to the presence, amount, and handling of missing data in such studies. Consistent with 

similar reviews on the reporting of prediction models or missing data, the quality of reporting in 

ML-based prediction model studies with regards to missing data was generally poor. This makes 

the judgement of the validity of the reported prediction models or their predictive accuracy 

difficult or even impossible 3,60. Examples of common pitfalls in the handling of missing data 

largely match that of similar reviews which analyzed studies reporting on prevailing statistical 

models: the exclusion of study participants with any missing data and a lack of primary details on 

the amount or nature of the missing data, and the imputation methods used, if done (Figure 2).

Methods such as CCA and single imputation, often via mean imputation (52%), were highly 

common in the ML studies included in this review. It can seem efficient to apply methods such 

as mean imputation or CCA, but it is generally expected that these ad-hoc methods are unfit for 

working with healthcare data 9,28,45,61. Only under stringent circumstances to which healthcare 

data, and certainly not routine healthcare data, usually do not abide, mean imputation and CCA 

could provide unbiased estimates. Similarly, there are strong recommendations to avoid the use 

of missing indicators, for example because it may alter the way clinicians approach the use of 

a predictive model, given that the model suggests missing data may also be informative 4,9,61,62. 

Likewise, missing indicators require continued monitoring and dynamic revision for the various 

different missing data circumstances upon which they may be used, which is incredibly convoluted 

when applied in a medical decision-making context 63. Surprisingly, this method is often used 

by studies using a non-imputation-based approach (53%). This tendency in combination with 

frequent absence of explicit motivations for choosing certain missing data handling strategies 

and sparse reference to missing data in existing machine learning reporting guidelines, illustrate 

an overall lack of appreciation about the severe consequences of improper handling of missing 

data in prediction model studies and also in clinical decision making based on prediction models.
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Overall, there is clearly room for improvement in the strategies for handling missing values of the 

prediction model studies adopting state-of-the-art ML methods. Although multiple imputation 

is currently considered the gold standard, it is only rarely implemented in these published 

studies (8/152 [5%]). In addition, several alternative strategies (e.g., pattern-mixture models, 

surrogate splits, etc.) are available that circumvent the need for imputation. These strategies 

may be particularly appealing to enhance the development, validation and implementation of 

developed prediction models, as they offer a unified approach to generate predictions in the 

presence of missing data. Still, among these approaches, it is yet unclear which is to be preferred, 

and consensus about their effectivity when compared with, more classical, missing data handling 

methods is lacking; more research on this is warranted 36,37,39.

The level of reporting is arguably just as important as the quality of an imputation model. 

Sufficient detail to be able to replicate the study is a key obligation of scientific research and 

reporting. Almost all studies that used multiple imputation lacked sufficient detail on which 

variables were included, the conditional imputation models used, and the number of multiple 

imputed datasets. Also, the limited utilization of sensitivity analyses suggests that authors did not 

consider the potential consequences of handling missing data much. Further, the lack of detail on 

which variables were included in the imputation model suggests that known extensions that can 

improve the accuracy of the imputation model (e.g., use of auxiliary variables) are unexploited 
48,64. To promote good missing-data-handling-practice, we echo previous recommendations to 

acknowledge sufficient reporting on missing data and any applied missing data handling method, 

to allow others to interpret the quality of the results, to allow for their replication and to enhance 

the application of the prediction model 3,6,52. Furthermore, journals are encouraged to ask for 

these details to be published in the original text or as supplementary files.

Many included papers used prediction models based on decision trees or random forests, for 

which built-in capabilities exist for handling missing data during its development, validation and 

implementation 37,49. Most authors, however, did not clarify whether and how these were used. 

It is possible that many authors used the default way of handling missing data as programmed 

for these models, i.e, usually CCA. However, due to the limited inclusion of programming details 

(i.e., code, libraries and packages) it remains largely uncertain how often these methods were 

used. The implementation of automated or built-in missing data handling methods is rare in 

software packages, which may explain their underreported use. Another possibility is that these 

built-in methods are taken for granted, which again suggests that there may be an overall lack 

of knowledge about the consequences of improper missing data handling. There is generally no 

consensus on how well these built-in methods work with regards to clinical prediction model 
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development, validation or implementation, which warrants additional research and caution 

when using them in the presence of missing data 36,37,39.

A limitation of our review may be related to the restricted search strategy from the original review, 

as only articles published in PubMed over a time span of two years (between January 2018 and 

December 2019) were considered and only a subsample (n=2.482) from the initial search results 

(n=24.814) was screened 59. However, we believe that even with these restrictions the final study 

sample remains representative of the current status in the field, since no recent reporting or 

methods guideline were likely issues that may have caused any improvements since then.

To our knowledge, this is the first comprehensive review evaluating the level of reporting and 

handling of missing data in ML-based clinical prediction model studies. We believe this review 

of a representative sample of model development and validation prediction model studies in 

healthcare has highlighted severe issues with the general conduct and reporting of missing data 

in ML-based prediction model studies. It is well known that inappropriate handling of missing 

data can greatly reduce the validity and generalizability of predictions and corresponding 

estimates of prediction model performance 23,42. An improved understanding about the negative 

consequences of inappropriate handling of missing data and effective ways to remedy these issues 

through improved conduct and reporting is warranted. We recommend authors to take note of 

and appreciate the existing reporting guidelines (notably, TRIPOD and STROBE) when publishing 

ML-based prediction model studies. These guidelines include a minimal set of reporting items 

that help to improve the interpretation and reproducibility of research findings.
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Appendix

Appendix A. Details of missingness (n=152)

# Item Total (%)

1.1 How was missing data presented in the paper?

Not summarized 102 (67%)

Overall 31 (20%)

By all candidate predictors 8 (5%)

By all final predictors 3 (2%)

Other 8 (5%)

1.2 Were reasons for the presence of missing data explicitly reported?

Yes 7 (5%)

No 142 (93%)

Unclear 3 (2%)

1.3 Was guidance provided on how to handle ‘live’ MD? (i.e., how to apply the prediction 
models in new patients with MD)

Yes, explicitly 7 (5%)

Yes, implicitly (e.g., mean imputation) 61 (40%)

No 82 (5%)

Unclear 2 (1%)

1.4 Was a comparison of patient characteristics for patients without any missing values, and 
patients with one or more missing values made?

Yes 5 (3%)

No 147 (97%)

Legend: MD: missing data, CCA: complete-case-analysis.

Appendix B. Details of missing data handling (n=152)

# Item Total (%)

2.1 Was the type of method used to account for MD reported?

Yes 89 (59%)

2.2 If yes, what was the method being used?

Deletion (i.e., CCA) 44 (47%)

Imputation-based 16 (17%)

Non-imputation-based 7 (7%)

A combination of the above 23 (25%)

A combination of deletion and imputation 15 (65%)

A combination of deletion and non-imputation 3 (13%)

A combination of imputation and non-imputation 2 (9%)

2
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Appendix B. (continued)

# Item Total (%)

A combination of all three methods 3 (13%)

Unclear 4 (4%)

No 58 (38%)

Unclear 5 (3%)

2.3 Is there evidence to suggest the developed prediction model can handle the presence of 
missing data?

Yes / probably yes 13 (9%)

No / probably no 75 (49%)

Unclear 64 (42%)

2.4 Was an explicit mention of any missing data mechanisms given?

Yes 8 (5%)

2.5 Was a motivation for the assumptions made provided? (i.e., missing data mechanisms)

Yes 7 (88%)

Unclear 1 (13%)

No 144 (95%)

Appendix C. Reported details on deletion (n=65)

# Item Total (%)

3.1 Were results of a CCA presented?

Yes 44 (68%)

3.2 Was the CCA considered as the main analysis, or as a sensitivity analysis?

Main analysis 42 (96%)

Sensitivity analysis 2 (5%)

No 18 (28%)

Unclear 3 (5%)

3.3 Was a diagram or figure used to depict the number of individuals excluded (e.g., 
participant flow diagram)?

Yes 3 (5%)

No 62 (95%)

3.4 Was an explicit rationale for exclusion of participants reported?

Yes 17 (26%)

No 48 (74%)
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Appendix D. Reported details on imputation (n=36)

# Item Total (%)

4.1 Was the type of imputation-based approach reported?

Yes 32 (89%)

4.2 What was the imputation method being used?

Single imputation 23 (72%)

Multiple imputation 8 (25%)

Unclear 1 (3%)

No 2 (6%)

Unclear 2 (6%)

4.3 Was a sensitivity analysis performed?

Yes 3 (8%)

No 27 (75%)

Unclear 6 (17%)

4.4 Were statistical interactions assessed and adjusted for in the imputation model?

	 Yes 2 (6%)

	 No 21 (58%)

	 Unclear 13 (36%)

4.5 Were non-linear terms assessed and adjusted for in the imputation model?

	 Yes 1 (3%)

No (non-linear terms were assessed in the main analysis, but not adjusted for during 

imputation)
2 (6%)

No (non-linear terms were not assessed in the main analysis and not adjusted for during 

imputation)
17 (47%)

	 Unclear 16 (44%)

4.6 Was clustering assessed and adjusted for in the imputation model?

	 Yes 1 (3%)

	 No 20 (56%)

	 Unclear 15 (42%)

4.7 Did the variables imputed include continuous variables?

Yes / probably yes 21 (58%)

4.8 Was it described how these were modelled?

Linear 1 (5%)

Non-linear 3 (14%)

Categorized 2 (10%)

Not reported 15 (71%)

No 3 (8%)

Unclear 12 (33%)

2
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Appendix D. (continued)

# Item Total (%)

4.9 Was any other preprocessing performed?

	 Standardization / normalization 10 (28%)

	 Outlier removal 2 (6%)

Not reported 2 (6%)

Unclear 16 (44%)

	 No 6 (17%)

4.10 Were details of the variables included in the imputation procedure presented?

	 Yes 3 (8%)

4.11 Was a motivation for the inclusion of variables in the imputation procedure provided?

No 3 (100%)

	 No 31 (86%)

Unclear 2 (6%)

4.12 Was the outcome included as a variable in the imputation procedure?

	 Yes 1 (3%)

	 No / probably no 19 (53%)

Unclear 16 (44%)

4.13 Were auxiliary variables included in the imputation procedure?

	 Yes 3 (8%)

4.14 Were any details on auxiliary variables used presented?

No 3 (100%)

No / probably no 11 (31%)

Unclear 22 (61%)

Appendix E. Reported details on single imputation (n=23)

# Item Total (%)

5.1 What is the single imputation method being used?

	 Mean / median imputation 12 (52%)

	 K-nearest neighbor imputation 3 (13%)

	 Combination of imputation methods 2 (9%)

	 Regression method 1 (4%)

	 Random forest imputation 1 (4%)

	 Last observation carried forward 1 (4%)

	 Unclear 2 (9%)

5.2 Does the method take into account noise or impute a fixed value?

	 Fixed value 21 (91%)

	 Unclear 2 (9%)
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Appendix F. Reported details on multiple imputation (n=8)

6.0 Multiple imputation details

6.1 What is the multiple imputation method being used?

Predictive mean matching 2 (25%)

MissForest 2 (25%)

Full conditional specification 1 (13%)

Which conditional models were used?

Unclear 1 (100%)

Bayesian ridge regression 1 (13%)

Unclear 2 (25%)

6.2 Was the number of imputed datasets reported?

Yes 1 (13%)

No 7 (88%)

6.3 Were details on the convergence of the imputation model presented?

	 No 8 (100%)

Appendix G. Reported details on non-imputation-based approaches (n=15)

# Item Total (%)

7.1 Was the non-imputation-based method implicitly or explicitly reported as capable of handling MD?

Explicit 11 (73%)

Implicit 4 (27%)

7.2 What is the non-imputation-based method being used?

	 Missing indicator method 8 (53%)

7.3 Were details on how missing indicators were included in the prediction model reported?

Yes 5 (63%)

No 3 (38%)

	 Machine learning method 7 (47%)

7.4 What was the type of ML method used?

Tree-based (e.g., random forest) 6 (86%)

Bayesian network 1 (14%)

7.10 Are details provided on how MD are handled via the ML method? (e.g., Imputation)

Yes 3 (43%)

No 4 (57%)

2
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CHAPTER 3
Risk of bias in studies on prediction models 
developed using supervised Machine Learning 
techniques: A systematic review

BNW_Steven_v1.indd   35BNW_Steven_v1.indd   35 02/05/2022   11:51:5702/05/2022   11:51:57



Abstract

Objective. To assess the methodological quality of machine learning (ML)-based prediction 

model studies across all medical fields.

Design. Systematic review.

Data sources. PubMed from 1 January 2018 to 31 December 2019.

Eligibility criteria. We included articles reporting on the development or development with 

external validation of a multivariable prediction model (either diagnostic or prognostic) developed 

using supervised ML for individualized predictions. No restrictions were made based on study 

design, data source, or predicted patient-related health outcomes.

Review methods. To determine the methodological quality of the ML-based prediction model 

studies, we evaluated the risk of bias (RoB) using the Prediction Risk Of Bias ASsessment Tool 

(PROBAST). We measured RoB per domain (participants, predictors, outcome, and analysis) and 

per study (overall).

Results. We included 152 studies, 58 (38.2%) diagnostic and 94 (61.8%) prognostic studies. We 

applied PROBAST to 152 developed models and 19 external validations. Out of these 171 analyses, 

148 (86.5%, 95% confidence interval 80.6% to 90.9%) were rated at high RoB. The Analysis domain 

was the most frequently rated at high RoB. We observed 85/152 (55.9%, 48.0% to 63.6%) models 

developed with an inadequate number of events per candidate predictor, 62 with poor handling 

of missing data (40.8%, 33.3% to 48.7%) and 59 with unproper assessment of overfitting (38.8%, 

31.4% to 46.7%). Most models used appropriate data sources to develop (73.0%, 65.5% to 79.4%) 

and externally validate their ML-based prediction models (73.7%, 51.2% to 88.2%). However, 

information about blinding of outcome and blinding of predictors was absent in 60/152 (39.5%, 

32.1% to 47.4%) and 79/152 (52.0%, 44.1% to 59.8%) developed models, respectively.

Conclusion. Most ML-based prediction model studies show poor methodological quality and are 

at high risk of bias. Factors contributing to the risk of bias include small study size, poor handling of 

missing data, and failure to address overfitting. Efforts to improve the design, conduct, reporting, 

and validation of ML-based prediction model studies are necessary to boost its application in 

clinical practice.

Systematic review registration PROSPERO, CRD42019161764
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What is already known on this topic?

›	 Several publications have highlighted the poor methodological quality of regression-based 

prediction models studies.

›	 The number of clinical prediction models developed using supervised machine learning is 

rapidly increasing, however, evidence about their methodological quality and risk of bias is 

scarce.

What this study adds?

›	 Prediction model studies developed using supervised machine learning have poor 

methodological quality. Limited sample size, poor handling of missing data, and inappropriate 

evaluation of overfitting contributed largely to the overall high risk of bias.

›	 Machine learning prediction models often claim superior accuracy compared to regression-

based approaches. However, reported performance may be at high risk of bias based on 

the study design and modelling strategies used. Caution is needed when interpreting these 

findings.

›	 Future research should improve transparency when reporting and the study designs used to 

develop, validate, and compare prediction models to reduce methodological biases.

3
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Introduction

A multivariable prediction model is defined as any combination of two or more predictors (i.e. 

variables, features) for estimating the probability or risk of an individual to have (diagnosis) 

or will develop (prognosis) a particular outcome.67–70 Properly conducted and well reported 

prediction model studies are essential for a proper implementation in clinical practice. Even 

though prediction model studies are abundant in biomedical literature, a limited amount of them 

are used in clinical practice. As a result, many published studies contribute to research waste.71 

We anticipate that the rise of modern data-driven modelling techniques will boost the existing 

popularity of prediction model studies in the biomedical literature.72,73

Machine learning (ML), a subset of artificial intelligence (AI), has gained considerable popularity 

in recent years. Broadly, machine learning refers to computationally intensive methods that 

use data-driven approaches to develop models that require fewer modelling decisions by the 

modeler compared to traditional modelling techniques.74–77 Within machine learning, there are 

two approaches: supervised and unsupervised learning. While supervised learning is defined as 

an algorithm that learn to predict using previously labelled outcomes, unsupervised learning 

learns to find unexpected patterns using unlabelled outcomes.78 Traditional prediction models 

in healthcare usually resemble supervised learning: datasets used for development are labelled 

and the objective is to predict an outcome in new data. Supervised learning includes tree-based 

methods, such as random forests, naïve bayes, and gradient boosting machines, support vector 

machines, neural networks. Supervised ML-based prediction model studies have shown promising 

and even superior predictive performance compared to conventional statistical techniques, 

however, recent systematic reviews have shown otherwise. 79–82 Although several publications 

have raised concern about the methodological quality of prediction models developed with 

conventional statistical techniques72,83,84, a formal methodological and risk of bias (RoB) 

assessment of supervised ML-based prediction model studies across all medical disciplines has 

not yet been carried out.

Shortcomings in study design, methods, conduct, and analysis may set the study at high RoB, 

which could lead to deviated estimates of models’ predictive performance.85,86 The Prediction 

model Risk Of Bias Assessment Tool (PROBAST) was developed to facilitate RoB assessment, 

and thus provides a methodological quality assessment of primary studies that report on 

development, validation, or update of prediction models, regardless of the clinical domain, 

predictors, outcomes, or modelling technique used. 85,86 Using a prediction model considered 

at high RoB, might lead to unnecessary or insufficient interventions, and thus affect patients’ 

health and health systems. Rigorous RoB evaluation of prediction model studies is, therefore, 
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essential to ensure reliability, fast, and valuable application of prediction models. Therefore, 

we conducted a systematic review to assess the methodological quality and RoB of supervised 

ML-based prediction model studies across all medical fields in a contemporary sample of recent 

literature.

Methods

Our systematic review was reported following the PRISMA statement.87 The review protocol was 

registered (PROSPERO, CRD42019161764) and published.88

Identification of prediction model studies

We searched for eligible studies published in PubMed between 1 January 2018 and 31 December 

2019. We restricted the search to obtain a contemporary sample of articles that would reflect 

the current practices in prediction modelling using machine learning to date. The search was 

performed on 19 December 2019 with a strategy that is provided in Supplemental File 1.

Eligible publications needed to describe the development or validation of at least one multivariable 

prediction model using any supervised ML technique aiming for individualized prediction of risk 

or patient-related health outcomes. Details about inclusion and exclusion criteria are stated in 

our protocol.88 A publication was also eligible if it aimed to develop a prediction model based on 

model extension or incremental value of new predictors. No restrictions were made based on 

study design, data source, or types of patient-related health outcomes. We defined a publication to 

be an instance of ML when a non-regression statistical technique was used to develop or validate a 

prediction model. Hence, studies using only linear regression, logistic regression, lasso regression, 

ridge regression, or elastic net were excluded. Publications that report about the association of a 

single predictor, test, or biomarker, or its causality with an outcome were excluded. Publications 

that aimed to use ML to enhance the reading of images or signals or those where ML models only 

used genetic traits or molecular markers as predictors, were also excluded. We also excluded 

systematic reviews, methodological articles, conference abstracts, and publications for which 

full text was unavailable through our institution. The search was restricted to human subjects 

and English-written articles.

Screening process

Titles and abstracts were screened by two independent reviewers, from a group of seven 

(CLAN, TT, SWJN, PD, JM, RB, JAAD). A third reviewer was involved when required to resolve any 

disagreements (JAAD). After selection of potentially eligible studies, full-text articles were retrieved 

and two independent researchers reviewed them for eligibility; one researcher (CLAN) screened all 

3
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articles and six researchers (TT, SWJN, PD, JM, RB, JAAD) collectively screened the same articles 

for agreement. In case of any disagreement, a third reviewer was asked to read the article in 

question and resolve (JAAD).

Data extraction

We developed a data extraction form based on the four-domain structure (participants, 

predictors, outcome, and analysis) and 20 signalling questions (SQ) as described in PROBAST.85 

86 The Participants domain refers to the selection of the participants and data sources. The 

Predictors domain evaluates potential sources of bias by the definition and measurement of the 

candidate predictors. The Outcome domain assesses how and when the outcome was defined 

and determined. Finally, the Analysis domain examines the statistical methods that the authors 

have used to develop and validate the model, including study size, handling of continuous 

predictors and missing data, selection of predictors, and model performance measures.

Our extraction form contained 3 sections per domain: two to nine specific signalling questions, 

judgement of RoB, and rationale for the judgment. Signalling questions were formulated to be 

answered ‘yes/probably yes’, ‘no/probably no’, and ‘no information’. All signalling questions were 

phrased so that ‘yes/probably yes’ indicated absence of bias. Likewise, judgement of RoB was 

defined as ‘high RoB’, ‘low RoB’, and ‘unclear RoB’. Also, we requested reviewers to provide a 

rationale for judgment as free-text comments.

If a study included external validation, we applied the extraction form to both, the development 

and external validation of the model. Signalling question 4.5 –was selection of predictors based on 

univariable analysis avoided? –, 4.8 –Were model overfitting and optimism in model performance 

accounted for? –, and 4.9 –Do predictors and their assigned weights in the final model correspond 

to the results from the reported multivariable analysis? – did not apply to external validation. 

If a study reported more than one model, we applied PROBAST to the recommended model 

defined by the authors in the article. If the authors did not recommend a single model, the model 

with highest accuracy (in terms of discrimination) was selected as the recommended model. 

The PROBAST tool, its considerations, and related publications are available on the PROBAST 

website (www.probast.org). A summary table with the criteria to judge risk of bias is provided in 

Supplemental File 2.

Two reviewers independently extracted data from each article using the constructed form. To 

accomplish consistent data extraction, the form was piloted on five articles by all reviewers. 

During pilot, reviewers clarified differences in interpretation and standardise data extraction. After 

the pilot, articles used were randomly assigned and screened again in the main data extraction. 
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One researcher (CLAN) extracted data from all articles and six researchers (TT, SWJN, PD, JM, RB, 

JAAD) collectively extracted data from the same articles. Any disagreements in data extraction 

were settled by consensus among each pair of reviewers.

Data analysis

Prediction model studies were categorized as prognosis or diagnosis and into four types of 

prediction models studies: development (with internal validation), development with external 

validation (same model), development with external validation (different model), and external 

validation only. Model development studies aim to develop a prediction model to be used for 

individualized predictions where its predictive performance is directly evaluated using the 

same data, either by resampling participant data or random/non-random split sample (internal 

validation). Model development studies with external validation (same model) have the same aim 

as the previous type, but the development of the model is followed by quantifying the predictive 

performance of the model in a different dataset. Model development studies with external 

validation (different model) aim to update or adjust an existing model that performs poorly by 

recalibrating or extending the model. External validation only studies aim to assess only the 

predictive performance of existing prediction models using data external to the development 

sample. 86,89

Two independent reviewers each assessed signalling question by the degree of compliance with 

the PROBAST recommendations. If there was any disagreement, it was discussed until consensus 

was reached. The RoB judgement per domain was based on the answers to the signalling 

questions. If the answer to all signalling questions was ‘yes/probably yes’, the RoB domain was 

judged as ‘low RoB’. If reported information was insufficient to answer the signalling questions, 

these were judged as ‘no information’, and the RoB domain scored as ‘unclear RoB’. If any signalling 

question was answered as ‘no/probably no’, reviewers applied their judgment to rate the domain 

as ‘low RoB’, ‘high RoB’, or ‘unclear RoB’.

After judging all the domains, we performed an overall assessment per application of PROBAST. 

PROBAST recommends rating the study as ‘low RoB’ if all domains had ‘low RoB’. If at least one 

domain had ‘high RoB’, overall judgment should be rated as ‘high RoB’. ‘Unclear RoB’ was assigned 

if ‘unclear RoB’ was noted in at least one domain and all other domains had ‘low RoB’. Judgement 

rationale was recorded to facilitate discussion among reviewers when solving discrepancies. We 

removed signalling question 4.9 –Do predictors and their assigned weights in the final model 

correspond to the results from the reported multivariable analysis? – because it is tailored for 

regression-based studies. Results were summarized as percentages with 95% confidence intervals 

and visual plots. Analyses were performed using R version 3.6.2 (R Core Team, 2020).

3
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Patient and public involvement

We conducted a methodological appraisal; thus, no patients were involved in setting the 

research question, nor were they involved in the design or implementation of the study, or the 

interpretation or writing up of results.

Figure 1. Flowchart of included studies
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Results

The search identified 24,814 publications, of which we sampled ten random sets of 249 

publications each. Of the 2,482 screened publications, 152 were eligible: 94 (61.8%) prognostic 

and 58 (38.2%) diagnostic ML-based prediction model studies (Figure 1). Detailed description of 

the included studies is provided in Supplemental File 3. We classified publications according to 

their research aims: 132 (86.8%) articles were classified as development with internal validation, 19 

(12.5%) as development with external validation of the same model, and 1 (0.6%) as development 

with external validation of another model (eventually included as development with internal 

validation). Across the 152 studies, a total of 1429 ML-based prediction models were developed 

and 219 validated. For our analyses, we selected only the recommended model by the authors 

for our RoB assessment. Hence, we applied PROBAST 171 times: in 152 developed models and 

19 external validations. The most common ML techniques for the first model reported were 

Classification and Regression Tree (CART [10.1%]), Support Vector Machine (SVM [9.4%]), and 

Random Forest (RF [9.4%]). Detailed list of techniques assessed is provided in Supplemental File 

3. The clinical fields with the most publications were oncology (21/152 [13.8%]), surgery (20/152 

[13.5%]), and neurology (20/152 [13.5%]).

Domain 1: Participants

In total, 36/152 (23.7%) developed models and 3/19 (15.8%) external validations were scored as 

high RoB for the Participants domain (Figure 2). Prospective and longitudinal data sources (SQ1.1) 

were properly used for model development in 111/152 (73.0%) and to externally validate in 14/19 

(73.7%). We were unable to evaluate whether the inclusion and exclusion of participants (SQ1.2) 

was representative of the target population in 47/152 (30.9%) developed models and in 12/19 

(63.1%) external validations (Table 1).

Domain 2: Predictors

We rated 14/152 (9.2%) developed models and 2/19 (10.5%) external validations to be at high RoB 

for the Predictors domain (Figure 2). Candidate predictors were defined and assessed in a similar 

way for all included participants (SQ2.1) in 109/152 (71.7%) developed models and in 8/19 (42.1%) 

external validations. Information on blinding of predictor assessment to outcome data (SQ2.2) 

was missing in 60/152 (39.5%) developed models and in 7/19 (36.8%) external validations. All 

considered predictors should be available at the time the model is intended to be used (SQ2.3), 

which we found appropriate in 116/152 (76.9%) developed models and in 12/19 (63.1%) external 

validations (Table 1).

3
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Figure 2. Risk of bias of included studies (n=152) and stratified by study type

Domain 3: Outcome

The domain Outcome was scored as unclear RoB in 65/152 (42.8%) and 12/19 (63.2%) of developed 

models and external validations, respectively (Figure 2). We missed information about the 

outcome being determined without knowledge of predictors’ information (SQ3.5) in 79/152 

(52.0%) developed models and in 14/19 (73.7%) external validations. Predictors were excluded 

from the outcome definition (SQ3.3) in 90/152 (59.2%) developed models and in 10/19 (52.6%) 

external validations. We considered the time interval between predictor measurement and 

outcome determination appropriate (SQ3.6) in 110/152 (72.4%) developed models and in 11/19 

(57.9%) external validations. We observed in 114/152 (75%) developed models and in 12/19 (63.1%) 

external validations that the outcome was determined using appropriate methods, thus reducing 

risk of misclassification (SQ3.1). Similarly, 118/152 (77.6%) developed models and 13/19 (68.4%) 

external validations used prespecified, standard or consensus-based definitions to determine 

the outcome (SQ3.2). The outcome was defined and measured with the same categories or 

thresholds for all included participants (SQ3.4) in 118/152 (77.6%) developed models and 10/19 

(52.6%) external validations (Table 1).
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Domain 4: Analysis

We classified 128/152 (84.2%) developed models and 14/19 (73.7%) external validations as high 

RoB in the Analysis domain. We considered that the number of participants with the outcome 

(SQ4.1) was insufficient (i.e. event per predictor parameter <10) in 85/152 (55.9%) developed 

models and 8/19 (42.1%) external validations (i.e. number of events <100). Information about 

methods to handle continuous and categorical predictors (SQ4.2) was missed in 81/152 (53.3%) 

developed models and 18/19 (94.7%) external validations. We found that 84/152 (55.3%) 

developed models and 10/19 (52.6%) external validation included in their statistical analyses all 

enrolled participants (SQ4.3).

Handling of missing data (SQ4.4) was inappropriate (i.e. participants with missing data were 

omitted from the analysis or imputation method was flawed) in 62/152 (40.8%) developed 

models and in 7/19 (36.8) external validation. We observed that 28/152 (18.4%) developed models 

used univariable analyses to select predictors (SQ4.5). We were unable to assess if censoring, 

competing risks or sampling of control participants (SQ4.6) were considered in 54/152 (35.5%) 

developed models and in 7/19 (36.8%) external validations. Similarly, the reporting of relevant 

model performance measures (e.g., both discrimination and calibration) (SQ4.7) was missing in 

91/152 (59.9%) developed models, while 13/19 (68.4%) external validations lacked this information 

too. 76/152 (50.0%) developed models accounted for model overfitting and optimism (SQ4.8).

Overall Risk of Bias

Finally, the overall RoB assessed using PROBAST let to 133/152 (87.5%) developed models, and 

15/19 (78.9%) external validations being classified as high RoB (Figure 2). Further information 

about each signalling question answered as ‘Yes/probably yes’, ‘No/probably no’, and ‘No 

information’ is provided in Table 1.

Diagnostic versus prognostic models

Regarding diagnostic versus prognostic prediction models, the Analysis domain is the major 

contributor to an overall high RoB in both. We evaluated 56/58 (96.6%) developed models and 

7/7 (100%) external validation as high RoB in diagnostic studies, and 77/94 (81.9%) developed 

models and 8/13 (66.7%) external validation in prognostic studies (Figure 2). External validations 

of both diagnostic and prognostic models suffer from unclear information to judge RoB. While 

in diagnostic models, signalling questions in domain Outcome were frequently answered with 

‘no information’ (Table S2), in prognostic models this was the case for both Outcome and 

Analysis domains (Table S3). Further information about each signalling question is provided in 

Supplemental file 3.

3
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Discussion

Principal findings

We have conducted a detailed assessment of the methodological quality of supervised ML-

based prediction model studies across all clinical fields. Overall, 133/152 (87.5%) developed 

models and 15/19 (78.9%) external validations showed high RoB. The Analysis domain was most 

commonly rated as high RoB in developed models and external validations, mainly due to a low 

number of participants with the outcome (relative to the number of candidate predictors), risk 

of overfitting, and inappropriate handling of participants with missing data. Although there are 

still no conclusive studies about sample size calculations for developing prediction models using 

ML techniques, these usually require (many) more participants and events than conventional 

statistical approaches.90,91 One hundred studies failed to either provide the number of events 

or reported an event per candidate predictor (EPV) lower than 10, which historically is a marker 

of potentially low sample size. Furthermore, ML studies with a low number of participants with 

the outcome are likely to suffer from overfitting, that is the model is too much tailored to the 

development dataset. 90–93 Only half of the included studies examined potential overfitting of 

models either by using split data, bootstrapping or cross-validation. Random-split was often relied 

on to internally validate models (i.e. validation based on the same participants’ data), whereas 

bootstrapping and cross-validation are generally considered more appropriate.94

Most studies carried out complete-case analyses or mean/median imputation. Multiple 

imputation is generally preferred as it prevents biased model performance due to deletion 

or single imputation of participants’ missing data. Unfortunately, multiple imputation is still 

unpopular within models developed with ML techniques.95,96 Some ML techniques have the power 

to incorporate this missingness by including a separate category of a predictor variable that has 

missing values.97 Therefore, we urge algorithm developers to improve imputation methods and 

incorporate informative missingness in their models when possible.

Several signalling questions were scored as ‘No information’ making it impossible for us to judge 

potential biases. It was often unclear whether all enrolled participants were included in the 

analyses, how many participants had missing values, and how missing data were handled. ML 

are powerful and automated techniques that will learn from data, however, if there was selection 

bias in the dataset, predictions made using the trained ML algorithm will also be biased. Similarly, 

several signaling questions in PROBAST are tailored to identify lack of blinding (SQ 2.2, SQ 3.3, 

SQ 3.5); however, almost half of included articles failed to report any information for us to assess 

blinding. Furthermore, model calibration tables or plots were often not presented, whereas 

classification measures (i.e. confusion matrix) were commonly reported with an overreliance on 
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accuracy.98 Reporting and assessment of discrimination (i.e., ability to discriminate between cases 

and non-cases) and calibration (i.e., agreement between predictions and observed outcomes) is 

essential to assess a models’ predictive accuracy.98

Comparison with other studies

A systematic review of 23 studies about ML for diagnostic and prognostic predictions in 

emergency departments shows that analysis was the most poorly rated domain with 20 studies 

at high RoB.99 This study found deficiencies in how continuous variables and missing data were 

handled, and found that model calibration was rarely reported. Another publication about ML 

risk prediction models for triage of patients entering the emergency room also considered 22/25 

studies considered at high RoB.100 A study assessing the performance of diagnostic deep learning 

algorithms for medical imaging reported 58 of 81 studies being classified as overall high RoB.73 

Similar to our results, major deficiencies were found in the analysis domain including the number 

of events per variable, inclusion of enrolled participants in the analysis, reporting of relevant 

model performance measures, and overfitting. Recently, a living systematic review about COVID-

19 prediction models indicated that all 57 studies that used ML were at high RoB due to insufficient 

sample size, unreported calibration, and internal validation based on training-test split.101

Strength and limitations of the study

We evaluated the risk of bias of supervised ML-based prediction model studies in a broad sample 

of articles which included prognostic and diagnostic development only and development with 

external validation studies. After using a validated search strategy, we retrieved nearly 25,000 

publications which is similar to a previous study. We finally screened the tenth part of the whole 

sample; therefore, our results are presented using confidence intervals to extrapolate them to 

the whole sample. The present analyses considered results from studies that were published over 

one year ago; nevertheless, we expect these findings to be still applicable and relevant for the 

clinical prediction field. We adopted PROBAST as the benchmark to evaluate RoB enhancing the 

objectivity and consistency, however, this is not without certain limitations. While two signalling 

question in PROBAST might become less relevant within the ML context (i.e. selection of predictors 

based on univariable analysis and reporting of weighted estimates in the final model correspond 

to the results from the reported multivariable analysis), further signalling questions related to 

data generation, feature selection, and overfitting might be necessary.

Implication for researchers, editorial offices, and future research

The number of ML-based studies is increasing every year; thus, their identification, reporting and 

assessment become even more relevant. It will remain a challenge to determine the risk of bias if 

detailed information about data and modelling approach (including justifications to any decision 

3
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made that may biases estimates) is not clearly reported in articles. To better judge studies, we 

recommend researchers to adhere to the Transparent Reporting of a multivariable prediction 

model for Individual Prognosis Or Diagnosis (TRIPOD) statement (35,36). Though TRIPOD was not 

exlicilty developed for machine learning prediction models, all items are applicable. Similarly, 

while there is yet no RoB assessment tool available specifically for supervised ML models, we 

suggest researchers to follow PROBAST recommendations to reduce potential biases when 

planning and modelling primary prediction model studies using either regression or non-

regression models. For example, the adoption of multiple imputation to handle missing value 

and cross-validation or bootstrapping to internally validate the developed models.

Currently, extensions of TRIPOD and PROBAST for prediction models developed using machine 

learning are under development (TRIPOD-AI, PROBAST-AI).102,103 As sample size contributed largely 

to the overall high RoB, future methodological research could focus on determine appropriate 

sample sizes for each supervised learning technique. Giving the rapid and constant evolution of 

machine learning, periodic systematic reviews of prediction model studies need to be conducted. 

Although high quality ML-based prediction model studies are scarce, those who stand out need 

to be validated, re-calibrated, and promptly implemented in clinical practice.101 To avoid research 

waste, we suggest peer-reviewers and journal’s editors to promote the adherence to reporting 

guidelines.71,104,105 Facilitating the documentation of studies (i.e. supplemental material, data, and 

code) and setting unlimited word count may improve methodological quality assessment, as well 

as independent validation (i.e. replication). Likewise, requesting external validation of prediction 

models upon submission might help setting minimum standards to ensure generalizability of 

supervised ML-based prediction models studies.

Conclusion

Most supervised ML-based prediction model studies show poor methodological quality and are at 

high risk of bias. Factors contributing to the risk of bias include the exclusion of participants, small 

sample size, poor handling of missing data, and failure to address overfitting. Efforts to improve 

the design, conduct, reporting, and validation of supervised ML-based prediction model studies 

are necessary to boost its application in clinical practice and avoid research waste.
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Dissemination plans

We plan to disseminate the findings and conclusions from this study through social media (such as 

Twitter), a plain-language summary on www.probast.org, and scientific conferences. In addition, 

the findings will provide insights to the development of PROBAST-AI.

Twitter: @GSCollins, @SWJNijman, @pauladhiman, @RamBajpai, @Richard_D_Riley, @CarlMoons

Additional files

›	 Supplemental file 1. Search Strategy

›	 Supplemental file 2. Summary table with criteria to judge risk of bias.

›	 Supplemental file 3. Table S1. Characteristics of included studies (n=152)

›	 Supplemental file 4. Table S2-S3. Signalling questions for diagnosis and prognosis model 

studies.
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Abstract

Objectives – In clinical practice, many prediction models cannot be used when predictor values 

are missing. We therefore propose and evaluate methods for real-time imputation.

Study design and Setting – We describe (i) mean imputation (where missing values are replaced 

by the sample mean), (ii) joint modeling imputation (JMI, where we use a multivariate normal 

approximation to generate patient-specific imputations) and (iii) conditional modeling imputation 

(CMI, where a multivariable imputation model is derived for each predictor from a population). 

We compared these methods in a case study evaluating the root mean squared error (RMSE) and 

coverage of the 95% confidence intervals (i.e. the proportion of confidence intervals that contain 

the true predictor value) of imputed predictor values.

Results –RMSE was lowest when adopting JMI or CMI, although imputation of individual 

predictors did not always lead to substantial improvements as compared to mean imputation. 

JMI and CMI appeared particularly useful when the values of multiple predictors of the model 

were missing. Coverage reached the nominal level (i.e. 95%) for both CMI and JMI.

Conclusion – Multiple imputation using, either CMI or JMI, is recommended when dealing with 

missing predictor values in real time settings.

Keywords: missing data; multiple imputation; real-time imputation; prediction; computerized 

decision support system; electronic health records
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Highlights

›	 Cardiovascular risk management guidelines advocate use of prediction models in routine 

clinical practice.

›	 The implementation of a prediction model in routine care typically requires complete 

information on all predictor values. If one or more predictor values are unknown, the model 

cannot provide a prediction.

›	 The implementation of a prediction model (e.g. in a decision support system) should always 

include a strategy for dealing with missing predictor values.

›	 Traditional (multiple) imputation methods require information from other patients and 

therefore cannot be used when patients present individually, as is the case in clinical practice.

›	 It is possible to adapt existing imputation strategies for real-time use. This requires to estimate 

the conditional distribution for each predictor variable in a training sample, and to make this 

summary information available to the implementation of a prediction model.

›	 In general, two approaches are possible to model the conditional distribution of the predictor 

variables in a training sample. One approach is to estimate each distribution separately using 

a flexible (e.g. regression) modeling strategy. Alternatively, it is possible to directly estimate 

the joint distribution of all predictor variables. When this joint distribution is normal, then 

the conditional distributions can directly be derived from the mean and covariance of the 

training sample.

›	 Simulations indicate that joint modelling imputation and conditional modelling imputation 

results in fewer inappropriate treatment decisions and has minimal impact on predicted risk, 

especially for high-risk patients.

4
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Introduction

In present-day medical practice, characterized by an aging population, multimorbidity and 

high complexity of diseases, attention has grown towards personalized medicine aiming to 

administer the most applicable treatment to the individual patient given their risk profile 106–

108. In cardiovascular disease management, guidelines advocate the use of prediction models 

to assess the patients’ risk of developing a certain cardiovascular disease to guide treatment 

decision making 106. To integrate risk-guided care in daily practice, technological solutions such as 

computerized decision support systems (CDSS) are increasingly developed 109,110. Using predictor 

values directly extracted from the electronic health record (EHR), CDSS can provide an immediate 

risk assessment of each encountered patient at a glance 17,19,111.

The use of prediction models in daily practice in individual patient requires real-time availability 

of the patient’s values of the predictors in the model. Most prediction models cannot provide a 

risk estimate in the presence of missing predictor values, which hampers implementation and 

may ultimately limit guideline adherence 112. Therefore, predictor values should be measured 

and registered (e.g. in the Electronic Health Record; EHR) in such a way that they are available 

in real-time. Yet, routine clinical care data is often incomplete because certain measurements 

are deemed unnecessary, time-consuming, or expensive, or because they cannot directly be 

extracted from the EHR (e.g., registered as free text) 113.

Missing data is a well-known challenge in (medical) research, for which several scalable solutions 

exist 114. Multiple imputation by chained equations has often been recommended to handle 

missing data in a research setting where data from multiple patients are available for study 

analysis purposes 115,116. This approach, however, is not directly applicable when applying a 

prediction model real-time to a single patient in the consulting room. In particular, the models 

used for imputation cannot be generated “live” in clinical practice, and therefore need to be 

derived elsewhere and beforehand 117.

One option is to replace missing predictor values by their respective mean/median, which 

in turn is estimated from another data set or training sample 118,119. Whilst straightforward to 

implement, mean imputation may be insufficient when the predictor with missing values is a 

strong predictor or exhibits large variability such that assigning an overall mean may lead to 

less predictive accuracy of the prediction model and to misinformed treatment decisions. Mean 

imputation does not distinguish between patients and may therefore likely impute values that 

are unrealistic given the patient’s observed predictor values. Also, mean imputation obfuscates 

any uncertainty about the imputed values.
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To address these issues, we expand on two well-known methods that may also be used in real 

time imputation of missing predictor values 117: joint modeling imputation (JMI) 120 and conditional 

modeling imputation (CMI, also known as multiple imputation by chained equations) 116. As 

opposed to mean imputation, these methods are able to incorporate the relation between 

multiple patient characteristics, and therefore allow imputations to be adjusted for observed 

patient specific characteristics. Similar to mean imputation, these relations can be learned 

from training data and, in real time, applied on new patients that are not part of the training 

sample. Additionally, both methods allow for multiple imputations to be estimated, reflecting 

the uncertainty with respect to the imputed value.

Using a real-world example and empirical data set on cardiovascular risk prediction, we compared 

the accuracy and usability of three imputation methods (mean imputation, JMI, and CMI) to deal 

with missing values of predictors in the prediction model in real time. Though it is well known 

that mean imputation is problematic, it was chosen as a comparison due to its straightforward 

implementation when implementing a prediction model in routine clinical practice or in a decision 

support 121–124.

What is new?

Key findings

›	 Multiple imputation approaches can be adapted without much difficulty to allow for real-time 

imputation of missing predictor variables.

›	 Both conditional modelling imputation (CMI) and joint modelling imputation (JMI) give more 

accurate estimates of missing predictor values when compared to mean imputation.

What this adds to what was known?

›	 Imputation of missing predictor values does not require ‘live’ access to a source dataset. 

Simple population characteristics (such as the mean and covariance) can be used to generate 

imputations that are tailored to a specific individual.

What is the implication and what should change now?

›	 Real-time multiple imputation, using either CMI or JMI, should be made available in clinical 

practice (e.g. via a computerized decision support system) to support guideline recommended 

use of prediction models and to be more transparent about uncertainty

›	 When developing or validating a prediction model, researchers should report the mean and 

covariance of the study population, as this information can directly be used to impute missing 

values in routine care.

4
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Methods

Imputation methods

To facilitate live imputation of missing values in routine care, it is essential to obtain information on 

the distribution of the target population. This summary information can, for instance, be derived 

in an epidemiologic (e.g. cohort) study and then be utilized to train live imputation models. A key 

constraint given is that all methods, after being trained, are independent and stand-alone, which 

means that they can directly be used for live imputation in a new, single, patient without requiring 

the need for any additional procedures.

The three methods under evaluation are mean imputation, joint modeling imputation (JMI), 

and conditional modeling imputation (CMI) 116,117,120. All methods were implemented in R and 

facilitate live imputation of missing values in individual patients. Source code is available from 

the supplementary information (Appendix D).

Mean imputation

The training sample is used to derive the means of all predictors in the model (Figure 1). Missing 

predictor values are then imputed by their respective mean (or proportion in case of binary 

variables). This method is relatively straightforward to implement, and can be extended to 

subgroup-specific means (i.e. creating subdivisions based on certain parameters of a population 

of which multiple means are respectively calculated).

Figure 1. Mean imputation

Training sample

Imputa� on

Individual pa� ent data

Es� mate means of all predictors in 
the model using training data

Iden� fy missing variables given an 
individual pa� ent

Use means to fi ll in missing variables

1

2

3

Mean imputa� on
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Joint modeling imputation

The training sample is used to derive the means and covariance of all predictor variables (Figure 2). 

It is assumed that all predictor variables of the training sample are normally distributed, such that 

imputations for an individual patient can directly be generated from the mean and covariance of 

the training sample and the observed predictor values 117,120. In contrast to overall mean imputation, 

use of covariances between all predictors incorporates the relation between the predictors, and 

therefore allows imputations to be tailored to an individual’s patient own characteristics. A more 

detailed description is provided in Appendix A 117.

Figure 2. Joint modelling imputation

Training sample

Imputa� on

Individual pa� ent data

Es� mate means and covariance of all 
relevant predictors using training data 
to es� mate joint normal distribu� on

Iden� fy missing variables given an 
individual pa� ent

Use derived distribu� on to generate 
imputa� on for missing variable

1

2

3

Joint modelling imputa� on

Conditional modeling imputation

The training sample is used to derive a flexible (e.g. regression) model for each predictor (as 

dependent variable) with all other predictor variables as independent variables (Figure 3). These 

models describe the conditional distribution of each predictor, and usually need to be estimated 

using a Gibbs sampling procedure (as predictor values may also be missing in the training sample). 

Due to the flexible nature of these conditional models, it is no longer assumed that predictor 

variables of the training sample are normally distributed (as does JMI). For instance, a logistic 

regression model can be used to estimate the conditional distribution of a binary predictor 

4
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variable (e.g. current smoker). Subsequently, when the smoking status for a new patient is 

unknown, the logistic regression model can be used to generate a probability that they are a 

current smoker. This probability can directly be used as imputed value (in case only 1 imputation 

is needed). Alternatively, if multiple imputations are required, a Bernoulli distribution (with 

aforementioned probability) can be used to sample multiple (discrete) values for the patient’s 

current smoking status. If multiple predictor values are missing, the conditional models need to 

be used successively using an iterative Monte Carlo procedure (Appendix A).

Figure 3. Conditional modelling imputation

5

In a training sample with n predictors 
derive a regression model for 
each predictor (as dependent 
variable) with all other variables as 
independent variables

Iden� fy if the pa� ent has a single or 
mul� ple missing predictor variable(s)

Then updated itera� vely by applying 
the procedure for a single missing value 
successively on each missing value un� l 
imputa� on converges on a single value

Missing values are fi rst ini� liazed on an 
arbitrary number

When a single predictor has a missing 
value, the fi � ed regression model of 
that predictor can directly be used to 
generate an imputed value

When mul� ple predictors have missing 
values, the fi � ed regression models 
have to be combined via Markov Chain 
Monte Carlo sampling

1

2

3
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B
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Simulation study

Cardiovascular disease prevention is an example of a setting where risk-guided management 

of predictors – smoking, blood pressure, cholesterol - is common practice 125. Numerous risk 

prediction models have been developed and the (international) guidelines advocate the use of 

risk classification to inform treatment decisions 126,127. These models are typically implemented 

in a CDSS, where a patient’s characteristics of the predictors can be entered manually or are 

automatically retrieved from the patient’s EHR 19,109,128.

For this study we used a data set of the ongoing Utrecht Cardiovascular cohort initiative (UCC). This 

cohort includes all patients who come for a first-time visit the Center for Circulatory Health at the 

UMC Utrecht for the evaluation of a symptomatic vascular disease or an asymptomatic vascular 

condition. A minimum set of predictors, according to the Dutch Cardiovascular Risk Management 

Guidelines, is collected in all patients. No data on outcomes (i.e. time-to-event data) was recorded. 

UCC has been approved by the Institutional Review Board of the UMC Utrecht (Biobank Ethics 

committee). For the present analyses an anonymized dataset was used of the UCC cohort up to 

November 2018 129,130.

The sample consisted of 3880 patients with information on 23 variables, measured during 

the patient’s visit (Table 1 and Appendix B). To ensure full utilization of the observed data, we 

completed this dataset using all 23 variables in k-nearest neighbor imputation, which aggregates 

the values of the k nearest neighbors to an imputation 131.

To evaluate the quality of the three selected imputation methods in individual patients, a leave-

one-out-cross-validation (LOOCV) procedure was used in the completed UCC dataset. In LOOCV, 

all but one patient are used as the training sample from which the overall mean or proportion 

(method 1), or imputation models (method 2 and 3) are derived (Figure 4). In the remaining 

hold-out patient, missing values are introduced for one or more predictor variables. As we apply 

each scenario to each patient exactly once, the missing data mechanism is essentially missing-

completely-at-random (MCAR) 121. The summary information from the training sample is then used 

to impute the missing predictor values in the hold-out patient. For CMI and JMI, we generated 

50 imputations for each missing predictor value. This process is repeated until all patients have 

been taken from the dataset exactly once.

We consider 8 scenarios where missing values occur for one predictor variable, and 8 scenarios 

where multiple predictor variables are simultaneously missing (Figure 5). A detailed description 

of how the scenarios were selected and of the R code are listed in Appendix C and D respectively.

4
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Table 1. Descriptive statistics (after imputation)

Part of missing  
data scenarios Mean (sd) or n/total (%)* Original missing %

Age (years) No 61.7 (18.2) 0.00

Sex (1=female; 0=male) No 1987/3880 (51.2) 0.00

Smoking (1=yes; 0= no) No 363/3880 (9.4) 24.07

SBP (mmHg) Yes 142.8 (24.2) 10.54

TC (mmol/l) Yes 5.1 (1.2) 24.54

LDL-c (mmol/l) Yes 3.1 (1.3) 26.01

HDL-c (mmol/l) No 1.4 (0.4) 25.39

eGFR (mL/min/1.73m2) Yes 81.8 (24.6) 15.98

History of CVD (1=yes; 0= no) Yes 1971/3880 (50.8) 23.45

History of PAD (1=yes; 0= no) No 335/3880 (8.6) 23.45

History of CHD (1=yes; 0= no) No 591/3880 (15.2) 23.45

History of CHF (1=yes; 0= no) No 284/3880 (7.3) 23.45

History of CVA (1=yes; 0= no) No 579/3880 (14.9) 23.45

History of DM (1=yes; 0= no) No 607/3880 (15.6) 23.45

Polyvascular disease No 0.6 (0.7) 23.45

# of medications No 0.8 (1.7) 27.24

BP lowering medication (1=yes; 0= no) No 705/3880 (18.2) 27.24

Statin (1=yes; 0= no) No 415/3880 (10.7) 27.24

HbA1c (mmol/mol) No 40 (10.7) 26.37

Years since first CVD (years) Yes 4.6 (8.1) 26.21

Diabetes (1=yes; 0= no) Yes 755/3880 (19.5) 8.12

Diabetes duration (years) No 11.3 (7.3) 86.11

Pulse pressure (mmHg) No 61.7 (18.9) 10.54

Legend – SBP: systolic blood pressure, TC: total cholesterol, LDL-c: low-density lipoprotein cholesterol, HDL-c: high-density 

lipoprotein cholesterol, eGFR: estimated glomerular filtration rate according to the CKD epi formula, CVD: cardiovascular 

disease, PAD: peripheral artery disease, CHD: coronary heart disease, CHF: chronic heart failure, CVA: cerebrovascular 

accident, DM: diabetes mellitus, BP: blood pressure, HbA1c: glycated hemoglobin. * after KNN-imputation
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Figure 4. Missing data simulation procedure
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Measures of performance

To evaluate the performance of the three imputation methods we used four performance metrics:

1.	 We calculated the root mean squared error (RMSE) between the average of the multiple 

imputed predictor values (i.e. 50 imputations) and the true, original (i.e. before the simulation 

of missing) predictor value to evaluate the accuracy of the imputations. The RMSE is a 

performance measure that aggregates error due to bias and variability. Generally, an RMSE 

of zero means perfect imputation and an increasing RMSE means decreasing performance of 

the imputation. Clinical relevance of an RMSE depends on the natural range of the predictor. 

For example, an RMSE of 0.5 is large for LDL-c (mean 3.0 SD 1.3 mmol/L) but not for SBP (mean 

143 SD 24 mmHg).

2.	 For each hold-out patient, we assessed whether the original predictor value was in the 95% 

confidence interval around the imputed predictor value. Subsequently, we calculated the 

proportion of confidence intervals that consisted the original value (coverage). For a 95% 

CI, the coverage should ideally be equal to 95% 132. A lower coverage translates to imputed 

predictor values that are too precise (which in turn may lead to estimates of predicted risk 

that are too precise), whereas a coverage above 95% indicates that imputed predictor values 

are too imprecise 116. We assessed coverage only for continuous predictor variables.

3.	 We assessed the effect on treatment decision support for blood pressure in patients with 

manifest cardiovascular disease (n=1971) to evaluate the clinical implications of the imputed 

predictor values. Guidelines indicate that all patients with a history of CVD should receive 

blood pressure lowering treatment when their blood pressure is higher than 140/90mmHg 
106,130. We adopted the LOOCV approach, and set values for SBP missing in the hold-out 

patient. Subsequently, we imputed the missing value and compared the treatment decision 

for the true value with the treatment decision for the imputed value (SBP <> 140mmHg). 

Afterwards, we calculated the sensitivity, specificity, positive predictive value and negative 

predictive value. Also, we illustrated the importance of reporting confidence intervals based 

on imputed values to inform the discussion around treatment commencement.

We compared the risk predictions that were obtained in the absence of missing values (i.e. in 

the original data) with the risk predictions that are based on imputations to evaluate the impact 

of the imputed values on the precision of predicted risk. Ideally, the predictions that are based 

on imputed values should have a similar distribution as the predictions that are derived from 

the complete original data. To explore any deviation, we assessed the interquartile range of 

predicted risk for a single missing predictor scenario and for a multiple missing predictor scenario. 

Rather than developing a prediction model ourselves, we used the previously developed SMART 

prediction model for risk of 10 year recurrent vascular disease as an example 133. The prediction 
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model includes 11 variables: age, sex, current smoker, SBP, diabetes, history of cerebrovascular 

disease, aortic aneurysm or peripheral vascular disease, polyvascular disease, HDL-cholesterol 

and total cholesterol.

Results

Root Mean squared error

With the exception of smoking, all predictor variables in single missing predictor scenarios had a 

lower RMSE when using JMI or CMI as compared to mean imputation (Table 2). For most multiple 

missing predictor scenarios, the RMSE is consistently lower when using JMI or CMI as compared 

to mean imputation. The exceptions being history of CVD and smoking. Performance diminished 

as more variables were missing. For example, the RMSE of years since 1st CVD event are 6.30 and 

6.26 for JMI and CMI respectively when univariately missing, whilst mean imputation has a RMSE 

of 8.06. When additional variables (e.g., SBP, history of CVD and smoking) are missing, the RMSE 

for years since 1st CVD event for both JMI and CMI increases to 7.58 and 7.84 respectively.

Coverage rate

For JMI, the coverage reached nominal levels for all single missing predictor scenarios and multiple 

missing predictor scenarios (Table 3). For CMI, the coverage reached nominal levels for all single 

missing predictor scenarios and multiple missing predictor scenarios. For mean imputation, 

coverage was 0% by definition for all imputed predictors because no uncertainty is taken into 

account.

Clinical decision accuracy

When assessing the treatment decision for blood pressure management according to the 

prevailing clinical guidelines (see above), we selected 1971 out of the total 3880 patients with 

manifest cardiovascular disease. We found that 1134 patients (57.53%) should be treated. 

However, when blood pressure values were set to missing, the overall mean imputed value was 142 

mmHg (Table 1), which is just above the treatment threshold of 140 mmHg. As a result, everyone 

would have been treated when adopting overall mean imputation, such that 837 patients (42.47%) 

would have been treated unnecessarily. When adopting JMI or CMI, only 16.08% or, respectively, 

15.98% of patients would have been treated unnecessarily (Table 4). Hence, imputation of missing 

blood pressure values using CMI or JMI was more adequate than mean imputation in terms of 

decision making.

4
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Table 4. 2x2 tables of guideline adherence to treatment threshold given the point estimate of each method

Mean imputation

True value

Totals
Treatment advised
(≥ 140mmHg)

Treatment not advised
(< 140mmHg)

Point estimate

Treatment advised

(> 140mmHg)
1134 837 1971

Treatment not advised

(< 140mmHg)
0 0 0

Totals 1134 837 1971

Sensitivity 100%, specificity 0%, Positive Predictive Value 58%, Negative Predictive Value (cannot be calculated) %

Joint modeling imputation

True value

Totals
Treatment advised
(≥ 140mmHg)

Treatment not advised
(< 140mmHg)

Point estimate

Treatment advised

(> 140mmHg)
946 317 1263

Treatment not advised

(<140 mmHg)
188 520 708

Totals 1134 837 1971

Sensitivity 83%, specificity 62%, Positive Predictive Value 75%, Negative Predictive Value 73%

Conditional modeling imputation

True value

Totals
Treatment advised
(≥ 140mmHg)

Treatment not advised
(< 140mmHg)

Point estimate

Treatment advised

(> 140mmHg)
960 315 1275

Treatment not advised

(< 140mmHg)
174 522 696

Totals 1134 837 1971

Sensitivity 85%, specificity 62%, Positive Predictive Value 75%, Negative Predictive Value 75%

To illustrate the importance of measuring uncertainty we provided an example in which we 

compare the use of imputation in a real-life situation (table 5). In the example a patient with 

an imputed SBP of 144mmHg was given an indication for blood pressure lowering treatment 

according to the guidelines 106. However, given that the uncertainty around the imputed predictor 

value crosses the treatment line of 140mmHG (scenario A), there is reasonable doubt this 

imputation is too uncertain to be used for treatment decision making.
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Table 5. Clinical interpretation of imputed SBP values and 95% confidence intervals from a patient with a history of CVD

True Scenario A Scenario B

SBP (95%CI) 144 144 (138-150) 144 (142-146)

Treatment based on  
point estimate

>140mmHg,  
Start treatment

>140mmHg,  
Start treatment

>140mmHg,  
Start treatment

Treatment based on  
95% CI

NA Uncertain >140mmHg,  
Start treatment

* estimated. Legend: SBP = systolic blood pressure, 95% CI = 95% confidence interval A= hypothetical situation where 

imputed value interval contains treatment threshold B=hypothetical situation where imputed value interval does not 

contain treatment threshold

Effect on risk predictions

The predicted risks, given each method, did not seem to deviate much from the originally 

predicted risk, given the complete data (table 6). When assessing the single missing predictor 

scenario there was a difference between overall mean imputation (median difference of -1.713% 

to the originally predicted risk) and the combination of JMI and CMI (median difference of 

respectively 0.301% and 0.399% to the originally predicted risk). Further, we found that predicted 

risks for mean imputation were more similar when compared to the complete data (standard 

deviation = 15.12 versus the reference of 18.91). In contrast standard deviations of JMI and CMI 

were 17.87 and 17.86 respectively.

In the multiple missing predictor scenario, there was a similar difference between mean 

imputation (median difference of -2.064% to the originally predicted risk) and JMI and CMI (median 

difference of respectively 0.375% and 0.390% to the originally predicted risk). With multiple 

missing predictors the predicted risks for mean imputation were again more similar than the 

predicted risk given the complete data (standard deviation = 14.42 versus the reference of 18.91). 

The standard deviations of JMI and CMI were 17.67 and 17.68 respectively.

The difference between mean imputation and both JMI and CMI is especially apparent in higher 

risk patients (i.e., 75% IQR) where mean imputation, as expected, underestimates the risk. This is 

because mean imputation pulls the risk predictions of patients with missing values towards the 

prediction for an “average” patient. As such JMI and CMI perform much better with regards to their 

impact on prediction in higher risk patients, when compared to mean imputation.

4
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Table 6. Differences in predicted 10-year risk of CVD for both a single missing predictor scenario and a multiple missing 

predictor scenario

Single missing 
predictor:
eGFR 25% IQR

Absolute risk 
difference to 
completed data Median

Absolute risk 
difference to 
completed data 75% IQR

Absolute risk 
difference to 
completed data

Predicted risk 
complete data

8.382% - 13.711% - 28.170% -

Predicted risk 
(mean)

7.287% -1.095%  11.997% -1.713% 23.035% -5.135 %

Predicted risk 
(joint)

8.767% 0.385%  14.012% 0.301% 27.734% 0.435%

Predicted risk 
(conditional)

8.786% 0.404%  14.110% 0.399% 27.783% 0.387%

Multiple missing 
predictors:	SBP, 
TC, LDL-c and eGFR 25% IQR

Absolute risk 
difference to 
completed data Median

Absolute risk 
difference to 
completed data 75% IQR

Absolute risk 
difference to 
completed data

Predicted risk 
complete data

8.382% - 13.711% - 28.170% -

Predicted risk 
(mean)

7.473% -0.909% 11.647% -2.064 % 22.692% -5.478%

Predicted risk 
(joint)

8.809% 0.427% 14.085% 0.375% 28.410% 0.240%

Predicted risk 
(conditional)

8.786% 0.404% 14.100% 0.390% 28.267% 0.097%

Legend: eGFR = estimated glomerular filtration rate, SBP = systolic blood pressure, TC = total cholesterol, LDL-c = low density 

lipoprotein cholesterol, IQR = inter quartile range.

Discussion

This project described the development and performance of three imputation methods to handle 

missing data on an individual patient level in real-life clinical decision making. As expected, both 

JMI – using draws from a normal distribution constructed from means and covariance in the 

training sample and observed values in the patient – and CMI – using a conditional distribution 

of each variable based on regression models fitted on all other variables, – were more accurate 

and showed better coverage as compared to mean imputation, resulting in fewer inappropriate 

treatment decisions and lower impact on predicted risk.

The accuracy measures – RMSE, coverage and clinical decision accuracy – were comparable for 

JMI and CMI. Hence, both methods can be used for generating live imputations in routine care. 

Based on usability, we recommend JMI, as its implementation in decision support systems is 

fairly straightforward and only requires information on the mean and covariance of the target 
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population. Although its assumption of multivariate normality may be unrealistic for real life 

clinical data, simulation studies have demonstrated that this rarely affects the performance of 

imputation 134–136.

Previous studies on imputation methods to handle missing data on an individual patient level have 

focused on the impact of missing values on the performance of a prediction model and evaluated 

the use of mean imputation as well as the (re)development of a simplified prediction model 
118,119. Mean imputation was recommended due to its applicability in practice and relatively good 

performance compared to other models, but was considered insufficient when strong predictors 

were missing. For this reason, our proposed multiple imputation models appear particularly 

relevant when strong or multiple predictors are missing. This was confirmed in our simulation 

study: RMSE and coverage did not much deteriorate with increasing number of predictor values 

that were simultaneously missing for the individual patient. It is noted that our simulations, due to 

the way missing data was introduced, were not able to distinguish between various mechanisms 

by which data can be missing, e.g. data that is missing at random (MAR) versus data that is missing 

completely at random (MCAR) 121.

Furthermore, because the described imputation methods can accommodate for numerous patient 

characteristics that are not necessarily disease-specific, they are highly scalable to other settings 

and populations. However, it is likely that some local tailoring is necessary when imputation 

models are derived from specific studies or settings that do not fully match the intended target 

population. For JMI, the means and covariances could for instance simply be replaced by their 

respective values in a local ”training” sample. For CMI, the regression coefficients can be revised 

using recently described updating methods 137. When the (local) training data are affected by 

missing predictor values, advanced methods exist to estimate the mean and the covariance 138. 

All methods can be potentially incorporated within an EHR based computerized decision support 

system and generate imputations based on observed data from individual patients extracted from 

the EHR. Evidently, before implementing imputation models in clinical practice, it is of the utmost 

importance to assess their validity, likely impact on treatment decisions, patient outcomes, as 

well as any practical, security and ethical constraints.

Although multiple imputation offers a computational framework to account for missing values, 

we recommend to always first optimize data collection, and to avoid having missing values: a 

clinical decision making should never be based solely on imputed values. However, imputed 

values can serve as a proxy for prior risk, setting an indication for more (advanced) diagnostic 

tests. This is especially useful for expensive tests, tests associated with complications or when 

tests are unavailable. Additional diagnostic testing should preferably only be performed when it 

4
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is expected to change treatment and the potential clinical benefit outweighs the tests risk). Note 

that in this study we do not take into account the (un)certainty around imputed values when 

assessing treatment decision support.

In cardiovascular risk management, the decision to start treatment of a risk factor is based on i) 

the predicted risk for a cardiovascular disease or patient characteristics that are per definition 

associated with a high risk for cardiovascular disease and ii) the absolute value of the risk 

factor itself. We focused on imputation models to recover the missing value and to quantify its 

uncertainty. We demonstrated that the choice of imputation method may impact risk predictions 

and decision making. Whilst the magnitude of this effect was not always substantial, it may 

vary according to the number of missing predictors and their weight in the decision-making 

process and should therefore be evaluated when applying these models in different settings 

and populations.

Lastly, traditional (e.g. regression-based) prediction models assume complete input data, which 

is often not realistic in routine clinical practice. Although we developed models for imputing the 

missing values, which can subsequently be used to generate predictions, it is also possible to 

develop prediction models that do not require complete information on the predictors. Well-

known examples are the use of decision trees with surrogate or sparsity-aware splits 37,39,139, 

the use of submodels 140, or the use of missing indicator variables 4. More research is warranted 

to evaluate whether these methods may offer any improvement in model predictions, as well 

facilitate their implementation in routine care.

In summary, this study describes three imputation methods to handle missing values in the 

context of computerized decision support systems in clinical practice. We found that JMI and CMI 

provide imputations that are closer to the original value (as compared to mean imputation) and 

able to reflect uncertainty due to missing data. We therefore recommend their implementation 

in situations where information on relevant predictors is often incomplete due to practical 

constraints.
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Appendix

Appendix A. Explanation Imputation Methods

In this supplementary material we will explain which values are required to be calculated in the 

training data and which R packages are used per implemented method. We will also explain step 

by step what we do for each method. We will focus specifically on JMI and CMI as mean imputation 

is relatively straightforward. In addition, we will shortly cover the requirements and step-by-step 

instructions for each evaluation method used. All code is added in appendix C.

Joint modelling imputation

As stated JMI allows tailored imputations, making use of covariances between all predictors. More 

specifically, imputations are randomly sampled from a (multivariate) normal distribution that is 

conditioned on the observed predictor values. For binary variables, a logistic regression model 

is used to transform the drawn continuous values into discrete imputations.

To implement JMI we first have to calculate the expectation (mean) of all variables included in 

the data and save this in a single vector. Additionally, a covariance matrix of the data has to be 

saved in a separate object. We also save the class of each variable included in the data. On a 

patient-by-patient basis we extract which variables are missing and which are not missing. From 

the variables that are not missing we save the observed values in a separate vector. Then, using 

the rcmvnorm function in R, we estimate the conditional multivariate normal distribution using 

the provided expectations (mu), covariance matrix (sigma), dependent variables (i.e. names of the 

missing variable), the given non-missing variables and all observed values 138.

For example, consider a situation where we have two variables of interest  (e.g. blood pressure) 

and  (e.g. Body Mass Index). These variables have been fully observed in a previous cohort 

study, where we calculated their respective means  and , their respective variance  and 

, and their correlation . Consider now the encounter with a single new patient for which the 

Body Mass Index has been measured (i.e.  is known), but for which the blood pressure cannot 

be retrieved (and therefore is missing). Assuming that BMI and blood pressure follow a bivariate 

Normal distribution, likely values for  (given that  is known) can be described by a Normal 

distribution with mean  and variance  where:

and
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Hence, imputations for  can simply be generated by drawing random samples from the 

distribution . If only a single imputation is desired, the most likely value for  is 

simply given by .

Consider now that  is a binary variable (e.g. smoking) instead of a continuous variable. In this 

case, samples from , denoted as , may not be appealing to be used as imputation 

because they are unlikely to be discrete (e.g. 0 or 1) and may even take negative values. For this 

reason, imputations for  are generated according to . Note that for 

each imputation, a new value of  need to be sampled.

The code that was used can be found in appendix C (function: joint.MI()). Note that the amount 

of imputed values is specified beforehand (i.e. n.imp). Also note that the mean vector mu and 

covariance matrix sigma of the training data can simply be obtained by applying the R functions 

colMeans() and cov() to the corresponding data frame. In case the training data are affected by 

missing values, R packages such as mvnmle can be used to obtain maximum likelihood estimates 

for the original mean and covariance.

Conditional modelling imputation

To implement CMI we, before calculating other separate values, estimate each conditional model 

based on the training data. This entails iterating over all columns in the training data, specifying 

a conditional model (e.g. logistic) based on the type of dependent variable (e.g. binary). We save 

the conditional models in a list to be used in our imputation.

Note that we use the function estimice instead of glm when modeling continuous variables. 

This approach is analogous to the imputation of missing continuous variables in the R package 

mice when adopting the mice.impute.norm function. The estimice function is a least squares 

implementation of ridge regression, and can therefore better handle situations where training 

samples are relatively small.

The fitted regression models (one for each variable of interest) can then be used to generate 

imputations in new patients. In similar fashion to JMI, our implementation of CMI requires the 

means, covariance and data classes of the training data. The method first checks, on a patient-

by-patient basis, how many variables are missing. We start with this distinction as single and 

multiple missing variable require a different approach.

4
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In short: when a single predictor has a missing value, the fitted regression model of that predictor 

can directly be used to generate an imputed value. When multiple predictors have jointly missing 

values, the conditional models need to be combined through Markov Chain Monte Carlo sampling 
141. Missing values are then first initialized to an arbitrary value, and updated iteratively by applying 

the procedure for a single missing value successively on each missing value.

More specifically: when the patient has a single missing variable, we specify the variables on 

which each model should be based, thus excluding the missing variable. If the missing variable 

is binary we use the regression coefficients of the relevant imputation model (i.e. as estimated 

in conditional.estimation function) and its corresponding covariance matrix to draw a random 

sample of imputation coefficients. Hereto, we use a multivariate T-distribution as implemented 

in the R function rmvt 142. The imputation coefficients are then used to calculate a probability, 

which is then used with a Bernoulli distribution to draw an imputation for the missing value. This 

process of drawing the betas, calculating a probability and drawing a value from the Bernoulli 

distribution is done the amount of times we specify (i.e. n.imp).

When the missing variable is continuous, we use the Bayesian multiple imputation approach 

described by van Buuren and implemented in the R function mice.impute.norm 116. This approach 

generates imputation coefficients by sampling from a posterior distribution that is based on 

the regression coefficients of the relevant imputation model (i.e. as estimated in conditional.

estimation function) and standard non-informative priors. This adaptation was necessary to 

ensure that estimation uncertainty for the residual error variance is also taken into account when 

generating imputations.

When two or more variables are missing for a single patient, the conditional imputation models 

need to be used in conjunction to generate reliable imputations. Because each imputation model 

requires complete data on all but one variable, we first initialize each missing variable with a 

random starting value. To this purpose, we use the means and covariance of the training sample. 

Then, on a variable-by-variable basis, the starting values are updated by imputing them using 

all other (original or initiated) values. This process of updating randomly initiated values iterates 

over each missing variable and is then repeated for a specified number of times to also replace 

the updated values numerous times. This cyclic generation of updated values is necessary to 

ensure that the imputed variables depend on each other and the observed data, but no longer 

on their initial values. Updated values from the last iteration are then extracted and used as the 

imputed values. The process of initializing starting values, updating these values and extracting 

them is repeated for a prior specified amount (i.e. n.imp).
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The code in appendix C (functions: conditional.estimation() and conditional.MI()) was used to 

implement conditional modelling imputation. Note that the object model_estimation is a list 

containing the conditional imputation models for each variable, and can be obtained using the 

function conditional.estimation().

Evaluation measures

Each method provided an three-dimensional array of the data, where the third dimension 

consisted of the prior specified amount of imputations (i.e. 50 in our analysis) for each of the 

missing variables. When calculating the RMSE we square the difference between the mean of 

those imputations and the true value, which gives us a vector of squared deviations. The root 

of the mean of that vector is the RMSE reported in this study. We calculated the coverage rate 

by first calculating a 95% confidence interval for each imputed predictor in the hold-out patient 

according to

Where xi is the ith imputed value (out of a total of 50), and t is a value from a two-sided t-distribution 

with 50 degrees of freedom. We then specify a binary indicator showing if the confidence interval 

included the true value. Taking the mean of the binary indicator gives us the percentage of 

confidence intervals containing the true value.

The code in appendix C was used to calculate both evaluation measures for a single missing 

predictor (function: test_single_missing()). Note that the object knn1 is the exemplar dataset 

where all predictors are fully observed. To accommodate deriving the necessary population 

characteristics from the training data we completed any missing values in the UCC data using 

K-nearest neighbor imputation (KNN) 131. In addition the character test_var specifies the variable 

for which” missing values are introduced in the Jack-knife procedure.

4

BNW_Steven_v1.indd   79BNW_Steven_v1.indd   79 02/05/2022   11:52:1302/05/2022   11:52:13



80

Chapter 4

Appendix B – Descriptive statistics before imputation

Mean (sd) or n/total (%)* % Missing

Age (years) 61.7 (18.2) 0.00

Sex (1=female; 0=male) 1987/3880 (51.2) 0.00

Smoking (1=yes; 0= no) 363/2583 (14.05) 24.07

SBP (mmHg) 141.49 (24.2) 10.54

TC (mmol/l) 5.2 (1.4) 24.54

LDL-c (mmol/l) 3.0 (1.2) 26.01

HDL-c (mmol/l) 1.4 (0.4) 25.39

eGFR (mL/min/1.73m2) 80.7 (25.6) 15.98

History of CVD (1=yes; 0= no) 1063/1907 (55.7) 23.45

History of PAD (1=yes; 0= no) 271/2699 (10.0) 23.45

History of CHD (1=yes; 0= no) 472/2498 (18.9) 23.45

History of CHF (1=yes; 0= no) 283/2687 (10.5) 23.45

History of CVA (1=yes; 0= no) 449/2521 (17.8) 23.45

History of DM (1=yes; 0= no) 607/2363 (25.6) 23.45

Polyvascular disease 0.5 (0.8) 23.45

# of medications 1.0 (1.9) 27.24

BP lowering medication (1=yes; 0= no) 599/2224 (26.9) 27.24

Statin (1=yes; 0= no) 395/2428 (16.3) 27.24

HbA1c (mmol/mol) 40.7 (11.8) 26.37

Years since first CVD (years) 3.8 (8.5) 26.21

Diabetes (1=yes; 0= no) 755/2810 (26.9) 8.12

Diabetes duration (years) 14.9 (12.0) 86.11

Pulse pressure (mmHg) 61.7 (19.5) 10.54

Legend – SBP: systolic blood pressure, TC: total cholesterol, LDL-c: low-density lipoprotein cholesterol, HDL-c: high-density 

lipoprotein cholesterol, eGFR: estimated glomerular filtration rate according to the CKD epi formula, CVD: cardiovascular 

disease, PAD: peripheral artery disease, CHD: coronary heart disease, CHF: chronic heart failure, CVA: cerebrovascular 

accident, DM: diabetes mellitus, BP: blood pressure, HbA1c: glycated hemoglobin. * after KNN-imputation
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Appendix C – Selection of variables

Given that the interest of the study is to provide a method with which a prediction model is able 

to be used whilst missing predictor values are present, we looked at combinations of missing 

predictor values that are observed in real data (see below). This figure describes the most common 

missing intersections of predictor variables. No distinction concerning variable importance is 

made. All single missing predictor scenarios are included, regardless of their occurrence in real 

data, as such the apparent single scenarios in the figure below can be ignored.

Each of these intersections is used in the study as a possible scenario for which the imputation 

methods should realistically work well. For a combination of missing predictor values to be 

included in the study it should at least be apparent in >1% of patients. This resulted in the inclusion 

of eight distinct multiple missing predictor scenarios.

The next part of variable selection was identifying the auxiliary variables that are inextricably 

linked to any of the predictor variables. Using these variables in an attempt to impute their 

respective predictor value via JMI or CMI would overestimate their performance as they are highly 

reliant on the relationship between available variables and the missing predictor value to be 

imputed. As such it is important that these auxiliary variables are not available for information 

extraction when their respective predictor values are missing. The variables were identified using 

the clinical experience of the authors as well as by using visualizations of the various combinations 

of missing value scenarios in the complete data (see next figure). For example, it was noticed that 

pulse pressure, or SAP, were never exclusively missing.

The combinations identified are: (1) SAP and pulse pressure, (2) diabetes and diabetes duration, 

(3) history of CVD and history of PAD, CHD, CHF, CVA and polyvascular disease and (4) total 

cholesterol, HDL-cholesterol and LDL-cholesterol.

4
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Appendix D – R code

Code available upon reasonable request.

4
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Abstract

Introduction – Use of prediction models is widely recommended by clinical guidelines, but 

usually requires complete information on all predictors that is not always available in daily 

practice.

Methods – We describe two methods for real-time handling of missing predictor values when 

using prediction models in practice. We compare the widely used method of mean imputation 

(M-imp) to a method that personalizes the imputations by taking advantage of the observed 

patient characteristics. These characteristics may include both prediction model variables and 

other characteristics (auxiliary variables). The method was implemented using imputation from 

a joint multivariate normal model of the patient characteristics (joint modeling imputation; JMI). 

Data from two different cardiovascular cohorts with cardiovascular predictors and outcome were 

used to evaluate the real-time imputation methods. We quantified the prediction model’s overall 

performance (mean squared error (MSE) of linear predictor), discrimination (c-index), calibration 

(intercept and slope) and net benefit (decision curve analysis).

Results – When compared with mean imputation, JMI substantially improved the MSE (0.10 vs. 

0.13), c-index (0.70 vs 0.68) and calibration (calibration-in-the-large: 0.04 vs. 0.06; calibration slope: 

1.01 vs. 0.92), especially when incorporating auxiliary variables. When the imputation method 

was based on an external cohort, calibration deteriorated, but discrimination remained similar.

Conclusions – We recommend JMI with auxiliary variables for real-time imputation of missing 

values, and to update imputation models when implementing them in new settings or (sub)

populations.

Keywords: missing data; joint modeling imputation; real-time imputation; prediction; 

computerized decision support system; electronic health records
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Introduction

The identification and treatment of patients at increased risk for disease is a cornerstone of 

personalized and stratified medicine 14,15,143. Often, identification of high-risk patients involves 

the use of multivariable risk prediction models. These models combine patient and disease 

characteristics to provide estimates of absolute risk of a disease in an individual 20,26,144–146. For 

example, prediction models for cardiovascular disease such as Framingham heart score (FHS) 27, 

HEART score 143, ADVANCE 147, Elderly 148 and SMART 126 are well known examples 19. Additionally, 

cardiovascular guidelines recommend use of prediction models integrated in computerized 

decision support systems (CDSS), to support guideline adherent, risk-informed decision making 
19,143.

When applying a risk prediction model in real-time, which constitutes its application in individual 

patients in routine clinical practice, one needs to have the individual’s information (values) 

on all predictors in the model. Otherwise no absolute risk prediction by the model can be 

generated, restricting its use in situations when a physician is unable to acquire certain patient 

measurements. For example, for cardiovascular risk assessment, prediction models require 

complete information typically on age, sex, smoking, co-morbidities, blood pressure and lipid 

levels 127. With the increased availability of large databases with information from electronic health 

care records, automated implementation and use of risk prediction models within CDSS using 

routine care (EHR) data has gained much interest 109,149–152. However, the use of EHR databases 

faces many challenges, notably the incompleteness of data in the records 152–155. The usability 

of a prediction model may thus still be limited in clinical practice if its implementation cannot 

standardly handle missing predictor values in real time. A detailed example is given in Box 1.

A variety of strategies have been developed for daily practice to handle missing predictor values 

in real-time40,156. Imputation strategies are of interest since they allow for direct use of well-known 

prediction models in their original form. In short, imputation substitutes a missing predictor value 

with one or more plausible values (imputations). In its simplest form, these imputations solely rely 

on the estimated averages of the missing variables in the targeted population. Therefore, they 

reflect what is known about the average patient. These simple methods can be applied directly 

in real-time clinical practice, provided that summary information (e.g. mean predictor values) 

about the targeted population is directly available. Additionally, imputations can account for 

the individual patient’s observed predictor values by making use of the estimated associations 

between the patient characteristics in other patients. In that case, the imputations reflect all what 

is known about the specific individual at hand. Usually, the implementation of more complex 

imputation strategies requires direct access to the raw data from multiple individuals, which is 

5
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typically problematic in clinical practice (e.g. due to operational or privacy constraints). As such, 

alternative strategies are required to make the imputation model applicable in real-time clinical 

practice.

Although real-time imputation of missing predictor values in clinical practice offers an elegant 

solution to generate predictions in the presence of incomplete data, the accuracy of these 

predictions may be severely limited if imputed values are a poor representation of the unobserved 

predictor values. In particular, problems may arise when (i) the imputation procedure does 

not adequately leverage information from the observed patient data, and (ii) if the estimated 

population characteristics used to generate the imputation(s) poorly represent the population to 

which the individual patient belongs. It is currently unclear how these novel real-time imputation 

methods influence the accuracy of available prediction models.

In this paper we explicitly focus on the relatively new area of real-time imputation, which has not 

been studied often before in similar literature. Most similar studies that address missing data 

consider and attempt to halt the onset of missing data in a particular dataset with missing values 

in study individuals, rather than a missing predictor in a single individual that is encountered 

in real-time clinical practice. Briefly, we investigate the performance of these two real-time 

imputation methods to handle missing predictor values when using a prediction model in daily 

practice. We evaluated both the accuracy of imputation and the impact of imputation on the 

prediction model’s performance. Furthermore, transportability of the imputation procedures 

across different populations was empirically examined in two cardiovascular cohorts.

Box 1. An example of real-time imputation in an individual patient

Example. A patient visits their physician for a regular check-up. The patient and physician have access to a 

clinical decision support system that provides information on previously ordered test results (automatically 

retrieved from a registry). The physician would like to know the 10-year risk for the patient to suffer from a 

cardiovascular event, in order to determine whether any lifestyle changes or preventative therapies are needed. 

A calculator to determine this risk (e.g. the pooled cohort equations) is incorporated in the clinical decision 

support system, but requires complete information on several patient characteristics, including their BMI, 

cholesterol levels, and blood pressure. Many of these predictors are directly available (e.g. age, gender) at the 

visit. However, for some patients, important lab results (e.g. LDL cholesterol) are yet unknown or outdated 

(e.g. when retrieved from the registry). It is then not possible to determine the absolute risk of CVD for these 

patients. Our algorithm provides a substitute value for the missing LDL-cholesterol in real-time, enabling the 

calculation of a risk estimate ‘on the spot’.
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Methods

Short description

We conducted a simulation study to evaluate the impact of real-time imputation of missing 

predictor values on the absolute risk predictions in routine care. Hereto, we considered 2 large 

datasets and two real-time imputation methods. The datasets considered were the ongoing 

Utrecht Cardiovascular cohort - Cardiovascular risk management (UCC-CVRM) and the Utrecht 

Cardiovascular cohort - Secondary Manifestation of ARTerial disease (UCC-SMART) study 129,157. 

Both studies focused on cardiovascular disease prevention and included newly referred patients 

visiting the University Medical Center (UMC) Utrecht for evaluation of cardiovascular disease 
129,157. Baseline examinations (i.e. predictors) for the UCC-CVRM included only the minimum set 

as suggested by the Dutch Cardiovascular Risk Management Guidelines 125.

Imputation methods

We considered mean imputation (M-Imp) and joint modelling imputation (JMI) 120,134. 

Mean imputation was chosen as a comparison due to its straightforward implementation 

and extensive use during prediction model development and validation 9,158–160. A major 

advantage of mean imputation is that it does not require information on individual patient 

characteristics and can be implemented without much difficulty in daily clinical practice. 

Using mean imputation, missing predictor values are simply imputed by their respective mean, 

usually from a representative sample (e.g., observational study). JMI was chosen because it 

allows to personalize imputations by adjusting for observed characteristics. To this purpose, 

JMI implements multivariate methods that have extensively been studied in the literature 
6,120,134,161. Some modifications are required to implement JMI for real-time imputation, these 

have been discussed previously 40. In JMI, missing predictor values are imputed by taking the 

expected value from a multivariate distribution that is conditioned on the observed patient 

data. Implementations of JMI commonly assume that all variables are normally distributed, as 

this greatly simplifies the necessary calculations. This method then minimally requires mean 

and covariance estimates for all variables that are included as predictors in the prediction 

model from a representative sample (e.g., observational study). As an extension to JMI, we 

also consider that additional patient data (auxiliary variables) are available and can be used to 

inform the imputation of missing values (denoted as JMIaux) 162.

All imputation methods can be directly applied to individuals and only require access to 

estimated population characteristics (i.e., mean and covariance estimates of the predictors) 

to account for missing predictor values. For both imputation methods the required population 

characteristics are easily stored and accessible in ‘live’ clinical practice within any accompanying 

5
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CDSS. The outcome is excluded from the imputation procedure as this information is not 

available when imputing the missing predictor values, and is the target of the prediction model. 

The corresponding source code is available from the supplementary information (Appendix E).

Table 1. general characteristics of the study populations

UCC-SMART
Mean (sd) or
n/total (%)* Role

UCC-CVRM
Mean (sd) or
n/total (%)** Role

Age (years) 56.28 (12.45) Predictor 61.7 (18.18) Predictor

Gender (1=male) 8258 (65.50) Predictor 1987 (51.21) Predictor

Smoking (1=yes) 3560 (28.24) Predictor 363 (9.36) Predictor

SBP (mmHg) 144.67 (21.58) Predictor 142.75 (24.24) Predictor

TC (mmol/l) 5.11 (1.37) Predictor 5.07 (1.24) Predictor

HDL-c (mmol/l) 1.27 (0.38) Predictor 1.36 (0.36) Predictor

DM (1=yes) 2299 (18.23) Predictor 755 (19.46) Predictor

AD (1=yes) 8332 (66.09) Predictor 705 (18.17) Predictor

LDL-c (mmol/l) 3.15 (1.22) auxiliary 3.08 (1.27) auxiliary

HbA1c (mmol/mol) 3.69 (0.20) auxiliary 3.66 (0.22) auxiliary

MDRD (ml/min/1.73m2) 79.90 (19.54) auxiliary 81.79 (24.56) auxiliary

History of CVD (1=yes) 8134 (64.51) auxiliary 1971 (50.80) auxiliary

Time since 1st CVD event (years) 2.37 (5.93) auxiliary 4.642 (8.06) auxiliary

MPKR (mg/mmol) 4.10 (13.71) auxiliary NA None

CRP (mg/L) 0.71 (1.13) auxiliary NA None

AF (1=yes) 164 (1.30) auxiliary NA None

LLD (1=yes) 6836 (54.22%) auxiliary NA None

PAI (1=yes) 6805 (53.97%) auxiliary NA None

Legend – SBP: systolic blood pressure, TC: total cholesterol, HDL-c: high-density lipoprotein cholesterol, , DM: diabetes 

mellitus, AD: antihypertensive drugs, LDL-c: low-density lipoprotein cholesterol, HbA1c: glycated hemoglobin, MDRD: 

modification of diet in renal diseases, MPKR: micro-protein/creatinine ratio, AF: atrial fibrillation, lipid-lowering drugs, PAI: 

platelet aggregation inhibitors. * after multiple imputation by chained equations.

Study population

The UCC-CVRM sample consisted of 3.880 patients with 23 variables and the UCC-SMART study 

consisted of 12.616 patients with 155 variables. Some patient values were missing in UCC-CVRM 

(for 1057/3880 patients) and in UCC-SMART (for 2028/12616 patients). For the purpose of our 

methodological study, we had to have complete control over the patterns of missing predictor 

data and the true underlying predictor values, and needed to start with a fully observed data set 

that could be considered as the reference situation. To that end, for each dataset separately, we 

imputed all missing data once using Multiple Imputation by Chained Equations (for UCC-SMART) 
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and nearest neighbor imputation (for UCC-CVRM) 6. These then completed data sets formed the 

reference situation after which missing predictor values were generated according to various 

patterns (see below). Table 1 provides an overview of the completed variables in both cohorts, 

and how they were subsequently used in our simulation study. To assess the relatedness between 

UCC-CVRM and UCC-SMART, we calculated the membership c-statistic 163, which ranges between 

0.5 (both samples have a similar case-mix) and 1 (the case-mix between both samples does 

not have any overlap). We found a membership c of 0.86, which indicates that the population 

characteristics of UCC-CVRM and UCC-SMART differ greatly.

Simulation study

We performed 4 simulation studies to investigate the impact of real-time predictor imputation 

on absolute risk predictions (Figure 1). In the first simulation, we considered the ideal situation 

where a (new) patient stems from the same population (i.e. UCC-SMART) as the one that is used to 

develop the prediction model, to derive the population characteristics, and to test the accuracy of 

individual risk predictions after the real-time imputations. In the second simulation, we considered 

a less ideal situation where imputations are based on the characteristics from a different, but 

related, population (i.e. UCC-CVRM). This simulation mimics the situation where development 

data are unavailable (or otherwise insufficient) to inform the imputation procedure, and thus 

assesses the transportability of the imputation model. In the third simulation, we investigated 

the situation where the estimated population characteristics underlying the imputations are 

derived from an external cohort (UCC-CVRM) and subsequently updated using local data (from 

UCC-SMART). This resembles a situation in which a small amount of local data is available, 

though insufficient to entirely inform the real-time imputation procedure. In the final simulation, 

we considered the most extreme scenario where 3 different populations are used to derive a 

prediction model (Framingham Risk Score 27), the imputation model (UCC-CVRM), and to test the 

accuracy of the real-time imputations on the individuals’ absolute risk predictions (UCC-SMART). 

This simulation mimics a more common predicament in which local data is insufficient to inform 

the imputation procedure and there is no access to the data from which the prediction model 

had been developed.

5
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Figure 1. the simulation studies illustrated
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In all simulation studies, we considered UCC-SMART as the target population. For simulations 

1-3, we adopted a leave-one-out-cross-validation (LOOCV) approach to develop the prediction 

model, to derive the population characteristics, and to evaluate the accuracy of risk predictions. 

This procedure ensures that independent data are used for the evaluation of risk predictions. In 

the LOOCV approach both the prediction model imputation model were derived from all but one 

patient (leave-one-out) of UCC-SMART. In the remaining hold-out patient, one or more predictor 

variables were then set to missing (see Figure 2 for an overview of which sets of predictor values 

were set to missing). The leave-one-out procedure was repeated until all patients had been 

removed from UCC-SMART exactly once (Figure 3).
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Figure 2. Multivariate scenarios of missing predictor values observed in UCC-CVRM
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LOOCV was not needed for the 4th simulation as each task (prediction model development, 

derivation of population characteristics, and evaluation of risk predictions) involved a different 

dataset (Figure 4).

5
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Figure 3. Simulation study 1-3 in detail
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Figure 4. Simulation study 4 in detail
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Step 1. Estimation of the prediction model

For all simulation studies, the prediction model of interest was a Cox proportional hazards model 

predicting the onset of cardiovascular disease or coronary death. This model was derived in the 

LOO (leave-one-out) subset of UCC-SMART using predictors from the original FRS (simulation 

1-3), or retrieved from the literature (simulation 4). A detailed description of how the prediction 

models were fit and the R code is listed in Appendix E. As a sensitivity analysis, we fitted a Cox 

regression model with only age and gender as predictors and included a scenario where, though 

unrealistic, age and gender were missing.

Step 2: Estimation of the population characteristics

We estimated the population characteristics necessary for the real-time missing data methods 

(i.e. the imputation models) in the following data (Figure 1):

›	 in the entire LOO subset of UCC-SMART (simulation 1),

›	 in the entire dataset of UCC-CVRM (simulation 2 and 4)

›	 in the entire dataset of UCC-CVRM, plus a random sample of the LOO subset of UCC-SMART, 

which were simply stacked. (simulation 3)

Step 3: Introduction and imputation of missing values

For simulation 1-3, we set one or more predictor variables to missing in each hold-out patient 

of UCC-SMART (scenarios illustrated in Figure 2). To match the introduction of missing values 

with real life occurrences of missingness, we included scenarios based on observed patterns of 

missingness in UCC-CVRM. For simulation 4, missing values were generated for the entire UCC-

SMART dataset, rather than for individual patients. We subsequently impute the missing values 

once using the following strategies:

1.	 Mean imputation. Any missing predictor value was imputed with their respective mean as 

estimated in step 2.

2.	 JMI with observed predictors only. Each missing predictor value is replaced by its expected 

value conditional on the individual’s observed predictors. The expected value is derived using 

the estimated population means and covariances from step 2.

3.	 JMI with observed predictors and auxiliary variables. Each missing predictor value is replaced 

by its expected values conditional on all the observed patient data. Note that this includes 

additional patient data that are not included as predictors in the prediction model (Table 1).
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Step 4 – Risk prediction and validation of model performance

The imputed missing predictor values were then used together with the observed predictor 

values to calculate the linear predictor ηi (where ηi = β1xi1 + β2xi2 + …) and the 10-year predicted 

absolute risk. The predictions from all UCC-SMART patients were then used to assess the following 

performance measures: 1) Mean Squared Error (MSE) of the prediction model’s linear predictor, (2) 

concordance (C-)statistic, 3) calibration-in-the-large, 4) the calibration slope and 5) the decision 

curve 144,149,164,165.

4.	 The MSE of the linear predictor of the prediction model can be described as the average 

squared difference between the linear predictor after imputation and the true, original linear 

predictor (i.e. before introducing missing values) 13. The linear predictor can be described as 

the weighted sum of the predictors of a given patient, where the weights consist of the model 

coefficients 164. Lower values for the MSE are preferred.

5.	 The C-statistic can be described as the ability of the model to discern those who have 

experienced an event and those who haven’t 13,145,166. It is represented by the probability of 

correctly discerning who, between two random subjects, has the higher predicted probability 

of survival. The C-statistic is ideally close to 1.

6.	 Calibration-in-the-large (CITL) can be described as the overall calibration of the model (i.e. 

agreement between average predicted risk and average observed risk) 144,145,166,167. It is 

interpreted as an indication of the extent to which the predictions systematically over- or 

underestimate the risk; the ideal value is 0.

7.	 The calibration slope can be described as a quantification of the extent that predicted risks 

vary too much (slope <1) or too little (slope > 1), and is often used as an indication of overfitting 

or lack of transportability 13,145,149,166,167. The ideal value is 1.

8.	 The decision curve can be described as a way of identifying the potential impact of leveraging 

individual risk predictions for decision making 144,165,168. It considers a range of thresholds 

(e.g. 10%) to classify patients into high risk (indication of treatment) or low risk (no treatment 

required) and calculates the net benefit (NB) for each cut-off value. A decision curve is then 

constructed for 3 different treatment strategies: treat all, treat none, or treat according to risk 

predictions. Ideally, the decision curve of the latter strategy depicts consistently better NB 

over the complete range of thresholds.

5
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Results

Prediction model performance in the absence of missing values

Based on internal validation by means of LOOCV, the optimism corrected c-statistic for our newly 

derived prediction model in UCC-SMART was 0.705. As expected, the CITL and calibration slope 

were near 0 (-0.0005) and 1 (0.9999) respectively. Therefore, there were no signs of miscalibrations 

and/or over/underfitting of the developed CVD risk prediction model. The prediction model that 

was based on age and gender yielded an optimism corrected c-statistic of 0.679, with a slope of 

0.9999 and an intercept of -0.00005. Finally, the refitted FRS model (as derived from the literature) 

yielded a c-statistic of 0.6280 and a slope of 0.8205 in UCC-SMART.

Prediction model performance in presence of missing data

Mean squared error

The MSE of the linear predictor was consistently lower when adopting JMI, as compared to M-Imp. 

The implementation of JMI was particularly advantageous when adjusting for auxiliary variables 

that were not part of the prediction model (see table 2 for the results of scenario 1 and 5). For 

instance, when total cholesterol (TC), HDL-cholesterol (HDL-c), use of Antihypertensive Drugs 

(AD), smoking and Diabetes Mellitus (DM) were missing (i.e. scenario 5), M-Imp yielded an MSE 

of 0.130, whereas the MSE for JMI was 0.126 or even 0.101 when utilizing auxiliary variables. As 

expected, differences in MSE were lower, when imputing other predictors that did not have a 

strong contribution in the prediction model, or much more pronounced when imputing important 

predictors (see table 3 for the results of the sensitivity analysis with age and gender missing). 

This expected discrepancy results from the fact that the linear predictor is a weighted average 

of the predictors and the important variables simply have larger weights. When imputation was 

based on the characteristics of a different, but related, cohort to UCC-SMART, all imputation 

strategies yielded a substantially larger MSE. For instance, when TC, HDL-c, AD, smoking and DM 

were missing (i.e. scenario 5), the MSE increased from 0.130 to 0.193 for M-Imp, and from 0.1014 to 

0.159 for JMIaux. Again, JMIaux was superior to M-Imp and JMI based on predictor variables only. As 

expected, the MSE for all imputation methods improved when the imputation model was based 

on a mixture of patients from both the UCC-CVRM (different but related) and the UCC-SMART (the 

target cohort for predictions). However, the lowest MSE’s were obtained when imputations were 

based on UCC-SMART data only.

C-statistic

The c-statistic was higher for both implementations of JMI, when compared to M-Imp (Table 2). 

Using JMIaux further increased the c-statistic substantially, especially when important predictors 
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(i.e. age and gender) were missing (Table 3). In this scenario, M-Imp yielded a c-statistic of 0.61, 

whereas JMI yielded a c-statistic of 0.62 or even 0.67 if auxiliary variables were used. Discrimination 

performance did not much deteriorate when imputation was based on the characteristics from a 

different but related population. Again, JMIaux was superior to M-Imp and JMI based on predictor 

variables only. The c-statistic, for all imputation methods, improved when the population 

characteristics from UCC-CVRM were augmented with data from UCC-SMART. However, when 

an external prediction model was used in combination with external population characteristics 

(simulation 4), the utilization of auxiliary variables did not seem to improve on the discriminatory 

ability of risk predictions (Table 4). The highest c-statistics were obtained when imputations were 

based on UCC-SMART data only and a locally derived prediction model was used.

Calibration-in-the-large

The CITL was consistently closer to the ideal value (i.e. 0) for all scenarios when using both 

implementations of JMI, when compared to M-Imp. Using JMIaux improved the CITLs further 

towards their ideal value (Table 2). When imputation used estimated population characteristics 

from UCC-CVRM, all imputation strategies had a substantially worse CITL. The performance drop 

was most notable as more predictors in the model were missing. Again, JMIaux was superior to 

M-Imp and JMI based on predictor variables only. The CITL, for all imputation methods, improved 

when the population characteristics from UCC-CVRM were augmented with data from UCC-SMART. 

When an external prediction model was used, M-Imp yielded the “best” CITL (-0.167 as opposed 

to -0.2030 for JMI and -0.2256 for JMIaux; Table 4). The CITLs were closest to 0 when imputations 

were based on UCC-SMART data only.

Calibration slope

The use of JMIaux improved the calibration slope as compared to M-Imp or JMI using predictor 

variables only (Table 2). When imputation used population characteristics from UCC-CVRM, the 

variability of predicted risks generally became too large (slope < 1 for all imputation methods). 

The performance drop was most notable as more predictors were missing. When an external 

prediction model was used, both JMI and JMIaux yielded better calibration as compared to M-Imp 

(Table 4), although JMIaux performed worse than JMI. The best calibration slopes were found for 

imputations based on UCC-SMART data only.

Figure 5 visualizes calibration plots for scenarios 1, 5 and 8. It shows that when important predictors 

(i.e. age and gender in scenario 8) are missing there is a notable impact on the calibration of 

10-year risk predictions, especially when using external data for generating imputations. When 

less important predictors are missing (scenario 1 and 5) the differences between the imputation 

methods are much less pronounced in the calibration plots.

5
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Decision curve

When important variables were missing, imputation through JMI with auxiliary variables yielded 

an improved net benefit over the whole range of thresholds when compared to M-Imp and JMI 

(Figure 6), and was substantially better than treat-all or treat-none strategies. The observed net 

benefit did not much deteriorate when imputation was based on a different, but related, dataset.

A complete detailed overview of all results (e.g. all scenarios) can be found in the supplementary 

material.

Figure 5. Calibration plots for scenario 1, 5 and 8
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Figure 6: Decision curve analysis simulation 1

5
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Discussion

Our aim was to evaluate the impact of using real-time imputation of missing predictor values on 

the performance of cardiovascular risk prediction models in individual patients. We considered 

mean imputation and joint modeling imputation to provide automated real-time imputations. 

Our results demonstrate that in all scenarios and for all parameters studied (c-index, calibration 

and decision curve analysis) JMI leads to more accurate risk predictions than M-Imp, especially 

when used to impute a higher number of missing predictors (e.g. scenario 5 for prediction of 

cardiovascular events). The performance of JMI greatly improved when imputations were based 

on all observed patient data, and not restricted to only the predictors that were in the prediction 

model. Finally, we found that real-time missing predictor imputations were most accurate when 

the imputation method relied on characteristics that were directly estimated a sample from the 

target population (i.e. the population for which predictions are required), rather than from an 

external though related dataset. In the latter case, while discriminative performance was stable, 

calibration clearly deteriorated (in terms of both CITL and calibration slope). This implies that the 

need for local updating, as is well known in clinical prediction modeling, may extend to imputation 

models. In practice, a prediction model is ideally developed together with an appropriate missing 

data method for real-time imputation. When high quality local data are available, performance 

gains can be expected for that setting by local updating of both the prediction model and the 

imputation model.

Our findings suggest that JMI should be preferred over M-Imp for real-time imputation of missing 

predictor values in routine care, ideally making use of additional patient data (variables) that are 

not part of the prediction model. The underlying rationale, is that some variables that are highly 

correlated are unlikely to both end up in a prediction model (due to little added value), but are 

quite valuable for imputation purposes when one or the other is missing. The implementation of 

JMI is very straightforward, and only requires estimating the mean and covariance of all relevant 

patient variables in a representative sample. Imputations are then generated using a set of 

mathematical equations that are well established in the statistical literature 40. As JMI does not 

rely on disease-specific patient characteristic and lends itself excellently for local tailoring 169, it is 

considered highly scalable to a multitude of clinical settings and populations. Routine reporting of 

population characteristics (i.e. means and covariance) would greatly facilitate the implementation 

of risk prediction models in the presence of missing predictor data in daily practice, and has 

previously been recommended to improve the interpretation of validation study results 163.

A limitation we observed in the data was that most of the explained variability in risk of 

cardiovascular disease, as defined in our study, could be inferred based on age and gender. 
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Although additional predictors (e.g. blood pressure, cholesterol levels) somewhat improved the 

model’s discrimination and calibration performance, their individual added value appears small. 

A further limitation of the data was the lack of strong correlations between predictors other than 

age and gender (appendix D). Consequently, the information available for JMI to leverage observed 

patient characteristics was limited. These findings are in line with earlier research, suggesting that 

M-Imp performs similarly to more advanced imputation methods when considering commonly 

encountered missing data patterns in cardiovascular routine care 170. However, our study reveals 

that JMI had the advantage even under these typical but difficult settings. Gains are expected 

to be larger when the interrelation of predictors is stronger and especially when key auxiliary 

variables can be identified. Moreover, for many disease areas, risk prediction relies more strongly 

on a multitude patient characteristic that are more likely to be missing (e.g. certain imaging 

characteristics, biomarkers or genetic profiles), and JMI offers a larger advantage.

Various other aspects need to be addressed to fully appreciate these results. First, we restricted 

our comparison to M-Imp and JMI. Considering M-Imp was picked as a comparator, we choose 

JMI as it was well established in the statistical literature and permitted relatively straightforward 

adjustments to be applied in clinical practice via the EHR 6,120. Other, more flexible, imputation 

strategies exist, and have been discussed at length 40. These strategies generally require more 

complex descriptions of the population characteristics and adopt more advanced procedures 

to generate imputations. For this reason, their implementation appears less straightforward in 

routine care. A more detailed overview of the impact of using other strategies for handling real-

time missing predictor value imputation is warranted. Also, the use of multiple imputation may be 

preferable with respect to prediction accuracy in case of models with a non-linear link function 

such as the Cox or logistic model, the reason is multiple imputation can correctly convey the 

influence of imputation uncertainty on the expected prediction. The available R code already 

provides in this, though in this study we explicitly choose to use single imputation. We choose 

single imputation due to its convenience in real-time clinical practice. The imputation process is 

quick, in contrast to the usually computationally expensive multiple imputation, and it presents 

an individual’s imputed predictor value which may be informative to the clinician. Additionally, 

rather than imputing a random draw, we impute the most likely value in order to be able to 

easily reproduce model predictions from the imputed data. Ideally, the predictions would be 

based on multiple imputation from the conditional distribution of the missing predictors rather 

than representing their conditional means. Further extensions, for example multilevel multiple 

imputation, may also be recommended in specific situations where the prediction model and 

accompanying imputation models are derived from large datasets with clustering 171. Lastly, 

whilst there are many clinical settings and populations the study only considered cardiovascular 

5
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risk prediction. The performance of JMI, when compared to M-Imp, might have been further 

emphasized had other clinical settings been considered.

In summary, this study evaluates the use of two imputation methods for handling missing 

predictor values when applying risk prediction models in daily practice. We recommend JMI over 

mean imputation, preferably based on estimated from local data and with the use of available 

auxiliary variables. The added value of JMI is most evident when missing predictors are associated 

with either observed predictor values or auxiliary variables.
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Appendix D: Correlation matrix (with additional patient variables) – left: local data (SMART), right: external data (UCC)

 

Appendix E – R code

Code available upon reasonable request.

5
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Abstract

Introduction – The need to account for missing values in real time is unique to the application 

of prediction models but is underrepresented in the literature. In this study, we aim to evaluate 

various real-time strategies to handle the pervasive problem of missing data when using clinical 

data to make predictions on patients for whom part of the data is missing. We assess the influence 

of built-in missing data handling mechanisms on prediction accuracy and compare it with existing 

real-time imputation methods (e.g., joint modeling imputation).

Methods – We evaluate the effect of various missing data handling methods under specific 

missing data circumstances as would occur in medical practice in a simulation study. Hereto, 

we consider three types of missing data handling strategies: Joint Modelling Imputation (JMI), 

Pattern Submodels (PS), and Surrogate Splits (SS). The predicted risks are evaluated in terms of 

overall prediction accuracy (i.e., root mean squared error of the predicted risk and brier score), 

and in terms of discrimination (C-statistic) and calibration (i.e., calibration-in-the-large and the 

calibration slope).

Results – Simulation results suggests that both PS and JMI work reasonably well, provided JMI 

generated multiple imputations for each missing value. In comparison, when a RF was used, the 

performance of PS diminished.

Discussion – We recommend JMI-MD as it yielded good performance for both FLR and RF. When 

the goal is to use a RF, the use of JMI-CM and SS are not recommended.
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A comparison of real-time missing data handling methods

Introduction

Incompleteness of medical records is a ubiquitous problem when using healthcare data. Besides 

the well-documented issues that missing data can create in data analyses, incompleteness of 

medical records may also create practical issues in clinical practice 9,28. For instance, a prediction 

model that relies on historical but unrecorded data for a particular patient or prediction models 

that are used as early-warning systems for individual patients 27,126. Most prediction models are 

not designed to be used when predictors are not fully observed, and ad-hoc approaches such as 

replacing the missing value with the population average value (i.e., mean imputation) is generally 

not advised 9,143. As prediction models are increasingly being integrated in the electronic health 

record (EHR) via clinical decision support systems (CDSS), the issues concerning missing data 

and the need to deal with those missing values when applying prediction models in individual 

patients becomes more evident 19,110. The issue is further complicated as the common strategies 

to mend or circumvent missing data in research are not directly applicable for use when predicting 

an outcome for an individual patient in a clinical practice setting.

Various strategies to handle different manifestations of missing data have been studied thoroughly 

and can usually provide more plausible substitution values (e.g., via imputation) 28. Multiple 

imputation is often considered to be the gold standard for missing data problems and is known 

to provide valid estimates and correct standard errors in circumstances where the missingness 

does not depend on the unobserved values 6. Most imputation algorithms, however, require direct 

access to data from multiple instances (i.e., multiple patients or multiple measurements) and are 

therefore not directly suitable for use on a case-by-case basis. Further, when a prediction model 

is applied to a single patient in clinical practice via a CDSS there is usually no access to any data 

from other individuals due to computational and privacy constraints 19.

An intuitive alternative to imputation is to solve for the missingness inside the prediction 

model instead of the data. Two promising methods of this type are the pattern submodel (PS) 

approach and surrogate splits (SS). PS are attractive to a variety of parameter-based modeling 

techniques (e.g., regression). The so-called submodels incorporate the nature of the missing 

data by developing a separate prediction model for all possible missing data patterns 50,172. Then, 

when applied to a new case or out-of-sample individual the corresponding prediction model 

that matches the individual’s missing data pattern is used. Whereas the PS approach lends 

itself to various kinds of prediction models, SS come naturally to tree-based methods, such as 

random forest models 36,37,173,174. Briefly, SS attempt to preserve the partitioning of the original 

split by finding the next most optimal split given other observed variables. When the model is 

6
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applied, each original split for which the predictor is missing will be replaced by the best available 

‘surrogate’ variable to decide the split direction.

In this article we compare various real-time missing data handling approaches when implementing 

specific modeling techniques in clinical practice. We use the term ‘real-time’ to refer to methods 

that can be applied to data from a single individual as would occur in a clinical practice setting, 

possibly without the availability of data from other individuals. We present a simulation study 

and a motivating example to compare the different missing data handling strategies that can 

be used at the implementation level. The aim is to identify strengths and weaknesses of these 

approaches on the ability to estimate individualized risk, as quantified by the discrimination and 

calibration of the predictions.

Missing data handling methods for prediction models

We consider the following three prediction modeling strategies for real-time handling of missing 

data: (i) prediction models that adopt joint modeling imputation, (ii) prediction models that adopt 

a pattern submodel approach (iii) prediction models that adopt random forests with surrogate 

splits 36,48,50,175.

Joint Modeling Imputation (JMI)

JMI is an imputation method that involves estimating the multivariate (joint) density of the 

predictor data and is used to generate imputed values directly from the conditional distribution 47. 

An advantage of JMI is that it can be applied to a previously developed prediction model. Because 

distribution parameters cannot directly be estimated in incomplete data, JMI typically requires 

the implementation of a Gibbs sampler. Recently, an extension to JMI was proposed to allow for 

real-time imputation in individual patients 40,175. With the extension the development of a JMI 

model consists of two separate steps. In the first step, the means and covariance of all predictor 

variables are estimated in a complete training sample from the population to which the prediction 

model will be applied. Since JMI assumes that every predictor variable is normally distributed, the 

population characteristics (i.e., means and covariance) can directly be used to generate, or draw, 

imputations on an individual level. In clinical practice, when a prediction model now encounters 

missing values, the developed JMI model can be utilized to generate imputations for each missing 

value on each predictor variable. We implemented three variants of JMI to be evaluated: single 

draw (JMI-SD, where a single draw from the conditional distribution is the imputed value), multiple 

draw (JMI-MD, where the average of 50 draws from the conditional distribution is the imputed 

value) and the conditional mean (JMI-CM, where the expected value of the conditional distribution 

is the imputed value). See Figure 1 for a schematic depiction of JMI.
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Figure 1. Joint Modeling Imputation (JMI)

Training sample

Imputa� on

Individual pa� ent data

Es� mate means and covariance of all 
relevant predictors using training data 
to es� mate joint normal distribu� on

Iden� fy missing variables given an 
individual pa� ent

Use derived distribu� on to generate 
imputa� on for missing variable

1

2

3

Joint modelling imputa� on

Pattern Submodel (PS) approach

Another approach to address missing data without requiring imputation is to develop separate 

prediction models (so called pattern submodels, or briefly, PS) for each missing data pattern 50. 

Each PS is to be made specifically for one of the identified missing data patterns in the training 

data and the missing data patterns that are encountered in clinical practice. When applied to 

a new, out-of-sample, individual, PS approach uses the corresponding prediction model (i.e., 

matching the missing data pattern at hand). A recent study has shown that the use of PS for 

prediction performs similarly to multiple imputation and outperform multiple imputation in 

some cases when the data are missing not at random (MNAR, when missing data is dependent 

on unobserved values) 50,172,176. As such, PS may provide an elegant and intuitive to understand 

method for handling missing data when implementing prediction models. See figure 2 for a 

schematic depiction of the PS approach.

6
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Figure 2. Pattern submodel approach
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Surrogate Splits (SS)

A well-known family of ML-based prediction models are the tree-based models, with as a simple 

case a (single) decision tree 30,38. Decision trees use a tree like structure to find the optimal cut-

off point which partitions the data for optimal predictive performance. Based on the values of 

the pre-defined predictor variables, each branch in the tree represents a possible direction or 

decision. In essence, random forests combine multiple decision trees by using a combination of 

a random subspace method (i.e., random combinations of features) and bagging (i.e., random 

sample of observations). As an early extension to the well-known decision tree and random forest, 

SS were developed to circumvent the necessity for imputation 36,37,39. Briefly, SS try to preserve the 

partitioning of each original split in a tree as good as possible in the presence of missing predictor 

values. Whenever the model is applied to an individual and encounters a missing predictor value, 

it will use the pre-specified surrogate (i.e., replacement) variable, rather than the missing predictor 

variable, to decide upon the split direction. See figure 3 for a schematic depiction of SS in the 

context of a single decision tree. In this study we use SS in combination with a random forest 

prediction model.
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Figure 3. Decision tree with surrogate splits
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Simulation design

Aims

The aim of the simulation study is to emulate how a single patient would present themselves 

in clinical practice, with incomplete prediction model data, and to evaluate the performance 

of several real-time missing data handling approaches. We compare the performance of these 

missing data approaches on their ability to generate accurate risk predictions. We consider the 

situation in which a complete dataset is available for prediction model development, and that the 

resulting model is then applied to individual patients with missing observations for one or more 

variables. For an overview of the simulation, see Figure 4; for the full script and technical details, 

see github.com/hanneoberman/real-time-missing.

6

BNW_Steven_v1.indd   121BNW_Steven_v1.indd   121 02/05/2022   11:52:2202/05/2022   11:52:22



122

Chapter 6

Figure 4. Simulation study
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Data-generating mechanism

All data are generated from a single model-based population, consisting of ten continuous 

predictors and one dichotomous outcome. In each simulation iteration, we draw two samples 

from the population: a complete development set (n = 10.000), and a validation set in which we 

introduce missing values to mimic how patients would present themselves in clinical practice 

(n = 20.000).

The data generating mechanism of the predictor space is a multivariate normal distribution, 

, with mean vector  and covariance matrix Σ (Supplementary materials A). 

Correlations between the ten predictors range from r = -.37 to r = .36. From the predictor space, 

we define the binary outcome vector . is a function of  through the logit link function,
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Where  is the intercept, s are regression coefficients, and  is the residual error term . 

We differentiate between two types of regression coefficients:  is a vector of regression 

coefficients for the main effects of the predictors,  is a vector of regression 

coefficients for the interactions with the first predictor, . This introduces 

a polynomial effect of the second degree, , and nine interaction effects. For additional 

non-linearity, we use a transformation in the effect of the second predictor, . All 

regression coefficients can be found in Supplementary materials B. The expected occurrence of 

the outcome is 15%.

The validation set is amputed (i.e., made incomplete) according to several missingness 

mechanisms and missingness rates. In this study, we focus primarily on the Missing At Random 

(MAR) missingness mechanism and additionally on the Missing Not At Random (MNAR) missing 

mechanism 5. We use a mixture of the four kinds of MAR missingness, as described by Schouten 

and others 177. The overall missingness rate is 60%, but the number of missing predictor entries 

differs between cases. The hypothetical patients in our validation set are missing either 40%, 

60%, or 80% of the observations in the predictor space. The resulting missing data pattern is 

visualized in Figure 5.

Figure 5. Missing data pattern.

6
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Methods

Our methods consist of nine pairs of missing data methods and prediction models to predict the 

absolute risk of the outcome in real-time. For an overview of all methods, see Table 1.

To accommodate for missing predictor values in real-time, we consider three types of missing data 

handling strategies: JMI, PS, and SS. Since JMI can have different implementations, we further 

subdivide this strategy into (i) imputing the conditional mean (JMI-CM), (ii) single imputation with a 

random draw from the conditional multivariate distribution (JMI-SD), and (iii) multiple imputation 

with 50 draws from the conditional multivariate distribution and pooling (i.e., taking the average 

of) the predictions of the outcome (JMI-MD).

We obtain predictions of the outcome by applying two models on the incomplete (imputed) 

predictor space. The first prediction model is flexible logistic regression (FLR) with a natural 

cubic spline. The second prediction model is a random forest (RF). Both prediction models are 

compatible with the JMI and PS. The SS missing data strategy is only available for tree-based 

prediction models, such as a random forest. Technical details such as model tuning can be found 

in Supplementary Materials C and on github.com/hanneoberman/real-time-missing.

Table 1. Overview of missing data methods and prediction models.

Missing data technique

Prediction model

FLR RF

JMI-CM Conditional mean imputation. Missing values are imputed by the predictor mean, 

conditional on the observed values of the other predictors.
x x

JMI-SD Single draw imputation. Missing values are imputed by a random draw from the 

conditional multivariate distribution of the predictor.
x x

JMI-MD Multiple draw imputation. Missing values are imputed 50 times by a random 

draw from the multivariate normal distribution, and subsequently used to obtain 

50 predictions of the outcome, which are then averaged to obtain one pooled 

prediction.

x x

PS Pattern submodels. Missing values are circumvented by selecting the appropriate 

pattern submodel for predicting the outcome.
x x

SS Surrogate splits. Missing values are accommodated using surrogate splits. x

Performance measures

We evaluate the estimates (the predicted risk of the outcome for each of the hypothetical 

patients) in terms of overall prediction accuracy at the individual patient-level, and in terms 

of discrimination and calibration. Subsequently, all metrics are averaged across simulation 

iterations. Table 2 provides an overview of the performance measures: root mean squared error 
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(RMSE) of the predicted risk, brier score, concordance (C-) statistic, calibration-in-the-large (CITL), 

and the calibration slope.

Table 2. Performance measures

Measure Performance metric

Overall  
prediction  
accuracy

Root mean square error (RMSE). The RMSE of the predictions reflects the difference between the 

estimated probability of Y and the true underlying probability of the outcome before amputation. 

Like the estimand and estimates, the RMSE lies on the probability scale. Lower values indicate better 

performance 178.

Brier score. The brier score is defined as the squared difference between the predicted risk and the 

observed outcome value. A brier score of 0 would represent a perfect model, whilst the maximum 

brier score is determined by the incidence of the outcome 13.

Discrimination

Concordance (C-)statistic. The C-statistic is a rank-order statistic, which is used to describe how well a 

classification model can discriminate between those with an event and those without. The C-statistic 

shows the probability of taking two random subjects (one with and one without the outcome) and 

correctly attributing the one with the outcome with a high risk. A C-statistic of 0.5 describes a model 

with no discriminative performance and a C-statistic 1 describes a model with perfect discriminative 

performance.

Calibration

Calibration-in-the-large (CITL). The CITL represents the overall calibration of a model. In other words, 

the extent of agreement between the average predicted risk and the original predicted risk 144. The 

metric ultimately describes the amount of systematic over- or under-estimation of the predicted 

risk. A value of 0 is ideal and represents perfect agreement.

The calibration slope. In contrast with the CITL, the calibration slope does not evaluate the average 

predicted, or original, risk. Rather, it quantifies the extent by which the predicted risks vary too much 

(i.e., slope <1) or too little (i.e., slope >1). Ideally, the slope is 1.

Results

Figure 6 displays the performance of the real-time missing data approaches across simulations. 

Table 3 presents the average performance across simulations. The additional simulation under 

a MNAR missingness mechanism showed equivalent results, and can be found in Supplement D. 

For reasons of brevity, we exclude the severely under-performing missing data approach JMI-SD 

from any further reported results.

Root mean squared error

Overall, imputation and non-imputation missing data handling methods were very similar in 

their ability to recover the original probability of the outcome. When implemented with a FLR, 

PS performed best. A very similar performance was obtained when adopting a FLR model after 

imputation with JMI-CM or JMI-MD. For the random forest prediction model, JMI-MD outperformed 

all other missing data approaches. RF with SS and PS showed relatively low accuracy.

6
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Brier score

When paired with a FLR, both imputation (JMI-MD and JMI-CM) and non-imputation (PS) missing 

data handling methods had an equivalent performance. When a random forest prediction model 

was used, JMI-MD appeared to be slightly better at approximating the binary realization of the 

outcome than JMI-CM, with SS and PS again showing relatively poor performance.

C-statistic

The use of JMI-MD paired with RF marginally exceeded the performance of other techniques, now 

in terms of discriminating between cases and non-cases. The discriminatory ability of JMI-CM 

and JMI-MD with FLR are mostly equivalent. The performances of JMI-CM and PS are diminished 

when comparing the random forest prediction model to FLR. And, although slightly better than 

PS, the performance of SS is below par.

Calibration-in-the-large

Both PS and JMI-MD showed near perfect overall calibration when paired with a FLR. With JMI-CM 

showing an only marginally worse performance. Whilst all missing data handling techniques had 

very similar performances when paired with a RF, JMI-MD remained the favourite with near perfect 

calibration.

Calibration slope

In contrast with other performance metrics, the best performance is observed with JMI-CM paired 

with FLR, which could best quantify the extremeness of predicted risks across the whole range. 

Both JMI-MD and PS had similar performance. Apart from JMI-MD, all missing data handling 

techniques showed miscalibration when a random forest prediction model is used.

Calibration plots

Figure 7 presents calibration plots for the methods of interest, taken from a single iteration in 

the simulation. The missing data approaches can be found in the row-wise panels; the prediction 

models in the columns (left = FLR, right = RF). Within each plot, dashed lines show optimal 

calibration (i.e., perfect match between predicted and actual probabilities), colored lines (blue 

for FLR, green for RF) are Loess lines with standard errors through the calibration, and the shaded 

grey area represents the density of the predicted probabilities.
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Figure 6. Performance measures per method

Legend – JMI-CM: conditional mean imputation; JMI-SD: single draw imputation; JMI-MD: multiple draw imputation; PS: 

pattern submodels; SS: surrogate splits; AUC: area under the curve; RMSE: root mean squared error; FLR: flexible logistic 

regression; RF: random forest

6
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Table 3. Average performance across simulations.

RMSE EmpSE Brier EmpSE C-index EmpSE CITL EmpSE Slope EmpSE

FLR

JMI-CM 0.223 (0.002) 0.123 0.002 0.634 0.006 0.027 0.006 0.985 0.05

JMI-SD 0.244 0.002 0.133 0.002 0.581 0.006 0.105 0.003 0.297 0.02

JMI-MD 0.222 0.002 0.123 0.002 0.631 0.006 0.009 0.006 0.941 0.044

PS 0.221 0.002 0.123 0.002 0.635 0.006 0.003 0.007 0.981 0.047

JMI-CM 0.227 0.003 0.125 0.002 0.627 0.008 0.064 0.01 0.789 0.058

JMI-SD 0.240 0.002 0.131 0.002 0.592 0.006 0.093 0.003 0.355 0.02

RF JMI-MD 0.221 0.002 0.122 0.002 0.643 0.006 -0.003 0.007 0.952 0.041

PS 0.237 0.002 0.130 0.002 0.607 0.006 0.085 0.003 0.410 0.018

SS 0.238 0.004 0.130 0.003 0.617 0.01 0.091 0.01 0.851 0.087

Legend – RMSE: root mean squared error; EmpSE: empirical standard errors; C-index: concordance-index; CITL: calibration-

in-the-large; FLR: flexible logistic regression; RF: random forest; JMI-CM: conditional mean imputation; JMI-SD: single draw 

imputation; JMI-MD: multiple draw imputation; PS: pattern submodels; SS: surrogate splits.

Figure 7. Calibration plots

Legend – FLR: flexible logistic regression; RF: random forest; JMI-CM: conditional mean imputation; JMI-MD: multiple draw 

imputation; PS: pattern submodels; SS: surrogate splits.
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Discussion

This simulation study evaluated real-time missing data handling strategies to handle missing 

predictor values in individual patients. We considered JMI, PS and SS for the real-time handling of 

missing data when using either a FLR or RF. Our simulation study showed that the optimal choice 

of missing data handling technique may be dependent on the preferred prediction modeling 

approach. Overall, simulation results suggests that PS (when paired with FLR) and JMI (provided 

multiple imputations are generated) work reasonably well. Multiple imputation was found to be 

more consistent than imputing a conditional mean. In contrast, SS performed relatively poor. 

Likewise, imputing single draws severely underperformed on all metrics.

Generally, we found that missing data handling techniques yielded better performance when 

paired with FLR rather than RF. Possibly, this is because our dataset included mostly continuous 

predictors and the DGM was a logistic regression model. RF have been reported to perform 

particularly well when dealing with a very large number of discrete variables, especially in the 

presence of interactions 38,179. Possibly, RF is also more prone to overfitting when estimated in 

smaller (sub)samples as compared to FLR. However, it is likely that due to the larger sample size 

in our simulation study, this is not the case. Due to the choice of DGM, comparisons between 

FLR and RF may be skewed in favour of FLR; consequently, any comparisons between the two 

modeling techniques may be irrelevant.

The good performance of JMI in our simulations may partly be driven by the choice of predictor 

correlation structure and missing data pattern in our simulations. Low correlations have previously 

been associated with limited performance of JMI 175. Likewise, SS very heavily rely upon the 

correlation between the missing predictor value and the surrogate replacement value 174. With 

the low to moderate correlations imposed in our DGM, it may be expected that multivariable 

approaches such as JMI perform better when compared with SS, which relies only on the single 

surrogate variable. For example, in the most extreme missing data scenario, when only  and 

 are observed, it is likely that optimal surrogate variables are not available. It may be evident 

that PS, which uses only the observed predictor variables, is also limited in circumstances such 

as these. In the end, when using clinical data, correlations between predictor variables need to 

be considered.

Additionally, to avoid overfitting, prediction models are typically designed as simple as possible 

and usually include predictors that do not intercorrelate much. Likewise, in our simulation study, 

we only generated 10 covariates, all of which were used for development of the prediction model 

and imputation strategies. In practice, however, many more additional variables may be available. 

6
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These auxiliary variables (i.e., not part of the prediction model) have previously shown to improve 

JMI performance 48. If made available, it is likely that auxiliary variables, if not for prediction, 

may improve the accuracy of any missing data handling strategy which relies upon correlations 

between available variables.

Generally, PS has adequate prediction model performance in the presence of missing data. 

A major advantage for PS is that it does not require MAR assumptions. In real-world datasets 

PS, therefore, offer an appealing solution. When PS is paired with RF, however, problems arise. 

These problems may be explained by the fact that less predictors ultimately restrict how much a 

random forest may vary between each tree 179. In other words, if there are less features available, 

as is the case for PS, the variability between trees is limited. Similarly, surrogate splits perform 

relatively poor, which can be explained by the strong dependence on high correlations between 

the surrogate variable and the missing predictor variable.

In summary, the best missing data handling technique depends on the prediction modeling 

technique. JMI-MD is considered the safest choice for handling missing data as it yielded good 

performance for both FLR and RF, whilst PS only obtained good performance when paired with 

FLR. The use of JMI-CM and surrogate splits are not recommended when using RF. Similarly, 

JMI-SD should be avoided.
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Supplementary Materials

A. DGM

Means vector: All 10 predictors have a mean of zero, .

Covariance matrix:

Correlations:

B. Regression coefficients:

6
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C. Model tuning

›	 FLR: glm() with natural spline with 3 degrees of freedom.

›	 RF: ranger::ranger() with defaults (500 trees and 3 predictors considered for each split), 

party::cforest() with defaults (500 trees, 5 predictors considered for each split, and 3 surrogate 

variables considered for each split with missingness).

D.Performance under MNAR

Legend – JMI-CM: conditional mean imputation; JMI-SD: single draw imputation; JMI-MD: multiple draw imputation; PS: 

pattern submodels; SS: surrogate splits; AUC: area under the curve; RMSE: root mean squared error; FLR: flexible logistic 

regression; RF: random forest
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Average performance under MNAR

RMSE Brier C-index CITL Slope

FLR

JMI-CM 0.239 0.126 0.681 0.035 0.985

JMI-SD 0.269 0.141 0.616 0.104 0.347

JMI-MD 0.237 0.125 0.679 0.007 0.957

PS 0.236 0.125 0.682 0.002 0.988

RF

JMI-CM 0.242 0.127 0.685 0.055 0.978

JMI-SD 0.258 0.136 0.632 0.083 0.45

JMI-MD 0.233 0.123 0.701 -0.032 1.144

PS 0.248 0.13 0.666 0.062 0.581

SS 0.259 0.136 0.667 0.083 1.287

6
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Abstract

Objective – To illustrate how to evaluate the need of complex strategies for developing 

generalizable prediction models in large, clustered datasets.

Methods – We developed eight Cox regression models to estimate the risk of heart failure using a 

large population-level dataset. These models differed in the number of predictors, the functional 

form of the predictor effects (non-linear effects and interaction) and the estimation method 

(maximum likelihood and penalization). Internal-external cross-validation was used to evaluate 

the models’ generalizability across the included general practices.

Results – Among 871,687 individuals from 225 general practices, 43,987 (5.5%) developed heart 

failure during a median follow-up time of 5.8 years. For discrimination, the simplest prediction 

model yielded a good concordance statistic, which was not much improved by adopting complex 

strategies. Between-practice heterogeneity in discrimination was similar in all models. For 

calibration, the simplest model performed satisfactorily. Although accounting for non-linear 

effects and interaction slightly improved the calibration slope, it also led to more heterogeneity in 

the observed/expected ratio. Similar results were found in a second case study involving patients 

with stroke.

Conclusion – In large, clustered datasets, prediction model studies may adopt internal-external 

cross-validation to evaluate the generalizability of competing models, and to identify promising 

modelling strategies.
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What is new?

Key findings

›	 Flexible modelling strategies did not improve prediction model performance across different 

settings and populations.

›	 Although the inclusion of additional predictors marginally improved the model’s discriminative 

performance, it also increased between-practice heterogeneity (thereby impairing model 

generalizability).

What this adds to what was known

›	 In contrast to traditional internal validation methods, internal-external cross-validation 

(IECV) can quantify the generalizability of a prediction model across different settings and 

populations.

What is the implication and what should change now?

›	 When developing prediction models using large, clustered datasets, both their internal and 

external validity should be studied.

›	 IECV can be used to compare the practical benefits of different modelling strategies, and to 

simplify model complexity. 7
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Introduction

In medicine, there are an increasing number of clinical prediction models 180. These models aim to 

predict a risk of having a certain condition or experiencing a health event in the future. Prediction 

models are often developed using a single and small dataset. This leads to prediction models 

that are more prone to overfitting with the dataset used for its development, which leads to poor 

accuracy and less generalizability of risk predictions when the model is validated or used in new 

individuals.

For this reason, there has been a growing interest in prediction model studies using large datasets 

from electronic health records (EHRs), multi-center studies or individual participant data 149,181–183. 

An advantage of such large datasets is that parameters of the prediction model can accurately 

be estimated, thereby facilitating the development of complex models with many predictors, 

interaction terms and/or non-linear effects. Furthermore, a common feature of these large 

datasets is that individuals are often clustered within hospitals, primary care practices, or even 

within countries. Clusters may differ with respect to included participants, variable definitions, 

and measurement methods, all of which may affect the generalizability of developed prediction 

models. The presence of clustering, however, also offers an important opportunity, as the 

performance of a prediction model can be examined on multiple occasions and thus be used to 

explore its generalizability across different settings and populations. Recently, various strategies 

for such analyses using large, clustered data have been proposed 149,181,184–186.

The aim of this study was to illustrate how advanced methods can be used to evaluate the need 

of complex strategies for developing generalizable clinical prediction models in large, clustered 

datasets.

Methods

For illustration purpose, we used two case studies.

Case study 1

We compared various modelling strategies using an example of a prediction model for the 

incidence of heart failure (HF). In the field of cardiovascular diseases (CVD), HF is one of the most 

relevant outcomes due to its high morbidity and mortality 127,187–189.
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Source of the data

We used an existing large population-level dataset which links three sources of EHRs in England: 

primary care records from the Clinical Practice Research Datalink (CPRD), secondary care 

diagnoses and procedures recorded during admissions in Hospital Episodes Statistics (HES), 

and the cause-specific death registration information sourced from the Office for National 

Statistics (ONS) registry. This study was carried out as part of the CALIBER © resource (https://

www.ucl.ac.uk/health-informatics/caliber and https://www.caliberresearch.org/) 190,191. CALIBER, 

led from the UCL Institute of Health Informatics, is a research resource providing validated EHR 

phenotyping algorithms and tools for national structured data sources. Data were recorded in 

five controlled clinical terminologies: Read version 2 (CPRD diagnoses), International classification 

of diseases (ICD)-9 and ICD-10 (HES diagnoses, ONS causes of death), the Office of Population 

Censuses and Surveys (OPCS)-4 (HES procedures) and British National Formulary (BNF) (CPRD 

medication prescriptions). The study was approved by the MHRA (UK) Independent Scientific 

Advisory Committee (14_246RMnA2), under Section 251 (NHS Social Care Act 2006).

Population

The construction of this cohort has been described by Uijl et al 192. Briefly, we selected all 

individuals that were 55 years or older between 1st January 2000 and 25th March 2010, and had 

at least one year of follow-up by a general practitioner, in a practice that had at least one year of 

up-to-standard data recording in CPRD. The last date of the follow-up between the period above 

was considered cohort entry date (index date). Individuals with a history of HF before their index 

date were excluded. The study flow diagram is shown in Appendix A.

Predictors

We identified predictors that are commonly measured in CPRD or HES, and commonly used 

for prediction of HF 192,193: Age, sex, current smoking, ethnicity (CE, Caucasian ethnicity), index 

of multiple deprivation (IMD), body mass index (BMI), creatinine level (CL), and total cholesterol 

(TC). IMD is a measure of multiple deprivation at the small area level, consisting of seven domains 
194. Within this set, we selected those predictors which were least affected by missing data. The 

closest measurement to index date between three years before and one year after the index 

date was used. Detailed information about the definition of each predictor is available on the 

CALIBER website 195.

Outcomes

The primary outcome was incidence of HF, based on the first record of HF from CPRD or HES 

after the index date. In CPRD, HF was defined by a diagnosis of HF or chronic left ventricular 

dysfunction on echocardiogram with READ codes. In HES, it was defined by a diagnosis of HF 

7

BNW_Steven_v1.indd   139BNW_Steven_v1.indd   139 02/05/2022   11:52:3302/05/2022   11:52:33



140

Chapter 7

during a hospitalization using all positions of ICD-10. If no diagnosis of HF was made, censoring 

was defined as the first event among the following: death, de-registration from a practice, last 

practice data collection, or at the study end date.

Statistical analysis

Multilevel imputation

Multiple multilevel imputation which accounts for potential heterogeneity between the included 

clusters is recommended in the recent methodological guidelines 196, however, due to limited 

hardware processing capacity, we applied single multilevel imputation. The detail of the 

imputation process is described in Appendix B.

Derivation and validation of prediction models

We considered eight modelling strategies to predict the risk of developing HF using Cox regression. 

These models differed with respect to the number of predictors, the functional form of the 

predictor effects and the method of estimation. Each model and their estimation method are 

summarized in Table 1.

Model 1 included four predictors (age, sex, current smoking, and CE) as linear effects. Model 2 

was an extension of Model 1 that included non-linear effect for age and for all possible two-way 

interactions between the four predictors. Model 3 and 4 included the same predictors as Model 1 

and 2, respectively, but were estimated using a ridge penalty. Model 5 was an extension of Model 

1 that also included IMD, BMI, CL and TC as linear effects. Model 6 – 8 were extended from Model 

5 as similar to Model 2 – 4 from Model 1. In models with a ridge penalty (Model 3, 4, 7 and 8), all 

regression coefficients were shrunk towards zero by penalizing the partial log-likelihood for the 

magnitude of the squared coefficients (L2-norm) 197. This strategy has been recommended to 

avoid overfitting, and to improve prediction model performance, particularly when it is applied 

in new population. We used the degree of penalty (lambda) which minimized the mean square 

error in ten-fold cross validation. The proportional hazards assumption of all models was checked 

using the Schoenfeld residuals.
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Table 1. Description of the eight prediction models

Model Included predictor variables 2-way IT # RC Estimation method

Age Male Sex Smoking CE IMD BMI CL TC

1 L L L L - - - - no 4 Cox regression

2 RCS L L L - - - - yes 14 Cox regression

3 L L L L - - - - no 4 Ridge penalized Cox

4 RCS L L L - - - - yes 14 Ridge penalized Cox

5 L L L L L L L L no 8 Cox regression

6 RCS L L L RCS RCS RCS RCS yes 66 Cox regression

7 L L L L L L L L no 8 Ridge penalized Cox

8 RCS L L L RCS RCS RCS RCS yes 66 Ridge penalized Cox

IT=interaction terms. #RC=the total number of regression coefficients. CE=Caucasian ethnicity. IMD=index of multiple 

deprivation. BMI=body mass index. CL=creatinine level. TC=total cholesterol. L=Linear effects. RCS=restricted cubic splines

Models 1, 3, 5 and 7 include all predictor variables as linear effects. Models 2, 4, 6 and 8 use RCS with three knots for all 

continuous predictor variables, and interaction terms between all possible combinations of two variables. For all models, 

the total number of regression coefficients is displayed.

We performed internal-external cross-validation (IECV) to compare the performance of the 

aforementioned eight prediction models at multiple occasions 181,184. In contrast to traditional 

internal validation methods (e.g., bootstrapping, cross-validation) which evaluate the model’s 

performance in new individuals from the same population (i.e., reproducibility), IECV assesses 

model performance in new individuals from different but related practices as compared to the 

original development sample. These practices (i.e., taken as cluster) may differ with respect 

to case-mix, variable definitions and measurement methods, and thus allow to investigate 

the model’s generalizability 163,182. Using IECV, the data from all but one practice are used for 

estimating the prediction model, after which its performance is evaluated in the remaining 

practice. The procedure is repeated by rotating the omitted practice, resulting in multiple 

estimates of prediction model performance. For each prediction model, we assessed the 

model’s discrimination performance using Harrell’s concordance (c-) statistic. For calibration, 

we constructed calibration plots in the overall population. We also estimated the calibration 

slope and the ratio of observed versus expected events (O:E ratio) at five years of follow-up 145. 

Interpretation of each performance measure is described in Appendix C.

The performance measures resulting from IECV were pooled using random-effect meta-analysis 
181,198,199. This approach not only accounts for the precision of practice-specific performance 

estimates, but also quantifies the between-practice variability (heterogeneity) of model 

performance. Heterogeneity is quantified by the between-practice standard deviation of model 

performance (τ) 185. Meta-analysis results were reported as point estimates with 95% confidence 

7
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intervals (CI) and 95% prediction intervals (PI). The CI indicates the precision of the model’s 

average performance across all practices. Conversely, the PI accounts for heterogeneity between 

practices and therefore indicates what performance can be expected when the model is applied 

within a specific practice.

Case study 2

In this case study, we used patient-level data from a large international, multi-center, randomized 

controlled trial 200. Because the missingness proportion was very low (6.0%), we performed a 

complete case analysis. Eight modelling strategies using ridge penalized Cox regression model 

were considered to predict the risk of mortality from CVD in patients with acute ischemic stroke. 

These models differed with respect to the number of predictors, the functional form of the 

predictor effects (non-linear effects and/or interaction terms). We illustrated the advantage of 

IECV by comparing it with bootstrap internal validation. More detailed information is available 

in Appendix D.

All analyses were performed using R version 3.6.1.

Results

Case study 1

The cohort included 871,687 individuals from 225 general practices. Among these, 43,987 (5.5%) 

developed HF during a median follow-up time of 5.8 years (interquartile range [IQR] 2.7 – 9.9), with 

a median time-to-event of 3.7 years (IQR 1.8 – 6.4). Baseline characteristics are shown in Table 2.

Table 2. Baseline characteristics of the cohort

Predictor variable
Individuals  
with incident HF

Individuals  
without HF

Proportion  
of missing

Total number of patients 43,987 823,700 

Age, years, median (IQR) 75·5 (68·5 – 81·5) 60·6 (55·0 - 70·5) 0·0%

Male sex, n (%) 22,618 (51·4) 442,409 (53·7) 0·0%

Caucasian ethnicity, n (%) 42,065 (95·6) 754,756 (91·6) 39·2%

Current Smoking, n (%) 10,843 (24·7) 190,851 (23·2) 66·2%

IMD, median (IQR) 16·2 (9·4 - 27·1) 13·7 (8·3 - 23·4) 0·3%

BMI, kg/m2, median (IQR) 27·4 (23·9 - 31·0) 26·9 (23·6 - 30·4) 60·2%

Creatinine, μmol/L, median (IQR) 102·4 (85·0 - 122·4) 88·7 (73·1 - 105·6) 66·5%

Total cholesterol, mmol/L, median (IQR) 5·3 (4·6 - 6·1) 5·5 (4·8 - 6·3) 72·3%

HF=heart failure. IQR=interquartile range. IMD=index of multiple deprivation. BMI=body mass index.
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The number of patients with HF in each general practice was a median of 197 (IQR 128 – 282, 

range 3 – 622). We explored heterogeneity of case-mix across the included general practices 

by comparing their distribution of predicted risk according to Model 5. Results in Appendix E 

indicate that the standard deviation (SD) of the linear predictor (LP) in each general practice 

ranges between 1.09 and 1.41, and that the mean LP in each general practice ranges between 

-0.51 and 0.61.

The estimated regression coefficients of the eight prediction models, as obtained from the 

entire dataset, are presented in Appendix F. These results indicate that all included predictors 

are significantly associated with HF, and that interactions are present between various predictors. 

The performance of the estimated models, as evaluated using IECV, is summarized in Table 3.

Discrimination performance

The c-statistic across the general practices is shown in Appendix G. All models showed similar 

discrimination, although models that included more predictors yielded somewhat larger values 

for the c-statistic (0.79 in Model 1 – 4 vs. 0.81 in Model 5 – 8). For all models, there was notable 

between-practice heterogeneity in discrimination performance. For instance, the 95% PI for a 

Cox regression model including eight predictors as main effects (model 5) ranged from 0.756 to 

0.852. Estimates for the between-study standard deviation (τ) were similar for all models, but 

slightly larger for prediction models that included eight predictors and allowed for non-linear 

effects and interactions.

Calibration performance

Calibration plot

Calibration plots in Figure 1 indicate that predicted and observed risks were almost in perfect 

agreement for the unpenalized Cox regression model that included non-linear effects and 

interactions between predictors (Model 2 and 6).

Predicted and observed risks are almost in perfect agreement for the unpenalized Cox regression 

models that included non-linear effects and interactions between predictors (Model 2 and 6). 

Some under-prediction for risk estimates around 10% is observed in the remaining models.

7
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O:E ratio

The O:E ratio across the included general practices is shown in Appendix H. All models yielded 

summary O:E ratios at 5 years below one, especially those models that included eight predictors 

(Model 5 – 8). In addition, PIs indicate that all prediction models may substantially over- or under-

predict the risk of HF when applied to individual patients from a new practice.

Calibration slope

Calibration slope across the included general practices is shown in Appendix I. Unpenalized 

prediction models yielded pooled calibration slopes most close to one (Model 1, 2, 5, and 6). 

Prediction models that adopted a ridge penalty yielded calibration slopes that were slightly larger 

than one, indicating that predicted risks did not vary enough and thus that too much shrinkage 

may have been applied in the development sample. For all models, the calibration slope was 

prone to a limited amount of between-practice heterogeneity. For instance, the prediction model 

that included eight predictors as main effects (model 5) yielded a 95% PI from 0.833 to 1.214. 

Estimates of between-study variance of the calibration slope were similar for all models.

Case study 2

The detailed results are shown in Appendix D. In short, among 16,280 patients from 14 countries, 

2,745 (16.9%) died due to any CVD related conditions. Using bootstrap validation and IECV, 

we found that the c-statistic ranged from 0.65 to 0.71, and that models with more predictors 

discriminated better. Results of IECV also indicate that inclusion of non-linear terms and/or 

interaction effects) did not improve discrimination performance when the model is applied to 

new patients (from the original to new populations). In calibration performance, the effect of 

complex modelling strategies was small in both summary estimates of O:E ratio and calibration 

slope and their generalizability.

Discussion

We illustrated how evidence synthesis methods can be used to evaluate the need of complex 

strategies for developing generalizable clinical prediction models in large, clustered datasets. To 

this end, we applied IECV and quantified the model’s average performance as well as its variability 

between clusters. In contrast to traditional internal validation methods, a major advantage 

of using IECV in large, clustered data is that the external validity of prediction models can be 

assessed on multiple occasions, thereby allowing researchers to explore the generalizability of 

different modelling strategies directly during the development process.
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In the case study 1, we found that adopting complex modelling strategies did not much improve 

the external validity of developed prediction models for HF. In particular, prediction models 

that were based on four commonly available variables yielded a c-statistic of 0.79, which is 

comparable to existing models for HF using even more than 10 predictors including laboratory 

tests 187,188. Although the inclusion of additional predictors marginally improved the discriminative 

performance, it also slightly increased the between-practice heterogeneity. When investigating 

model calibration, we found that all prediction modelling strategies yielded adequate calibration 

performance on average. However, because of between-practice heterogeneity, local revisions 

were often deemed necessary. In the case study 2, we also found that complex modelling did 

not meaningfully improve the generalizability of the prediction models, although the inclusion 

of additional predictors moderately improved their discrimination performance.

As we found in the case study 1, the incremental value of candidate predictors is often small in 

prediction model studies for the incidence of CVD 201,202. For instance, systematic reviews have 

demonstrated a lack of incremental value for cholesterol level 202, BMI 202, and even biomarkers 

(e.g., triglycerides, C-reactive protein) for predicting CVD 201. For this reason, it may sometimes be 

more advantageous to consider the inclusion of non-linear effects or interaction terms, rather than 

adding more predictors. This strategy is common in machine learning, where methods no longer 

assume additive linear effects and adopt penalization to avoid overfitting. We mimicked the use 

of flexible modelling strategies by including non-linear effects and non-linear interaction terms. 

However, this strategy also failed to improve model discrimination. Similar findings also have been 

reported in prediction model studies for the prognosis of patients with CVD 203,204. For instance, 

a recent study adopting advanced machine learning algorithms failed to outperform traditional 

prediction models for readmissions in patients with HF, and yielded c-statistics around 0.60 203. In 

another study, discrimination performance to predict all-cause mortality in patients with coronary 

artery disease marginally increased from 0.793 (Cox regression model with 27 predictors) to 0.797 

(random survival forests with 98 predictors) and to 0.801 (elastic net Cox regression model with 

586 predictors) 204. More generally, there is limited evidence that machine learning models can 

outperform simple prediction models involving additive linear terms, especially when predictions 

are only based on structured epidemiological data 205.

The following limitations need to be considered. In the first case study, the substantial presence 

of missing data is an important concern. Although we focused on the inclusion of variables with 

relatively few missing values, some were missing for more than 70% of participants. Multiple 

imputation is generally recommended to obtain reliable standard errors of the performance 

measures but only single imputation was pursued due to limited hardware processing capacity. 

There is still limited guidance on how to implement multiple imputation when developing and 

7
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validating a prediction model in large, clustered datasets. Key issues that remain unclear are (i) 

how to combine multiple imputation with sampling procedures (e.g., IECV) 206,207, (ii) the order 

of pooling estimates (across imputations or across clusters) 208, (iii) how to ensure congeniality 

between the imputation model and the prediction model development procedure 209. Another 

limitation was that we were not able to include non-linear and interaction terms in the imputation 

model due to non-convergence issues. Therefore, continuous variables were imputed as a linear 

term and no interaction term was included in imputation models. This strategy may have favored 

simpler modelling strategies in IECV. For this reason, we implemented those modelling strategies 

in the case study 2 where the presence of missing data was much less a concern. And we found 

similar findings to those in the case study 1.

Second, eligible individuals in both case studies were enrolled more than ten years ago. It is 

possible that population characteristics have substantially changed over time, and that complex 

associations (e.g., non-linear predictor effects or interaction terms) have become more common.

Third, we focused on regression-based methods and did not evaluate other flexible modelling 

strategies such as neural networks or random forests. It is possible that these strategies could 

yield more promising results, especially if (interaction between) predictor effects cannot 

adequately be described using the regression-based methods considered here.

Conclusion

We recommend the use of IECV in large, clustered datasets to assess the generalizability of 

prediction models during their development, and to identify whether complex modelling 

strategies may offer any advantages. In contrast to traditional internal validation methods, IECV 

allows to evaluate model performance in non-random hold-out samples with individuals from 

different settings or populations. In our case studies, we found that accurate prediction does not 

necessarily require complex modelling strategies, and that the need for local updating may be 

inevitable regardless of how much data are at hand during the model’s development.
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In this thesis, we investigated traditional statistical and modern machine learning (ML) methods 

for handling of missing predictor data when applying prediction models in real-time medical 

settings and evaluated how well ML-based prediction model studies follow recommendations 

from existing reporting guidelines on missing data. The main findings in this thesis are:

›	 Chapter 2 shows how a majority of the clinical prediction model studies using ML techniques 

does not report sufficient information on the presence and handling of missing data, despite 

missing values are highly common in routine healthcare data that often form the basis in ML 

prediction models studies. Consistent with similar reviews, strategies in which patient records 

with some missing variables are simply omitted are most often used, even though it is well 

known this likely causes bias and certainly loss of analytical power.

›	 Chapter 3 shows that ML-based prediction model studies adhered poorly to the current 

guideline Transparent Reporting of a multivariable prediction model for Individual Prognosis 

or Diagnosis (TRIPOD). Most items considered essential (e.g., about titles and abstract) were 

not completely addressed in prediction modelling studies. Some items and sub-items of 

TRIPOD may be less suitable for ML-based models; thus, the TRIPOD guideline requires tailored 

extensions for ML-based prediction model studies.

›	 Chapter 4 shows the development of real time imputation methods for missing predictor 

values using either conditional modelling imputation (CMI, where a multivariable imputation 

model is derived for each predictor from a population) or joint modelling imputation (JMI, 

where we use a multivariate normal approximation to generate patient-specific imputations). 

These newly developed methods were compared with mean imputation (where missing 

values are replaced by the sample mean) in a case study evaluating the accuracy of the 

imputed missing predictor values, where we found that JMI and CMI were more accurate.

›	 Chapter 5 shows how the use of JMI, especially with auxiliary variables (i.e., variables not part 

of the prediction model), for real-time imputation of missing predictor values is preferred 

over JMI without auxiliary variables and mean imputation, in terms of the discrimination and 

calibration of the model predictions.

›	 Chapter 6 compares various ML modelling techniques that deal with missing predictor values. 

The use of surrogate splits were found to perform poorly, whilst pattern submodels showed 

good performance only when paired with a specific modelling technique. Overall, JMI is still 

to be preferred for both modelling techniques in terms of calibration and discrimination, 

provided multiple imputations are used.
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›	 Chapter 7 describes how the adoption of internal-external cross-validation (IECV) is preferred 

to assess the generalizability of prediction models during their development, and to identify 

whether complex modelling strategies may offer any advantages. Briefly, IECV allows to 

evaluate model performance in non-random hold-out samples with individuals from different 

settings or populations. In our case studies, we found that accurate prediction does not 

necessarily require complex modelling strategies, and that the need for local updating may 

be inevitable regardless of how much data are at hand during the model’s development.

In this final chapter we bring all these findings about current practice, reporting and advancements 

in the handling of missing predictor data in prediction modelling together, and explore how 

real-time imputation of missing predictor when using a prediction model in real time practice 

is perceived by healthcare professionals. We focus on how users of individualized prediction 

models in daily medical practice feel about imputing missing predictor values as we investigated 

via a vignette case study. Before that we briefly summarize the principles of risk prediction in 

daily care and the issue of missing predictor values. We will end this chapter by summarizing our 

future perspective on using missing data handling strategies for enabling risk prediction in daily 

medical care.

Risk prediction in daily medical care

Prediction models in routine clinical practice are able to provide actionable information to 

potentially improve shared clinical decision making in individual patients 22,210–213. By combining 

patient, test result and disease characteristics these multivariable risk prediction models 

provide absolute risk estimates for diagnostic or prognostic purposes to guide further patient 

management 15,20,26,144–146. Examples are the SMART risk score and the Framingham risk score 27,126.

Increasingly, with the introduction of build in prediction models in electronic health record (EHR) 

newly developed and carefully validated clinical prediction models can directly extract any 

individual’s observed predictor value from the EHR and may provide risk-guided recommendations 
17,19,109–111. The actual use of such fully in EHR integrated clinical prediction models is however 

limited and often frustrated by missing predictor data in the EHR and the inability to real time 

handle these missing predictor data 19.

Unfortunately, missing predictor data are a hallmark of routine care datasets that are increasingly 

used for the development, validation, and implementation of prediction models, notably by 

prediction models based on ML. Consequently approaches for handling missing data (e.g. multiple 

imputation) in research that aims to develop or validate prediction models, have been developed 

and are now recommended by multiple reporting and methodological conduct guidelines 

8
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9,24,28,45,214,215. As it stands, there is limited adherence to these reporting guidelines in prediction 

model studies (Chapter 2 and Chapter 3) 3,52. These approaches for handling missing data are, 

however, not directly suitable for real-time use to impute missing predictor values when using a 

prediction model in daily clinical practice 6. Common imputation strategies are notably developed 

for valid statistical inference of prediction model research, for example, on estimated prediction 

model coefficients and not for application in single patients. Moreover, these methods typically 

require access to raw data from multiple individuals, which is unlikely to achieve in daily clinical 

care given privacy and computational constraints.

Still, imputation of missing predictor values is important to provide for the use of a prediction 

model in daily care and to provide an individual’s prediction. Mean imputation of a missing 

predictor value has been recommended as a real-time missing predictor data handling strategy, 

due to its simple applicability in practice and relatively good performance, although it was also 

found to be insufficient when strong predictors were missing 48,170. As a result, additional real-time 

missing data imputation developments, such as joint modelling imputation (JMI), have been made 

as also evaluated in Chapter 4 and 5. JMI alleviates the issues found with mean imputation as it 

estimates all associations between the relevant patient characteristics 48. Briefly, JMI uses a two-

step approach: first population characteristics (i.e., means and covariance) are estimated from 

raw individual patient data and stored in the EHR-system; second the prediction model handles 

any missing predictor data by drawing imputations using the stored population characteristics. 

As a consequence JMI is suitable for individual predictions by an EHR built-in prediction model, 

does not need large amounts of raw data, and can achieve near-real time handling of missing 

predictor data which makes it attractive for use in real-time model predictions 40,48,175.

Alternatives to imputation of missing predictor values exist and may be more intuitive as they solve 

the issue of missing data from within the prediction model, rather than via a separate imputation 

step as described above. In Chapter 6 we evaluated two of such approaches: so-called pattern 

submodels (PS) in which separate prediction models are developed for each possible missing 

predictor data pattern, and surrogate splits (SS), in which the original split direction of a tree-based 

method is preserved as good as possible by means of a surrogate variable 36,37,50. Compared to PS, 

surrogate splits seem to perform poorly and are very dependent on the correlations between the 

surrogate variable and the missing predictor variable. Ultimately, JMI appeared in our research 

to still be preferred.

Still, the use of JMI requires careful interpretation by prediction models users such as the 

healthcare professionals, as imputations may be (very) uncertain. Furthermore, missing predictor 

imputation in daily care is not widely adopted yet and a valid and reliable assessment of the 
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acceptance of using a prediction model combined with real-time imputation in practice is 

warranted. To do so, we assessed acceptance of a real-time imputation method by means of a 

vignette study.

A vignette study to acquire attitude towards using real-time imputation in 

daily clinical practice

A vignette describes a potential scenario as would occur in real life (e.g., patient scheduled for a 

consult) 216. When simulating real-time use of missing predictor data handling, the information 

provided in each vignette needs to resemble an existing patient, with realistic missing patient 

characteristics or predictor values (Table 1). The participants – in this case healthcare professionals 

that use prediction models to guide their patient management - for a vignette study usually consist 

of those that may experience the potential scenario described.

To simulate the use of an existing prediction model with real-time missing predictor value 

imputation, we used the SMART risk score and paired it with the available U-Prevent prediction 

and decision model (figure 2) 21,126. We approached potential study participants that may use 

both prediction models (i.e., clinicians) from the departments of cardiology, vascular medicine, 

or internal medicine at the UMC Utrecht. Our vignettes resembled real world patients as 

mimicked from the large scale Utrecht Cardiovascular Cohort (UCC) 129. Further, we presented 

the participating clinicians with vignettes in fixed order and included separate questionnaires at 

different points in time of the mimicked clinical process: (i) before missing predictor imputation, (ii) 

after missing predictor imputation, and (iii) after unveiling the true values of the missing predictors 

(Figure 1). The questionnaires ultimately asked whether imputed predictor values were clinically 

realistic, the users were comfortable with using the imputed values to predict the patient’s risk, 

and whether the imputation model provided added value for the clinician (Figure 1).

8
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Figure 1. Overview of survey structure and design
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Legend – CI: confidence interval; JMI: joint modelling imputation.

Between the provided three vignettes (see Table 1) different combinations of predictors or patient 

characteristics were made missing, based on a combination of variable types (i.e., binary and 

continuous), burden to retrieve the missing predictor value, and expected ease of interpretation 

of the imputed predictor values (Table 1). We defined three categories for burden: low (i.e., when 

a phone call to the patient would suffice to retrieve the missing predictor value), medium (i.e., if 

the clinician can easily measure the variable with the patient during the physical examination), 

and high (i.e., when the missing predictor would require some additional, e.g. lab or imaging, 

test). In short, scenario 1 (table 1) with missing predictor values was the most prevalent and 

easiest to interpret, scenario 2 the most extreme and scenario 3 the easiest to fix with additional 

measurements.

With 17 clinicians , of which 13 completed all 9 questionnaires, the vignette study provided an exploratory 

look at how real world imputation of missing predictor values in clinical practice is perceived.

Overall, the imputed values themselves were perceived as very realistic (Table 2). The type of 

missing predictor did not influence this perception as both continuous, such as SBP (100%), and 

binary, such as diabetes or anti-thrombotic treatment (both 77%), predictors were rated similar. 

Except for SBP (46%) and years since first CVD-event (29%), the imputed values matched clinical 

expectations across variable types and levels of clinical burden. When many predictor variables 

were missing, the difference in predicted risk was perceived as unacceptable (23%) (reflected by 

scenario 2).
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Table 1. Summary of vignettes and type of missing predictor values and their imputed and real values

Missing predictor values
Variable 
type

Burden to retrieve 
the missing data

Imputed 
values

Real 
values

Scenario 1
SBP Continuous Medium 136 163

Hs-CRP Continuous High 3.2 1.6

Scenario 2

Hs-CRP Continuous High 3 2.5

Years since first CVD-event Continuous Low 14.7 4

Total cholesterol Continuous High 5.2 4.1

HDL-cholesterol Continuous High 1.2 1.2

LDL-cholesterol Continuous High 3.3 2.3

Scenario 3

SBP Continuous Medium 138 138

Diabetes Binary Low 11.9% No

Anti-thrombotic treatment Binary Low 86.9% Yes

Legend – SBP: systolic blood pressure; hs-CRP: high sensitivity C-reactive protein; CVD: cardiovascular disease; LDL: lower-

density lipoprotein; HDL: high-density lipoprotein.

The level of comfortableness was, altogether, low. Solely when few, exclusively continuous 

predictors, were missing, participants were comfortable with imputation of missing predictor 

values (67% in scenario 1). With too many predictors missing, independent of the burden to 

retrieve the missing predictor values, few participants were comfortable (29%). Only when 

predictors were mostly binary (as reflected in scenario 3), the level of comfortableness changed 

substantially after revealing the true predictor values (from 18% to 54%).

Participants seemed motivated to measure any missing predictor value, regardless of variable 

type or burden to retrieve the missing predictor value. The one exception was hs-CRP, for which 

participants were consistently not motivated to measure the missing values (35% and 13% for 

scenarios 1 and 2 respectively).

The view on comfortableness in predicting a patient’s risk after having imputed a missing predictor 

value, seemed dependent on the type of the missing predictor. Possibly this is because binary 

predictors are imputed with percentages (e.g., 85% instead of yes/no), rather than a dichotomized 

imputed value, making the interpretation more difficult. Likewise, CIs for imputed predictor values 

were found to deteriorate the interpretability of the imputed value and comfortableness in the 

predicted risk (after imputation) more unrealistic.

These results indicate that the implementation of real time imputation seems better perceived as 

useful when it is used to impute continuous variables and not too many predictors are missing.

8
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Also, the acceptance of real time imputation of missing predictor values is dependent on the 

importance of the predictor. Cholesterol levels, for example, were noted as important predictors 

and participants specifically stated that imputation could not be relied upon as it were part of 

the minimum set of predictors to be measured in cardiovascular risk prediction 22. In comparison, 

hs-CRP was not considered important for deciding on treatment options and thus participants 

were not concerned when it was imputed. This vignette study thus indicates that there is 

acceptance by users of prediction models to apply missing predictor value imputation in real 

time, if not only to justify additional measurements.

One of the questions that remains is whether the use of confidence intervals around the imputed 

predictor values is helpful. Also, we note that this pilot of course addressed only a limited number 

of scenarios and clinical domains, which stresses the importance of further study on professionals’ 

acceptance and use by of imputation of missing predictor values in real time.

Future perspectives regarding missing predictor data and their imputation in real time

The use of real-time missing predictor value imputation was found to be acceptable by potential 

users. Developments in terms of how to implement real time imputation models, which variables 

or information is to be used by the imputation models and how to present the imputed values 

and the correspondingly predicted risks, are required to ensure continued acceptableness of real-

time imputation in daily practice. For example, an improved way to communicate the uncertainty 

around the missing predictor value imputations and the subsequently predicted risks by the 

model is warranted.

Inherently, there is always uncertainty when imputing missing predictor values in real time 

practice. When more predictor values are missing, the uncertainty around imputed values is 

evidently higher. Still, it is difficult for users to exactly interpret when an imputed predictor value 

in real time is too uncertain. As is, the use of confidence intervals seems to primarily cause doubt 

rather than providing confidence among prediction model users. Generating a rule of thumb for 

when a confidence interval is too wide or the uncertainty of an imputed predictor value is too high, 

may be possible but remains complex. Instead, we recommend to present the difference in the 

resulting model’s predicted risk based on the confidence limits of the imputed predictor values.

Similarly, inclusion of auxiliary variables and information (extracted from the EHR) to be used in the 

real time imputation models has not yet been fully evaluated. There is tremendous opportunity 

in the typically rich EHRs for improved real-time missing predictor value imputation, which might 

result in more accurate imputations. Similarly, though unproven, the use of auxiliary variables 

may improve other missing data handling approaches such as surrogate splits, as discussed in 
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our chapter 5. Still, privacy regulations may limit the use of other available patient data to be used 

in real time imputation models. Ultimately, to ensure the use of auxiliary variables in real time 

imputation models is feasible but should be researched further.

Table 2. summary of acceptance measures (shows percentage of participants that said yes)
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Before (i), after (ii), or after seeing true values (iii) ii ii iii ii iii iii i

Scenario 1

SBP +/- 77% 46%

80% 67% 60% 87%

71%

Hs-CRP - 100% 67% 35%

Scenario 2

Time since  

first CVD event
+ 47% 29%

23% 29% 23% 77%

80%

Hs-CRP - 93% 93% 13%

Total cholesterol - 93% 86% 93%

HDL-cholesterol - 93% 93% 93%

LDL-cholesterol - 93% 60% 93%

Scenario 3

Anti-thrombotic 

medication
+ 77% 80%

92% 15% 54% 85%

69%

Diabetes + 77% 100% 69%

SBP +/- 100% 54% 77%

Legend – SBP: systolic blood pressure; hs-CRP: high-sensitivity C-reactive protein; CVD: cardiovascular; +: low; +/-: medium; 

-: high.
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Likewise, though implied in our vignette study above, it has not yet been fully evaluated whether 

the intended users of prediction models and underlying real time imputation models, will actually 

improve the measurement of patient information to reduce the amount of missing data in future 

patients. The impact that the use of real-time imputation may have on the overall missingness 

rates in EHRs is yet unknown and more hands-on research in existing risk management systems 

may show whether this is the case.

The framework and protocol for adopting real-time imputation in daily practice of healthcare 

professionals may also be a hurdle. Real-time imputation models need to be developed in or 

tailored (i.e., calibrated) to a suitable sample of patients from the targeted local population to 

which the prediction models will be applied. Fortunately, the development of the proposed 

real-time imputation models is relatively simple, and only requires estimating the means and 

covariance matrix of a targeted population. Consequently, it would be possible that this data 

needed for real time imputation, is directly provided from the research that led the development 

or validation of the prediction model itself. This would make the adoption of real time missing 

predictor value imputation easier.

The important question remains whether all these suggestions and developments on the use and 

implementation of real time imputation in daily practice will have a positive impact on clinical 

decision making and health outcomes in individual patients 212,217–223. This is the ultimate aim of 

subsequent research in this area.

Concluding remarks

With the existence of extensive reporting guidelines and missing data handling theory, it remains 

surprising that missing data in clinical healthcare data continuous to be a persistent problem 

when developing, validating, or applying clinical prediction models. Omitting or ignoring missing 

predictor data seem the prevailing situation. Overall, this indicates an overall lack of appreciation 

about the severe consequences of improper handling of missing data in prediction model research 

and practice. Whilst improvements in clinical healthcare, such as improved clinical care pathways 

that minimize missing data, and the use of real time missing data imputation may provide a 

suitable solution, researchers and users of prediction models must first become more aware of 

the consequences of ignoring missing data. Otherwise, all improvements and solutions will not 

follow their implementation in future research or practice. We do believe that the research in this 

thesis will contribute to this acknowledgment.
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General discussion

Figure 2. Example of a hypothetical risk profile as presented to the clinician
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Summary

The identification of individual patients at risk of disease has become an integral part of recent 

trends towards a more personalized healthcare system. A healthcare system that is personalized 

allows us to administer the most applicable treatment to an individual patient given their risk 

profile and, in turn,  make our healthcare much more efficient. To that end, clinical prediction 

models are situated as prime candidates to assist clinicians with accurate risk estimates. By 

harnessing the information captured in various patient or disease related properties, these risk 

prediction models are able to chart a likely path that a disease might take (i.e., prognosis) or 

identify whether a specific disease is likely present in individual patients (i.e., diagnosis). 

Recent efforts to computerize the use of various clinical prediction models in clinical practice 

have provided clinical decision support systems (CDSS) that are already usable in clinical practice. 

These CDSS already allow clinicians to potentially inform  their clinical decision making by 

providing individual risk probabilities. However, because currently available risk prediction models 

require complete information to generate predictions, these models are severely hampered 

whenever any patient or disease properties are missing. Luckily, the ample guidance that exists 

on the handling of missing data provides useful stepping stones to develop flexible or missing 

data handling techniques usable in real-time clinical practice.

In Chapter 2 we show that, so far, the majority of clinical prediction model studies that make use 

of machine learning (ML) techniques are not reporting enough information on the presence or 

handling of missing data when developing or validating a prediction model. Though ill-advised, 

the removal of patient records with missing variables is also used most often. These results were 

retrieved by evaluating whether a systematically searched subset of published papers included 

information on predefined features to be reported about missing data.

In addition to poor reporting on missing data, we show that the adherence of ML prediction 

model studies to current recommended reporting guidelines is also poor (Chapter 3). Several of 

the items deemed essential were reported incomplete, resulting in a heightened risk of bias for 

these studies. In addition, methodological quality was generally poor. 

It is clear efforts are required to improve the design and consecutive reporting of prediction 

model studies (using ML or not). To that end, Chapter 4 presents the development of several 

imputation methods for missing predictor values in real-time. In a case-study with a real-world 

empirical data set for cardiovascular risk prediction, we compared the accuracy of two common 

imputation methods which were adjusted for use in real time clinical practice: conditional 
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modeling imputation (CMI, where for each predictor a separate multivariable imputation model 

is derived) and joint modeling imputation (JMI, where we assume all predictors are normally 

distributed and use the observed patient information to generate imputations for each missing 

predictor).  We then compare these methodologies with a method which is often used in practice: 

mean imputation (where missing values are replaced by the sample mean). Congruent with our 

expectations, simulations found that both JMI and CMI are generally to be recommended in 

terms of imputation accuracy. As JMI was generally faster and less complex, it was deemed more 

promising.

In Chapter 4 we evaluated novel imputation methods strictly on their imputation accuracy in terms 

of their root mean squared error. In Chapter 5 we continue with the more promising imputation 

method (i.e., JMI) and evaluate it using common evaluation methods for prediction models 

(i.e., discrimination and calibration of the model predictions). We specifically focus on the use 

of auxiliary variables (i.e., variables not part of the prediction model), elaborate further on the 

idea of imputation model updating and make a comparison with the often-used method mean 

imputation. In summary, the use of JMI is found to be most beneficial when estimated in local 

data and with the use of these auxiliary variables. Its added value is most prominent whenever 

the missing predictors are correlated with other observed (auxiliary) variables.

The solution to missing data in clinical practice is not solely solvable by estimating substitute 

predictor values based on what we know of the individual patient. Multiple techniques exist 

which can handle missing values with a built-in design. In Chapter 6 we evaluated multiple 

missing data handling methods and compared them with JMI. Specifically, we evaluated pattern 

submodels (PS, where for each pattern, by which variables are missing, a separate prediction 

model is developed) and surrogate splits (SS, where an optimal replacement value is found among 

the available patient information which can serve as a replacement for the missing predictor). 

Provided multiple imputations are used, JMI is still to be preferred over PS and SS.

We are hopeful that large, local datasets may become more available to inform proper imputation 

procedures which will enable real-time handling of missing data. Still, prediction models need to 

be generalizable to such data. In Chapter 7 we show that internal-external cross-validation (IECV) 

is to be preferred, when the data is clustered, for assessing the generalizability of a prediction 

model during development. In short, IECV evaluated model performance in every hold-out 

sample which includes individuals from a different setting or population (e.g., a different hospital). 

Additionally, it can be adopted to evaluate whether complex modeling strategies (e.g., the use of 

penalization, interactions or non-linear effects) offer any benefits. We found that the accuracy of 
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prediction models does not necessarily benefit from more complex modeling strategies, which 

shows that IECV is potentially useful for simplifying model complexity.

As of yet, it is largely uncertain whether personalized medicine, in the form of CDSS, will offer the 

benefits it gives the impression of providing. Clinicians are certainly inclined to believe so, but 

concrete evidence of positive impact on health outcomes is, as of yet, missing. First and foremost, 

and for fair comparison, the severe consequences of improper missing data handling must be 

appreciated and handled the right way.
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De identificatie van individuele patiënten met een risico op ziekte is een integraal 

onderdeel geworden van recente trends in de richting van een meer gepersonaliseerd 

gezondheidszorgsysteem. Een zorgsysteem dat gepersonaliseerd is stelt ons in staat om de meest 

toepasselijke behandeling te vinden voor een individuele patiënt gegeven diens risicoprofiel. Die 

persoonlijke benadering zou onze gezondheidszorg veel efficiënter kunnen maken. Daartoe zijn 

klinische voorspelmodellen de voornaamste kandidaten om clinici te helpen met nauwkeurige 

risicoschattingen. Door gebruik te maken van de informatie die is vastgelegd in verschillende 

patiënt- of ziektegerelateerde eigenschappen, kunnen deze risico-voorspelmodellen een 

waarschijnlijk pad in kaart brengen dat een ziekte zou kunnen nemen (d.w.z.,, prognose) of 

identificeren of een specifieke ziekte waarschijnlijk aanwezig is bij individuele patiënten (d.w.z.,, 

diagnose).

Recente inspanningen om het gebruik van verschillende klinische voorspelmodellen in de klinische 

praktijk te automatiseren, hebben geleid tot klinische beslissingsondersteunende systemen die 

al bruikbaar zijn in de klinische praktijk. Deze systemen stellen clinici in staat om hun klinische 

besluitvorming verder te verbeteren door het gebruik van individuele risico inschattingen. 

Omdat de momenteel beschikbare modellen voor risico-voorspelling echter volledige informatie 

vereisen om voorspellingen te genereren, worden deze modellen ernstig belemmerd wanneer 

eigenschappen van een patiënt of ziekte ontbreken. Gelukkig is de uitgebreide kennis over 

het omgaan met missende waardes in staat om nuttige opstapjes te geven om flexibele of 

verwerkingstechnieken te ontwikkelen die bruikbaar zijn in de ‘live’ klinische praktijk.

In Hoofdstuk 2 laten we zien dat, tot dusverre, de meeste klinische voorspelmodel studies die 

gebruik maken van machine learning (ML) technieken, onvoldoende informatie rapporteren 

over de aanwezigheid of verwerking van ontbrekende data bij het ontwikkelen of valideren van 

een voorspelmodel. Hoewel het onverstandig is, wordt het verwijderen van patiëntendossiers 

of variabelen met missende waardes het vaakst gebruikt. Dit konden we vaststellen door na te 

gaan of een systematisch doorzochte subset van gepubliceerde artikelen informatie bevat over 

vooraf gedefinieerde kenmerken die moeten worden gerapporteerd over ontbrekende gegevens.

Naast ondermaatse rapportage over missende waardes, laten we zien dat de naleving van huidige 

aanbevolen rapportage richtlijnen voor ML-voorspelmodel studies ook slecht is (hoofdstuk 3). 

Verschillende van de items die als essentieel worden beschouwd, zijn onvolledig gerapporteerd, 

wat resulteerde in een verhoogd risico op vertekening voor deze onderzoeken. Bovendien was 

de methodologische kwaliteit over het algemeen slecht.
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Het is duidelijk dat er inspanningen nodig zijn om het ontwerp en de opeenvolgende rapportage 

van voorspelmodel studies te verbeteren (al dan niet met ML). Met dat doel laat Hoofdstuk 

4 de ontwikkeling zien van verschillende imputatie methoden voor missende waardes  in 

realtime. In een case-study met een real-world empirische dataset voor cardiovasculaire risico 

voorspelling, vergeleken we de nauwkeurigheid van twee veelgebruikte imputatie methoden 

die waren aangepast voor gebruik in de realtime klinische praktijk: conditional modelling 

imputation (CMI, waarbij voor elke voorspeller een apart multivariabel imputatie model is 

afgeleid) en joint modeling imputation (JMI, waarbij we uitgaan van enkel normaal verdeelde 

voorspellers en de beschikbare patiëntgegevens gebruiken om imputaties te genereren voor 

elke missende voorspeller). Vervolgens vergelijken we deze methodes met een veelgebruikte 

methode in de praktijk: gemiddelde imputatie (waarbij missende waardes worden vervangen door 

het steekproefgemiddelde). In overeenstemming met onze verwachtingen, vonden simulaties 

dat zowel JMI als CMI over het algemeen kunnen worden aanbevolen in termen van imputatie 

nauwkeurigheid. Omdat JMI over het algemeen sneller en minder complex was, werd het als de 

methode met meer potentie beschouwd.

In Hoofdstuk 4 evalueren we nieuwe imputatie methoden strikt op hun nauwkeurigheid in 

termen van hun gemiddelde kwadratische fout. In Hoofdstuk 5 gaan we verder met de meer 

veelbelovende imputatie methode (d.w.z., JMI) en evalueren deze door middel van veel gebruikte 

evaluatie maten voor voorspelmodellen (d.w.z., discriminatie en kalibratie). We richten ons 

specifiek op het gebruik van auxiliaire variabelen (d.w.z., variabelen die geen deel uitmaken van het 

voorspellingsmodel), werken het idee van het flexibel bijwerken van het imputatie model verder 

uit en maken een vergelijking met de veel gebruikte methode gemiddelde imputatie. Samengevat 

blijkt het gebruik van JMI het voordeligst te zijn wanneer het wordt geschat in lokale gegevens en 

met behulp van auxiliaire variabelen. De toegevoegde waarde is het meest prominent wanneer 

de missende voorspellers correleren met andere waargenomen (auxiliaire) variabelen.

De oplossing voor missende waardes in de klinische praktijk is niet alleen op te lossen door 

vervangende voorspeller waarden te schatten op basis van wat we weten van de individuele 

patiënt. Er bestaan ​​meerdere (ML) technieken die kunnen omgaan met ontbrekende waarden met 

een ingebouwd ontwerp. In Hoofdstuk 6 evalueren we meerdere methoden voor het verwerken 

van missende waardes en vergeleken deze met JMI. Specifiek evalueren we patroon submodellen 

(PS, waar voor elk bestaand patroon waarmee voorspellers missend gevonden zijn een apart 

voorspelmodel ontwikkeld wordt) en surrogate splits (SS, waar een optimale vervangende waarde 

wordt gevonden onder de beschikbare patiëntgegevens die gebruikt kan worden in plaats van 

de missende voorspeller). Mits meerdere imputaties worden gebruikt, heeft JMI nog steeds de 

voorkeur boven PS en SS.
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We hebben goede hoop dat er meer grote, lokale datasets beschikbaar zullen worden gemaakt 

om imputatie procedures uit te kunnen voeren die realtime verwerking van missende waardes 

mogelijk maken. Wel moeten voorspelmodellen generaliseerbaar zijn naar dergelijke gegevens. In 

Hoofdstuk 7 laten we zien dat interne-externe kruisvalidatie (IECV) de voorkeur verdient, wanneer 

de gegevens worden geclusterd, voor het beoordelen van de generaliseerbaarheid van een 

voorspellingsmodel tijdens de ontwikkeling. In het kort, IECV evalueert de model prestaties in elke 

hold-out-steekproef die individuen omvat uit een andere setting of populatie (bijvoorbeeld een 

ander ziekenhuis). Bovendien kan het worden gebruikt om te evalueren of complexe modellering 

strategieën (bijvoorbeeld het gebruik van interacties of niet-lineaire effecten) voordelen bieden. 

We ontdekten dat de nauwkeurigheid van voorspelmodellen niet noodzakelijkerwijs baat heeft 

bij complexere modellering strategieën, wat aantoont dat IECV potentieel nuttig is voor het 

vereenvoudigen van algemene model complexiteit.

Vooralsnog is het grotendeels onzeker of gepersonaliseerde geneeskunde, in de vorm van CDSS, 

de potentie die het laat zien zal waarmaken. Clinici zijn zeker geneigd om van wel te geloven, 

maar concreet bewijs van een positieve impact op de gezondheidsuitkomsten ontbreekt tot nu 

toe. Eerst en vooral, en voor een eerlijke vergelijking, moeten de ernstige gevolgen van onjuiste 

verwerking van missende waardes worden erkend en op de juiste manier worden behandeld.
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Dankwoord

Vanaf het allereerste begin, en zeker toen Nederland door COVID-19 getroffen werd, was het 

duidelijk dat het tot stand laten komen van dit proefschrift tot het moeilijkste zou behoren dat ik 

ooit gedaan heb. Nu het tot een einde komt kan ik niet anders dan dankbaar zijn voor alle mensen 

in mijn directe en indirecte omgeving die het voor mij mogelijk hebben gemaakt om door te gaan. 

De voldoening en de eer komt jullie allen toe.

Allereerst zou graag mijn promotoren prof. dr. Moons, prof. dr. Asselbergs, mijn copromotor dr. 

Debray en mentor prof. dr. Bots willen bedanken. Jullie stonden vanaf het allereerste begin in 

mijn hoek en hebben mij vol begrip gesteund op de momenten dat het moeilijk werd. Het is een 

genoegen en voorrecht geweest dit te mogen doen onder jullie begeleiding. Beste Carl, ik wil je 

heel graag bedanken voor je onbreekbare positiviteit gedurende de promotie. Je was begripvol, 

inspirerend en vooral geïnteresseerd in waar ik heen wilde. Jouw inspanningen en advies zorgde 

ervoor dat ik een goede grip op mijn onzekerheid kreeg gedurende mijn promotie en daar ben ik 

je nog altijd zeer dankbaar voor. Beste Folkert, dank voor je constante bereidheid om te helpen 

en in te springen waar nodig en je zeer plezierige aanwezigheid gedurende de hele promotie. 

Door de belangrijkste componenten van het onderzoek regelmatig te benadrukken en de hoofd 

en bijzaken goed te scheiden was je bijdrage van essentiële waarde. Het staat me nog goed bij 

dat we op een gegeven moment belde over een pijnpunt in ons onderzoek en je mij wees op 

de juiste invalshoek. Beste Thomas, met absolute zekerheid kan ik zeggen dat dit proefschrift 

er niet was geweest zonder jou. Onze wekelijkse gesprekken waren inspirerend, aanstekelijk, 

enthousiast, kritisch en bovenal nuttig. Je nam altijd de tijd voor mij en je streefde altijd naar 

een leuke teamsfeer (bijv. middels etentjes). Je was bereid naar me te luisteren en dacht mee als 

ik weer een gek idee had (die meestal niet werkte) en dit heb ik altijd zeer gewaardeerd. Dank 

voor je begeleiding en dat ik zoveel van je heb mogen leren. Beste Michiel, mijn dank gaat uit 

naar je betrokkenheid, je enthousiasme en je prettige benaderbare houding. Je aanwezigheid en 

communicatieve vaardigheden maakte elke reguliere overleg gemakkelijker, ondanks dat ik van 

tevoren nerveus kon zijn. Alhoewel je naar eigen zeggen geen technische expertise hebt, wist je 

altijd essentiële bijdrages te leveren door het kerndoel duidelijk te maken en herkende je zonder 

meer waar potentiële pijnpunten zouden kunnen liggen.

Aan mijn beoordelingscommissie, prof. dr. Rovers, prof. dr. Oberski, prof. dr. Scheepers,  

prof. dr. Visseren en prof. dr. Kretzschmar,  dank voor uw bereidheid mijn proefschrift te lezen 

en beoordelen. Ook veel dank aan dr. van Smeden voor het plaatsnemen in de oppositie bij 

mijn verdediging.
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Mijn dank gaat ook uit naar alle betrokkenen bij ORTEC, John, Ines, Inge, Menno en het team van 

Logiqcare. Jullie inbreng is van onschatbare waarde geweest. Bij Ortec heb ik me altijd welkom 

gevoeld en het is jammer dat het beperkt is gebleven door het vele thuiswerken. Beste John, 

ook jij bent sinds het begin betrokken geweest bij mijn onderzoek, dankjewel daarvoor. Je was 

plezierig en leek altijd het vertrouwen erin te houden, wat heel bemoedigend werkte. Dank dat 

je, ook toen het minder ging, met mij bleef praten. Onze wandeling door Utrecht zal ik altijd 

blijven waarderen. Beste Ines, alhoewel je later aansloot, was je inbreng direct zichtbaar en van 

meerwaarde. Heel veel dank voor al je inzet en je plezierige aanwezigheid bij de vele overleggen 

die we gehad hebben.

Aan alle co-auteurs die meegewerkt hebben aan de hoofdstukken in dit proefschrift, ontzettend 

veel dank voor jullie harde werk en vertrouwen. Beste Jeroen, zonder jouw bereidheid om mee 

te kijken en te schrijven aan mijn eerste onderzoeken was ik nooit enigszins beslagen ten ijs 

gekomen. Dank voor alle moeite die je erin gestopt hebt. Je humor en creatieve schrijfvaardigheid 

hebben altijd veel plezier gegeven. Beste Constanza, het immense werk van jouw review heeft 

de grondslag aan twee hoofdstukken in mijn proefschrift geleverd. Ontzettend bedankt dat ik 

hieraan mee heb mogen werken. Onze online koffiemomenten waren altijd plezierig en iets 

om naar uit te kijken, dank voor je vrolijke aanwezigheid. Beste Tuur, dank voor de gezelligheid 

tijdens onze samenwerking. Het is altijd met veel plezier geweest dat ik met je discussieerde 

over de verschillende componenten van ons onderzoek. Dear Toshi, it has been a pleasure to 

work with you. Thank you for providing the opportunity to do so. Beste Saskia, veel dank voor 

je betrokkenheid en inzet bij mijn laatste onderzoek. Je absolute positiviteit en enthousiasme 

werkte aanstekelijk en het was inspirerend te zien hoe je te werk gaat. Dit zijn vaardigheden die 

ik hoop eigen te kunnen maken.

Veel dank aan alle collega’s die meegewerkt hebben aan het Special Interest Group project, 

Gerko, Hanne en Maarten. Nooit eerder waren de reguliere overleggen zo informeel en gezellig, 

alsook nuttig. Dat was precies waar ik op hoopte aan het eind van mijn proefschrift, veel dank 

daarvoor. Beste Gerko, alhoewel ik je soms nog steeds niet helemaal volg als je bepaalde missing 

data vakjargon gebruikt heb ik je intelligente en kritische blik enorm gewaardeerd. Het heeft er 

absoluut tot een beter resultaat geleid. Beste Hanne, het was heel erg fijn om samen te werken aan 

ons onderzoek. Je kennis en vaardigheden zijn bewonderenswaardig en maakte het project heel 

goed te doen. Het is ook niet zo gek dan dat je in de toekomst al een positie als promovendus hebt 

vastgesteld, veel succes daarmee. Verder heb ik erg genoten van onze discussies. Heel erg bedankt 

voor je betrokkenheid en harde werken. Beste Maarten, direct bij onze eerste kennismaking, 

waarbij ik je vertelde van mijn voornemen om ML toe te gaan passen voor missing data, was je 
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(gekscherend) sceptisch voor het nut daarvan. Die kritische, en humoristische, blik heb je nooit 

laten varen en dat heb ik erg gewaardeerd gedurende de tijd dat we samenwerkte, dankjewel.

Aan alle collega’s in het methode team, dank voor jullie inzicht en gezelligheid. Jullie presentaties 

zijn inspirerend geweest en ik keek altijd uit naar onze weekstart op maandag. De teamuitjes zijn 

helaas pas recent weer opgestart, maar ik heb veel genoten van de momenten die ik ondanks 

het vele thuiswerken nog met jullie gehad heb. We zullen maar moeten aannemen dat Michiel de 

hypothetische pubquiz gewonnen zou hebben. Lieve Lotty, ondanks dat we aan weinig projecten 

samen gewerkt hebben, heb je ongetwijfeld een positieve invloed gehad op mijn promotie. Je 

vrolijke, begripvolle en lieve aanwezigheid, en bereidheid te praten wanneer ik dat nodig had, heb 

ik enorm gewaardeerd. Het is één van de dingen die ik absoluut mis nu ik niet meer op het Julius 

werk. Beste Valentijn, alhoewel ik niet verwacht dat ik je ooit zal verslaan met AoE heb ik altijd 

erg genoten van je gezelschap deze jaren. We hebben veel gelachen en het was ontzettend leuk 

om samen deel uit te maken van Thomas z’n team (met de extra lunches en uitjes). Dankjewel 

voor al je positiviteit. Beste Hans, ondanks dat we niet samen hebben gewerkt wilde ik je graag 

bedanken voor het feit dat je de reden bent geweest dat ik deze kans heb gekregen. Heel erg 

bedankt dat je mijn naam destijds hebt doorgegeven aan Carl. 

Lieve kamergenoten van 6.118, Noor, Marit, Zujie, Said, Antonis, Sieta en Katrin, dank voor jullie 

gezelligheid. Door het thuiswerken heb ik jullie gezelschap helaas veel moeten missen, maar het 

heeft het eerste jaar veel goed gedaan om met jullie op de kamer te zitten.

Lieve Katrien, in het eerste jaar heb jij mij de kneepjes van het vak geleerd. Je aanwezigheid was 

van onmiddellijke en onschatbare meerwaarde en maakte dat ik met goed vertrouwen direct aan 

de bak kon. Je laagdrempelige strategie middels zoete stroopwafels is mij nog lang bijgebleven, 

alhoewel ze meestal op waren voor ik ze kon gebruiken zoals je had voorgesteld. Dank voor al je 

vertrouwenwekkende aanwezigheid. 

Anneke en Reinoud, wat fijn dat jullie mijn paranimfen willen zijn en achter mij zullen staan op het 

grote moment. Lieve Anneke, in mijn laatste jaar waren we regelmatig kamergenoten en daar heb 

ik zo enorm van genoten. Met veel plezier heb ik met je geluncht, waarbij het soms leek alsof wij 

de enige waren die niet over werk wilde praten, gewandeld, gepraat en nunchaku beoefend (bij de 

sportdag). Leuk om te horen dat je in Utrecht blijft. Reinoud, buddy, soms vraag ik me af of je wel 

door hebt hoeveel onze vriendschap voor mij betekent. Je vermogen om ongenadig te veroordelen 

als ik iets fout doe en tegelijkertijd lief en begripvol zijn als ik het nodig heb is prijzenswaardig. 

Het heeft op zoveel momenten geholpen om de juiste keuzes te maken en ik hoop dan ook dat 

ik daar nog heel erg lang van kan genieten. Dankjewel dat je er al die jaren al voor mij bent.
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Dankwoord

Al mijn lieve vrienden, (schoon)familie en mede-nunchaku-ka’s, dank voor jullie interesse 

in mijn onderzoek en altruïstische steun deze afgelopen jaren. Het is zo fijn geweest om mijn ei 

kwijt te kunnen bij jullie als dat nodig was. Jullie hebben voor de nodige ontspanning gezorgd 

door met mij te filosoferen over de toekomst, bordspellen te spelen, kata’s te lopen en te klagen 

over politiek. Jullie hebben het in deze tijd een stuk makkelijker gemaakt om te kunnen genieten, 

dank jullie allen.

Lieve papa en mama, het was heel fijn toen we uiteindelijk dichterbij jullie gingen wonen en we 

zo veel vaker bij jullie over de vloer konden komen. Jullie zijn altijd bereid geweest te luisteren 

als ik ergens mee zat en geïnteresseerd in hoe het met mij ging en wat ik deed aan onderzoek. 

Dit is zo belangrijk geweest voor mij in deze jaren. Jullie stonden altijd aan mijn kant, hielden het 

vertrouwen in mijn kunnen en gaven dat zonder verwachtingen ook dikwijls aan. Daar zal ik jullie 

altijd dankbaar voor zijn. 

Lieve Tom, met veel plezier denk ik terug aan onze wandeling in Kaapverdië. De afgelopen jaren 

voelt het alsof we meer naar elkaar zijn toegegroeid en dat vind ik heel erg fijn. Jij bent al heel 

lang mijn grote voorbeeld geweest. Dank voor al je ondersteunende woorden de afgelopen tijd 

en je vertrouwen in mij.

Hannah, lieve Hannah, zonder jouw vertrouwen en steun had ik dit allemaal nooit kunnen doen. Jij 

bent mijn steun en toeverlaat. Mijn happy place. Alhoewel je af en toe genadeloos eerlijk was wat 

je van het onderwerp van mijn thesis vond heb je altijd je best gedaan deze te begrijpen en mee 

te denken wanneer ik dat nodig had. Jij was degene die mij ertoe zetten mijn gezondheid tijdelijk 

boven mijn werk te zetten en dat is wat ervoor gezorgd heeft dat ik het af heb kunnen maken. Door 

jou heb ik durven dromen over dingen die ik eerder niet voor mogelijk heb gehouden. We maken 

een super goed team samen en ik kijk vol verwachting en geluk uit naar onze toekomst samen.

En dan tot slot, Mels. Kleine, lieve Mels, je bent nu nog minder dan drie weken oud. Met grote ogen 

kijk je echter al om je heen en ik kan alleen maar hopen dat ik een goede vader voor je zal zijn. 

Gelukkig is nu de ene uitdaging afgerond en is het tijd voor een ander. Ik heb er heel veel zin in.

Steven Nijman

April 2022 
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